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a b s t r a c t

The double Pareto Lognormal (dPlN) statistical distribution, defined in terms of both an exponentiated
skewed Laplace distribution and a lognormal distribution, has proven suitable for fitting heavy tailed
data. In this work we investigate inference for the mixture of a dPlN component and ðk�1Þ lognormal
components for k fixed, a model for extreme and skewed data which additionally captures multi-
modality.

The optimisation criterion based on the likelihood maximisation is considered, which yields a global
optimisation problem with an objective function difficult to evaluate and optimise. Variable Neighbour-
hood Search (VNS) is proven to be a powerful tool to overcome such difficulties. Our approach is
illustrated with both simulated and real data, in which our VNS and a standard multistart are compared.
The computational experience shows that the VNS is more stable numerically and provides slightly
better objective values.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

In this paper we address a statistical parametric inference
problem, in which one is given a random sample y¼ ðy1;…; ynÞ,
a class of probability density functions (pdf) fgð�jϑÞ : ϑAΘg
indexed by a multidimensional parameter ϑAΘ, and the purpose
is to find the parameter ϑn for which the corresponding pdf gð�jϑnÞ
matches best to the data set.

There is no canonical performance measure for such match,
and in this paper the classical Maximum Likelihood Estimation (ML),
which is easily shown to be equivalent to the following optimisa-
tion problem:

max
ϑAΘ

LMLðyjϑÞ≔
1
n

∑
1r irn

log gðyijϑÞ; ð1Þ

is considered.
The double Pareto Lognormal (dPlN) distribution, originally

defined in Reed and Jorgensen [27], generalises the well known
lognormal distribution and has been applied in different heavy-
tailed settings such as teletraffic and risk theory [26], physics [29],
bioinformatics [19] or complex networks [11]. Unlike the classic
Pareto model, whose density function is decreasing and unimodal
at zero, the dPlN density admits more versatility and in particular,

the previous works show that the dPlN correctly models both
the tail and body of the distribution and is able to capture
different forms of asymmetry. The class of probability density
functions considered in this work is the mixture of dPlN
densities; specifically, for the sake of parsimony we consider a
mixture of a dPlN component and ðk�1Þ lognormal distributions
(LN) for k fixed, which as will be seen defines a realistic and
suitable model for capturing multimodality, skewness and heavy
tailed patterns.

Optimisation problems such as (1) are frequently multimodal,
and call for the use of Global Optimisation tools, as advocated e.g.
in Abbasi et al. [1], Gourdin et al. [13], Liu [18], Pang et al. [24],
Román-Román et al. [28], Vera and Díaz-García [30]. The ML
problem addressed here is not an exception: as shown in this
paper this estimation problem is highly multimodal and thus,
global optimisation procedures must be used to avoid the risk of
getting stuck at a (bad) local optimum. Different strategies such as
those proposed in the above mentioned papers could be used to
obtain a global optimum. In this paper we propose the popular
Variable Neighbourhood Search algorithm [5,14,15,23,22] to
address the considered ML problem. Our choice of VNS is moti-
vated by the fact that it is well documented in the literature,
extremely easy to implement, it allows one to perform local
searches, to cope with optimisation problems with unbounded
feasible regions, and, as shown in our numerical experience, it
allows us to successfully exploit the structure of the optimisation
problem.
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The remainder of the paper is structured as follows. In Section 2,
the main properties of the considered dPlN-lN mixture model are
introduced, and the problem of parameter estimating is stated.
Some important difficulties found when evaluating the objective
function, which make the optimisation process harder, are detailed
in Section 3. Section 4 describes how the optimisation problem is
successfully addressed with VNS. Numerical tests are performed on
both artificial and realworld data sets, in which our VNS is
compared against a basic global optimisation approach, namely,
multistart. Some final remarks and future lines of research are
presented in the concluding section, Section 5.

2. Estimation of dPlN-lN mixtures

2.1. The mixture model

In this section we review the basic concepts and properties of
the statistical model addressed in this paper. The reader is referred
to Reed and Jorgensen [27] and Ramírez et al. [26] for further
details.

A random variable Y is said to have a Normal Laplace distribution
(NL), denoted Y �NLðα;β;ν; τ2Þ if Y can be expressed as the sum of
two independent random variables, Y ¼ ZþW , where Z follows a
normal distribution, Z �Nðν; τ2Þ, and W is a skewed Laplace
distributed variable, with pdf of the form

f W ðwjα;βÞ ¼

αβ
αþβ

eβw if wr0;

αβ
αþβ

e�αw if w40;

8>>><
>>>:

for α, β40.
The pdf of Y is

gY ðyjα;β;ν; τ2Þ ¼
αβ
αþβ

ϕ
y�ν
τ

� �
½Rðατ�ðy�νÞ=τÞþRðβτþðy�νÞ=τÞ�;

ð2Þ
where R(z) is the Mills’ ratio defined by

RðzÞ ¼ΦcðzÞ=ϕðzÞ; ð3Þ
where ΦcðzÞ ¼ 1�ΦðzÞ, and ϕðzÞ and ΦðzÞ are the standard normal
density and cumulative distributions respectively. Because of the
skewed Laplace component in the definition of Y, the pdf of the NL
is asymmetric. Reed and Jorgensen [27] derive the limiting forms
of the NLðα;β;ν; τ2Þ distribution:
gY ðyjα;1;ν; τ2Þ � lim

β-1
gY ðyjα;β;ν; τ2Þ

¼ αϕ
y�ν
τ

� �
Rðατ�ðy�νÞ=τÞ; ð4Þ

gY ðyj1;β;ν; τ2Þ � lim
α-1

gY ðyjα;β;ν; τ2Þ

¼ βϕ
y�ν
τ

� �
Rðβτþðy�νÞ=τÞ; ð5Þ

called left-/right-handed Normal Exponential distributions, respec-
tively. It can be proven that when both α and β increase, the limiting
case is the Normal distribution Nðν; τ2Þ.

A random variable X is said to have a double Pareto Lognormal
(dPlN) distribution with parameters ðα; β; ν; τ2Þ if X can be
written as X ¼ expðYÞ, where Y is Normal Laplace distributed.
The pdf of a dPlN is therefore given by

f X ðxjα;β;ν; τ2Þ ¼
αβ
αþβ

1
x

� �
ϕ

log x�ν
τ

� �

� ½Rðατ�ðlog x�νÞ=τÞþRðβτþðlog x�νÞ=τÞ�:
Parameter estimation of the dPlN model is addressed in Reed

and Jorgensen [27] and Ramírez et al. [26]. Although the

optimisation problem obtained is multimodal, and even the
evaluation of the objective function may be problematic, these
critical issues have not been discussed in the literature. In this
paper we consider a more general model, namely, a mixture of k
dPlN distributions,

f Xmix
ðxjω;α;β;ν; τ2Þ ¼ ∑

k

i ¼ 1
wif Xðxjαi;βi;νi; τ

2
i Þ; ð6Þ

whereωi40 for i¼ 1;…; k, and ∑k
i ¼ 1ωi ¼ 1. The mixture model in

(6) inherits most of the properties of the dPlN distribution.
In particular, the moment of order n exists if minfα1;…;αkg4n
and (6) is monotonically decreasing if maxfβ1;…;βkgA ð0;1Þ.

The number of parameters to be estimated in (6) is 5k�1.
In order to reduce the possible overparametrisation of the model,
we consider a particular case of (6), in which αi ¼ βi ¼ þ1, for
i¼ 2;…; k. In other words, we fit a mixture of one dPlN component
defined by ðα1; β1; ν1; τ21Þ where 0oα1oþ1 or 0oβ1oþ1,
and ðk�1Þ lognormals LN ðνi; τ2i Þ, for i¼ 2;…; k. In this way, the
model, which will be denoted from now dPlN-lN mixture model,
may be seen as rather parsimonious but at the same time it is able
to detect multimodality and skewness in the data set.

Fig. 1 depicts different forms of the considered dPlN-lN mixture
model in logarithmic scales for the case k¼2. In all panels the
weights are ω¼ ð0:5; 0:5Þ and the second component is lognor-
mally distributed with parameters ðν2; τ22Þ ¼ ð5;4Þ. Each parameter
α1, β1, ν1 and τ1 of the first component varies within each panel,
keeping the other parameters fixed.

2.2. Problem statement

Given a random sample x¼ ðx1;…; xnÞ from a dPlN mixture
model (6), the goal is to estimate the model parameters
fω; α; β; ν; τg. The number of components k will be assumed
to be known throughout this paper. Note that if Ymix follows the
mixture:

gYmix
ðyjω;α;β;ν; τ2Þ ¼ ∑

k

i ¼ 1
wigY ðyjαi;βi;νi; τ

2
i Þ; ð7Þ

then Xmix ¼ expðYmixÞ has the pdf (6), and thus it is equivalent to
estimate either (6) or (7). Since it is easier computationally to work
with the NL pdf (2), we define y¼ ðy1;…; ynÞ, where yr ¼ log ðxrÞ,
r ¼ 1, …, n, and estimate the model (7).

As mentioned in the previous section, for the sake of parsimony
we will estimate the dPlN-lN mixture model, a particular case of
(7) where the first component is assumed to follow a NL with
parameters ðα1;β1;ν1; τ21Þ for α1;β140 and ðα1;β1Þa ðþ1; þ1Þ,
and the other ðk�1Þ components are normals defined by Nðνi; τ2i Þ,
that is αi ¼ βi ¼1, for i¼2,…,k. The estimation criterion men-
tioned in Section 1, namely, Maximum Likelihood (ML) estimation,
is considered. It leads to the optimisation problem

max
ðω;α;β;ν;τÞAΘ

LMLðyjω;α;β;ν; τ2Þ;

where the objective function as in (1) is

LMLðyjω;α;β;ν; τÞ ¼ 1
n

∑
1r irn

log gYmix
ðyijω;α;β;ν; τ2Þ; ð8Þ

the function gYmix
ðyj�Þ is given by (7), and the parameter space Θ

is defined by the following constraints:

α1;β140; ðα1;β1Þaðþ1; þ1Þ;
αi ¼ βi ¼1; i¼ 2;…; k
νiAR; i¼ 1;…; k

τ2i 40; i¼ 1;…; k

ωi40; i¼ 1;…; k; ∑
k

i ¼ 1
ωi ¼ 1: ð9Þ
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Because of the constraint αi ¼ βi ¼1, i ¼ 2, …, k in (9), from
now on the model parameters will be denoted by fω;α;β;ν; τg,
where α¼ α1 and β¼ β1. The objective function, LMLðyjω;α;β;
ν; τ2Þ, is computed by evaluating (8) at α1 ¼ α, β1 ¼ β, and
αi ¼ βi ¼1, i ¼ 2, …, k. The region defined by (9) is not closed
because of the strict inequalities affecting the parameters
fω;α;β;ν; τg. This issue shall be overcome by considering instead
constraints of the form “Zε”, for some small ε40.

3. Numerical issues

The maximisation problem described in the previous section
cannot be directly solved with standard optimisation routines.
Indeed, severe technical problems, not mentioned in the existing
literature, appear when evaluating the objective function and,
needless to say, when optimising it. The encountered numerical
difficulties and the way to avoid them are described in detail in
this section.

On some occasions, the pdf gY in (2) is almost equal to zero,
which yields a value of �1 in the log-likelihood when numeri-
cally evaluated. If the local search algorithm finds such a value at a
given iteration, a proper behaviour of the algorithm cannot be
expected. To quantify the frequency of such an event, 10,000
random samples y¼ ðy1;…; ynÞ of size n¼1000 were generated
from the NLðα; β; ν; τ2Þ distribution, with 0:01rαrdmax,
0:01rβrdmax and 0:01rτrτmax, and dmax, τmax ranging in
0.1–50. Parameter ν was always set to zero, since it is a location
parameter. The percentage of samples for which a value �1 was

returned by the numerical routine when evaluating the log-
likelihood of y defined from (2) is reported in Table 1. Note that
the loglikelihood of y is equal to �1 if at least there exists a value
of iAf1;…;ng such that gY ðyiÞ ¼ 0.

From Table 1 it can be deduced that numerical inconsistencies
arise when τ is small or when the triplet ðτ;α;βÞ takes large values.
In order to clarify this behaviour, consider the expression for the
Normal Laplace pdf, (2), where ν¼ 0:

gY ðyÞ ¼
αβ
αþβ

ϕ
y
τ

� � ϕðqÞ½1�ΦðpÞ�þϕðpÞ½1�ΦðqÞ�
ϕðpÞϕðqÞ

� �
; ð10Þ

where

p¼ ατ�y
τ
;

Table 1
Percentage of samples with LML � �1.

τmax dmax

0.1 0.5 1 3 5 10 30 50

0.1 100 100 100 97 86.7 66.6 32.7 24.5
0.5 100 99.1 86.1 50.7 40.2 25.8 17.3 32.7
1 100 86.5 66 37.6 24.6 14.2 37.4 54.6
3 97.3 53.9 34.6 14.3 17.4 38.1 72.4 84.6
5 85.3 41.1 24.3 18.7 34.8 54.2 83.2 90.8

10 67 24.2 18.8 37.8 56.4 74.3 89.8 95.2
30 36.3 20.2 37.4 72 83.6 90.9 96.3 97.6
50 24.4 30.2 55.7 82.2 88.8 94.1 97.4 98
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Fig. 1. Forms of a mixture of two equally weighted dPlN and lN components on a logarithmic scale. The second component is fixed, ðν2 ; τ22Þ ¼ ð5;4Þ, and each parameter of the
first one varies at each panel, keeping the other three parameters invariant as ðβ1 ; ν1 ; τ21Þ ¼ ð0:1; �5;4Þ (left top panel), ðα1 ; ν1; τ21Þ ¼ ð0:2; �5;4Þ (right top panel),
ðα1; β1; τ21Þ ¼ ð0:2; 0:1; 4Þ (left bottom panel), and ðα1 ; β1 ; ν1Þ ¼ ð0:2; 0:1; �5Þ (right bottom panel).
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q¼ βτþy
τ
:

After taking logs in (10),

log gY ðyÞ ¼ Cþ0:5
y
τ

� �2
þðβ�αÞy

þ log fϕðqÞ½1�ΦðpÞ�þϕðpÞ½1�ΦðqÞ�g;
for some constant C. Therefore log gY ðyÞ � �1 if

ϕðqÞ½1�ΦðpÞ� ¼ϕðpÞ½1�ΦðqÞ� � 0;

or equivalently, when p-71 or q-71, a phenomenon which
in particular happens if τ is small (and y is large in absolute value)
or if ðτ; α; βÞ takes large values (and y is small is absolute value).
As an example, the observation y ¼ �17.085 was simulated from a
NL (11.15, 14.17, 0, 44.842). Under these values, p¼500.53 and
q¼635.06, and therefore ϕðpÞ � 0 and ϕðqÞ � 0.

A partial solution to this problem consists in using the
asymptotic forms of the Normal Laplace distribution for evaluating
the pdf (2). According to Reed and Jorgensen [27], when β or α in
(2) are large, then the pdf (2) approaches to the limiting densities
(5) or (4), and when both α and β tend to infinity, the Normal
Laplace pdf converges to the Normal distribution pdf. Therefore, it
seems sensible to evaluate the asymptotic forms (4) and (5) or the
pdf of a Nðν; τ2Þ instead of (2), when β4c and εrαrc, when
α4c and εrβrc, or when both α4c and β4c, respectively, for
a specific choice of c. Note that under this approach, the pdf (2)
will be never evaluated at large values of α or β, and therefore
numerical inconsistencies derived from large values of ðτ; α; βÞ
will be avoided.

Several values of c were tested in our experiments: Tables 2–4
are the analogous to Table 1 under the previous strategy when
c¼1, c¼10 and c¼100, respectively. See how for c¼1, the
percentage of samples for which LM � �1 decreases drastically
when ðτ;α;βÞ takes large values, and this percentage increases as
c-1. For that reason, the value c¼1 was selected for our
numerical illustrations (see Section 4.3). Finally, note that in all
cases, the problems derived from a small value τ are still present.

The previous tables clearly show a reduction in the number of
numerical inconsistencies if the asymptotic forms of the Normal
Laplace distribution are evaluated when αZc and/or βZc. Since
the value c¼1 has been set for our experiments, it is natural to
study at this point which is the cost (in terms of fitting) for
approximating (2) by (4) and (5), or the normal pdf, when αZ1
and/or βZ1. A simulation study was considered for this purpose
and our findings show that the accuracy of the approximation
mainly depends on the value of the model parameter τ1; in
particular, the higher the value of τ1, the better approximation is
obtained. Fig. 2 illustrates two forms of the dPlN-lN mixture
density (with two equally weighted components) and their
asymptotic approximations on a logarithmic scale, under different
values of τ1. The left column represents a dPlN-lN density (in solid
line) where α¼ 1 and βo1 and its limiting distribution (in dashed
line), under three different values of τ1: 0.75, 2 and 4 (top, central
and bottom panels respectively). It can be seen how the dPlN
component is better approximated when τ1 increases. Also, it can
be concluded that the approximation of the asymptotic distribu-
tion is sensible in all cases. These deductions, which were noticed
to be independent of the location parameter ν1, were also
observed for other examples when α¼ 1 and βo1, and for the
analogous cases β¼ 1 and αo1. On the other hand, a number of
simulations of the dPlN-lN mixture model with α¼ β¼ 1 were
conducted in order to investigate the approximation given by the
normal distribution. In all examples, we found that the approx-
imation is poor when τ1 is small, as the top panel of the right
column of Fig. 2 shows, while for larger values of τ1 the approx-
imation looks reasonable. As will be seen in detail in Section 4, our
estimation approach is based on the asymptotic forms of the
Normal Laplace distribution; therefore, it might be expected that a
bad approximation of the limiting distribution implies a poor
performance of the estimation approach. Our findings proved that
even in the troublesome case where α¼ β¼ 1 and τ1 is small, the
estimation approach performs fairly well. Fig. 3 shows the histo-
gram of a sample of size n¼1000 simulated from the dPlN-lN
model depicted by the top right panel of Fig. 2, where α¼ β¼ 1,
τ1 ¼ 0:75 and for which the normal approximation performed
poorly in the case c¼1. Two estimated densities to the data
histogram are shown in Fig. 3, each corresponding to the optimi-
sation methods considered in this paper (namely, multistart and
VNS, see Section 4). It can be seen how the estimated models fit
the data histogram properly. A possible explanation for this is that,
as can be seen in the right column of Fig. 3, the modes of the
densities are preserved by the (possibly poor) asymptotic densities
in all cases, which implies that the local optimum is the same in
both the original and the limiting densities. Although an exhaus-
tive theoretical study would be needed to corroborate our find-
ings, the obtained preliminary results support to a large extent the
choice c¼1.

Table 2
Percentage of samples with LML � �1, c¼1.

τmax dmax

0.1 0.5 1 3 5 10 30 50

0.1 100 100 100 96.8 86.3 66.3 34.6 25.2
0.5 100 99 86.9 53 38.7 25.5 20.4 32.1
1 100 86.9 62.5 36.7 23.7 16.8 36.1 54.2
3 96.1 53 31.1 12.2 6.3 9.5 29.1 40.1
5 83.3 31.3 19.1 6 4 6.8 20.3 22.2

10 61.5 16.9 7.5 3.1 2.4 3 9.2 13.4
30 31.1 6.5 3.7 0.8 0.4 1.7 3.8 3.6
50 24.2 5 2.6 0.9 0.7 0.9 1.9 2.3

Table 3
Percentage of samples with LML � �1, c¼10.

τmax dmax

0.1 0.5 1 3 5 10 30 50

0.1 100 100 100 97.5 83.9 67.5 35.4 26
0.5 100 98.7 88.1 52.8 39.5 25.1 17.3 31.5
1 100 85.4 67.3 36 26.4 16.6 38.2 55.8
3 96.7 52.4 35.9 17.5 18.6 35.5 72.5 81
5 86.9 39 25.2 20.7 30.3 52.7 84.4 89.9

10 65.2 26.6 16 36.3 54.8 70 91.5 95.2
30 32.5 7.3 11 25.3 36.6 41 50.8 52.1
50 16.5 4 8 19.8 23.3 28.3 34.6 32.6

Table 4
Percentage of samples with LML � �1, c¼100.

τmax dmax

0.1 0.5 1 3 5 10 30 50

0.1 100 100 100 97.2 85.9 70.8 35.4 24.1
0.5 100 99.4 89.6 51.9 37 26.2 19.6 30.6
1 100 86 67.7 36.4 24.8 15.3 39.9 53
3 96.9 50.7 36.1 18.7 18.9 37.4 73.6 79.9
5 85.9 39.6 25.7 19.4 30.5 54.5 83.5 89.9

10 66.1 25.6 15.9 37.2 55.1 73.4 89.8 95.5
30 35.5 20.4 39.6 71.5 84.5 89.3 97.4 98.4
50 25.4 31.6 52.6 81.9 88.7 95 97.6 99
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4. Optimisation approach

We describe in this section the approach to solve the estima-
tion problem stated in Section 2.2.

The presented methodology directly extends to more general
models involving more parameters, though it is not evident if, in
practice, increasing the dimensionality of the parameter space is
leading to better fits and not to overfit.

The resulting optimisation problem (1) is, as a rule, multimodal.
Then in order to avoid getting stuck at a (bad) local optimum, a
global search procedure, namely, the Gaussian Variable Neigh-
bourhood Search, [5], a variant of the Variable Neighbourhood
Search (VNS) of Mladenović et al. [22] has been implemented.

We have detected that a good starting solution is helpful to speed
up convergence of VNS, and hence the ML criterion is first
optimised using a classical local search approach, whose output
is used as starting point of the VNS. Section 4.1 is devoted to the
parameters setting of the local search, while Section 4.2 shows
how the local search is embedded into the VNS procedure.

4.1. Local search

The local search has been implemented in MATLAB using the
command fmincon, which finds the minimum of a constrained
nonlinear multivariable function. Its default optimisation methodology
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Fig. 2. Comparison of the dPlN-lN densities for which α¼ 1 and/or β¼ 1, and their asymptotic approximations (with α¼1 and/or β¼1), on a logarithmic scale.
Left column: dPlN-lN density (solid line) with parameters ðα; β; ν1 ; ν2 ; τ2Þ ¼ ð1; 0:5; �5; 5; 2Þ, and their asymptotic approximations (dashed line), for three different
values of τ1: 0.75, 2 and 4 (top, central and bottom panels respectively). Right column: Analogous case when ðα; β; ν1 ; ν2 ; τ2Þ ¼ ð1; 1; �5; 5; 2Þ.
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is based on a trust-region-reflective algorithm (see [8], for instance).
The stopping criteria were set as follows:

1. MaxFunEvals: The bound on the number of function evalua-
tions is set to 50ð3kþ2Þ.

2. MaxIter: The bound on the number of solver iterations is set
to 400.

3. TolFun: The lower bound on the change in the value of the
objective function during a step has been set to 1e�04.

4. TolX: The lower bound on the stepsize has been set to 1e�04.
5. TolCon: The upper bound on the magnitude of any constraint

functions has been fixed as 1e�04.

Other values of the previous bounds and tolerances were also
tested and little sensitivity was observed in the estimation of the
fitted model.

In order to properly perform the local search, three different local
searches, each on a simpler feasible region, are considered. Specifically,
under the ML criterion (1), the optimisation subproblems (P1)–(P3)
defined as follows are addressed with a local search routine:

max LMLðyjω;α;β;ν; τ2Þ s:t:

εrα;βrc

�1oνjoþ1; j¼ 1;…; k

εrτjoþ1; j¼ 1;…; k

εrωjr1; j¼ 1;…; k

∑
k

j ¼ 1
ωj ¼ 1

ω2Z…Zωk:

8>>>>>>>>>>><
>>>>>>>>>>>:

ðP1Þ

Problems (P2) and (P3) are defined similarly, where the constraint
εrα;βrc is replaced, respectively, by

εrαrc; β¼ þ1;

and

εrβrc; α¼ þ1:

As commented in the previous section a value of c¼1 was set.
Moreover, the value of ε is set to 0.01. The order constraint for the
elements of ω assures that the symmetries in the ordering of normal
components are broken.

4.2. Global search

In order to avoid getting stuck at local optima, the local search
is embedded into a metaheuristic strategy, namely, the Gaussian
Variable Neighbourhood Search (VNS) [5], a variant of the
continuous VNS [22] which is specially convenient for optimisa-
tion problems like this one, in which (some of) the variables have
an unbounded domain. It may be observed that other metaheur-
istics, e.g. Kirkpatrick et al. [17], Holland [16], Dorigo [10], Glover
[12], could have been used instead. The scheme of the VNS
algorithm is summarised in Table 5.

The VNS is customised to Problems (P1–(P3) by defining the
starting solution, the random distributions for shaking and the
stopping criterion. The starting solution for the VNS algorithm is
obtained as follows:

1. The sample is sorted, and then split into k subsamples of
consecutive values, approximately of the same size. Then, a
normal distribution Nðν̂ i; τ̂

2
i Þ is fitted to each subsample ith by a

ML approach. Observe that closed formulae exist for the
optimal solutions.

2. For each permutation sj of the set {1, 2, …, k}, for j ¼ 1, …, k,
the local search described in Section 4.1 is implemented in such
a way that νi ¼ ν̂sjðiÞ, τi ¼ τ̂sjðiÞ, and ωi ¼ 1=k, for i¼1, …, k. Let
α̂sj and β̂sj be the estimates for α and β obtained for such
permutation sj.

3. The starting point fωð0Þ; αð0Þ; βð0Þ
; νð0Þτð0Þg is defined by

ωð0Þ ¼ 1
k
;…;

1
k

� �
;

αð0Þ ¼ α̂sj ;

βð0Þ ¼ β̂sj
;

νð0Þ ¼ ðν̂sjð1Þ;…; ν̂sjðkÞÞ;
τð0Þ ¼ ðτ̂sjð1Þ;…; τ̂sjðkÞÞ;

where sj is the permutation for which the highest objective
function value is obtained.
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Fig. 3. Estimation of a dPlN-lN mixture model with α¼ β¼ 1 for which the normal
approximation (α¼ β¼1) fails.

Table 5
Pseudo-code of VNS.

	 Initialisation: Define
– A neighbourhood structure: a family of neighbourhoods fViðω; α; β; ν; τÞ; i¼ 1;…;Ng, for all feasible fω; α; β; ν; τg
– Random distributions on the neighbourhoods Viðω; α; β; ν; τÞ, to be used in the Shaking step
– An initial solution fωð0Þ; αð0Þ; βð0Þ; νð0Þτð0Þg
– The number Qmax of random points generated on each neighbourhood
– A stopping criterion

	 Repeat: The following sequence until the stopping condition is met:
– Set i←1q←1
– Repeat the following steps until i4N:

n Shaking: Generate a random point fω; α; β; ν; τg from the ith neighbourhood of fωð0Þ; αð0Þ; βð0Þ; νð0Þτð0Þgðfω; α; β; ν; τgAViðfωð0Þ; αð0Þ ; βð0Þ; νð0Þτð0ÞgÞÞ
n Local search: Apply some local search method with fω; α; β; ν; τg as initial solution to obtain a local optimum given by f ~ω; ~α ; ~β ; ~ν ; ~τ g
n Neighbourhood change: If this local optimum is better than the incumbent, move there ðfωð0Þ; αð0Þ; βð0Þ; νð0Þτð0Þg←f ~ω; ~α ; ~β ; ~ν ; ~τ gÞ and continue the search with

V1ðf ~ω ; ~α ; ~β ; ~ν; ~τ gÞðq←1Þ; otherwise, set q←qþ1. If q4Qmax , then set q←1, i←iþ1
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Given a current point fωðtÞ; αðtÞ; βðtÞ
; νðtÞ; τðtÞg from the mth

neighbourhood, then a random point fωðtþ1Þ; αðtþ1Þ; βðtþ1Þ
;

νðtþ1Þ; τðtþ1Þg is sampled as follows:

ωðtþ1Þ
i � Unif ðωðtÞ

i �0:1=kÞN�m
N

;ωðtÞ
i þm

N
ð1�ωðtÞ

i Þ
� �

;

αðtþ1Þ �Unif ðαðtÞ �0:001ÞN�m
N

;αðtÞ þm
N
ðc�αðtÞÞ

� �
;

βðtþ1Þ � Unif ðβðtÞ �0:001ÞN�m
N

;βðtÞ þm
N
ðc�βðtÞÞ

� �
;

νðtþ1Þ
i �NðνðtÞi ;m2s2Þ;
τðtþ1Þ
i �NðτðtÞi ;m2s2Þ; truncated at τðtþ1Þ

i Zε;

where i¼1,…,k and the elements in ωðtþ1Þ are normalised. We
have chosen as N¼3 the total number of neighbourhoods, the
number of random points generated at each neighbourhood is
Qmax ¼ 40, the values of hyperparameters are c¼1, s¼ 1 and
ε¼ 0:01, and the stopping criterion is based on the maximum
number of local search calls allowed, which has been set to 20.

4.3. Illustrations with simulated and real data sets.

In this section the method to estimate dPlN-lN mixtures is
illustrated on both simulated and real data sets. Comparisons of
the results in terms of sample sizes and the methods (VNS versus
multistart) are provided. To make a fair comparison, both VNS and
multistart are run with the very same time limit.

4.3.1. Example 1
As an illustration of the proposed estimation approach, a total

of 150 random samples of sizes n¼200 and n¼1000 from the
generic model (6) were generated from

αA ½0:001;1�k; βA ½0:001;1�k; νA ½�20;20�k;
τA ½0:01;5�k; ωA ½0:1=k;1�k; ð11Þ

with k ¼ 2, and the elements in ω are normalised. Note that in all
cases, the generator model corresponds to a mixture of k general
dPlN components; however, in order to check the versatility of the
dPlN-lN model, it was fitted to the data by the VNS as described
above in comparison with multistart. It was observed that the VNS
outperformed the multistart (in terms of the objective function
value) in 81 (for n¼200) and 70 cases (for n¼1000). The number
of iterations where the optimisation procedure failed to converge
to any solution was recorded too for two choices of c: c¼1 and
c¼100 (see Table 6). As expected from the results shown by
Table 4, the number of numerical inconsistencies increased con-
siderably when c¼100. Moreover, note how the VNS approach
reduces the presence of such inconsistencies.

Table 8 shows the estimated parameters and values of the
objective function (8), for specific samples of sizes n¼200 and
n¼1000 where the VNS outperformed multistart. Both samples

were generated according to the dPlN mixture model defined by
Table 7.

Several interesting conclusions are derived from Tables 7 and 8.
From Table 8 it can be seen that the estimated parameters under a
small and large sample size are comparable under the VNS;
however, more discrepancies are found if multistart is considered
instead (α1 ¼ þ1 versus α1 ¼ 0:3148, or ω1 ¼ 0:7389 versus
ω1 ¼ 0:5). However, the most remarkable result is the similarity
between the objective functions when a lognormal component is
fitted instead of a dPlN one: even though α2 and β2 are less that
1 in the generator model, a value of þ1 in the estimated
distribution provides almost equal objective functions. This result
highlights the versatility of the dPlN-lN model (and the overfit of
the general dPlN mixture model) and validates the choice of c¼1.

In order to look into the performance of the estimated models,
consider Fig. 4 which depicts the estimated pdfs according to
Table 8 under multistart and VNS, the histogram of the simulated
data, as well as the pdf of the generator model, for the sample
sizes n¼200 (left panel) and n¼1000 (right panel). For the sample
of larger size the fit provided by the VNS is close to the generator
model, and a poorer performance is shown by multistart. To
validate the fits, a χ2-goodness-of-fit test was run at a 5%
significance level. When n¼200, the estimated models cannot be
rejected: the p-values were 0.7654 and 0.9599 under the multi-
start and VNS strategies (and for the generator model, the p-value
was equal to 0.9656). However, if n¼1000 the fitted dPlN-lNmodel
under the multistart approach is rejected (the p-value was given
by 0.034). The p-values under the VNS strategy and the generator
model were 0.9779 and 0.1045, respectively.

Table 6
Number of iterations (out of 150) in Example
1 where the optimisation procedures failed to
converge, under two different values of c.

Procedure n¼200 n¼1000

Multistart
c¼1 4 2
c¼100 14 20

VNS
c¼1 1 3
c¼100 4 4

Table 7
Generator model and objective function values LMLðyj�Þ for the samples of
Example 1.

Generator model

Components 1 2
α 0.4884 0.7516
β 0.2411 0.9113
ν 14.1437 4.2468
τ 2.8346 0.6163
ω 0.7992 0.2008

Objective values
LMLðyj�Þ ¼ �3:0919, (n¼200)
LMLðyj�Þ ¼ �3:1045, (n¼1000)

Table 8
Fitted dPlN-lN model and objective values LMLðyj�Þ under the ML approach, and
comparison between multistart and VNS for the samples of Example 1.

Procedure ML (n¼200) ML (n¼1000)

Multistart
LMLðyj�Þ �3.0834 �3.1214
Components 1 2 1 2
α þ1 þ1 0.3148 þ1
β 0.2573 þ1 0.3899 þ1
ν 16.8485 4.3666 5.3527 13.9995
τ 3.1564 1.76 1.4803 3.5119
ω 0.7389 0.2611 0.5 0.5

VNS
LMLðyj�Þ �3.0808 �3.1004
Components 1 2 1 2
α 0.912 þ1 0.9595 þ1
β 0.2817 þ1 0.2492 þ1
ν 15.2523 4.2434 14.3251 4.2242
τ 3.172 1.7451 3.5692 1.2693
ω 0.7469 0.2531 0.8119 0.1881
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4.3.2. Example 2
In this example, 50 random samples of sizes n¼200 and

n¼1000 from the model (6) with k¼5 components were simu-
lated according to (11). In this case, the VNS approach was found
to outperform multistart in 27 cases (n¼200) and in 22 cases
(n¼1000). Similarly as in Example 1, Table 9 reports the number of
iterations (out of 50) where numerical inconsistencies appeared.
Here again, note the differences between the cases c¼1 and
c¼100 when multistart is implemented. There are no failures in
any case under VNS.

Table 11 shows the objective functions and estimated parameters
for two samples of sizes n¼200 and n¼1000 in which the VNS
outperformed multistart. The samples were generated according to
the dPlN mixture model defined by Table 10.

In the same way as happened in Example 1, here the estimated
values for both sample sizes under the VNS strategy are compar-
able, and more disparity is found if multistart is considered. Again,
note how in spite of imposing that 4 out of 5 components are strict
lognormals, the objective values under the generator model (see
Table 10) are equivalent to those obtained under the estimated
models. Fig. 5 shows the fits to the data histograms provided by
the dPlN-lN model and also, the pdf of the generator model. As in
Example 1, a χ2-goodness-of-fit test was run at a 5% significance

level for all models and the small and large sample sizes. In all
cases, the estimated (and generator) models cannot be rejected.
The obtained p-values were: 0.4126, 0.7631 and 0.6020 in the case
of n¼200, under multistart, VNS and generator model, respec-
tively, while for the sample size n¼1000 these values were 0.1387,
0.7600 and 0.7041.

4.3.3. Example 3
In this example we consider a real data set. It was analysed in

Beirlant et al. [3] and can be found in http://lstat.kuleuven.be/
Wiley/. The sample contains 1823 claim sizes (expressed as a
fraction of the sum insured) from a fire insurance portfolio
provided by the reinsurance brokers Boels & Bégaul Re (AON).
The data concern claim information from office buildings. Next to
the size of the claims, the sum insured per building was provided.
Our approach for estimation of the mixture model dPlN-lN with
k ¼ 2, 3, 4, 5, 6 and k¼7 components was implemented and a
χ2-goodness-of-fit test was run at a 5% significance level for each
case. In the first six cases, the estimated model was rejected.
However, in the case of k¼7 the p-values under multistart and VNS
approaches were respectively, 0.1692 and 0.2137. Fig. 6 shows the
estimated pdfs by both multistart and VNS strategies, with objectives
function values equal to �1.9841 and �1.9731, respectively.

4.3.4. Example 4
The second real data set for which we illustrate the proposed

approach for estimating a mixture of dPlN distributions can be also
found in Beirlant et al. [3]. It consists of the values of 1914
diamonds obtained from a kimberlite deposit. The dPlN-lN mixture
model was fitted to this data set. While the model with low
number of components (k¼2, 3) provided a poor fit of the data
histogram, a reasonable fit was obtained with k¼4 components in
the mixture, see Fig. 7. In this case, the model was rejected under
multistart strategy, but could not be rejected under the VNS (the
p-value was 0.3142).

5. Discussion

In this paper we have addressed a statistical estimation
problem with Gaussian VNS, a variant of the standard VNS which
is specially suited for problems with unbounded domains in (some
of) the decision variables. Specifically, we illustrate how to carry
out estimation for the so-called dPlN-lN mixture. Our inference
approach is based on the ML criterion, which defines a multimodal
optimisation problem. Different types of numerical difficulties,
not reported in the existing literature, have been identified. In this
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Fig. 4. Estimated dPlN-lN mixtures via multistart and VNS, under n¼200 (left panel) and n¼1000 (right panel) and pdf of the generator model in Example 1.

Table 9
Number of iterations (out of 50) in Example
2 where the optimisation procedures failed to
converge, under two different values of c.

Procedure n¼200 n¼1000

Multistart
c¼1 2 1
c¼100 6 9

Table 10
Generator model and objective values LMLðyj�Þ for the samples of Example 2.

Generator model

Components 1 2 3 4 5
α 0.8783 0.2062 0.8192 0.6078 0.1659
β 0.8067 0.9458 0.2454 0.1813 0.8533
ν 6.8091 19.8142 �3.9734 14.6343 19.2305
τ 1.5981 1.1712 4.1716 4.1664 0.6919
ω 0.3513 0.3074 0.1767 0.1556 0.009

Objective values

LMLðyj�Þ ¼ �3:6361, ðn¼ 200Þ
LMLðyj�Þ ¼ �3:723, ðn¼ 1000Þ
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paper we show how they can be mitigated, and how the fitting
problems, which are multimodal, can be successfully handled with
VNS. Extensive numerical examples illustrate the performance of
the considered approaches, and provide a comparison between
Gaussian VNS and multistart. A couple of real data sets show the
suitability of the model when heavy-tails, multimodality and lack
of symmetry are combined.

The main conclusions of the presented work can be sum-
marised as follows:

1. The dPlN-lN mixture model is a suitable statistical model for
multimodal, heavy-tailed and skewed data. Although it sim-
plifies the dPlN mixture model, the simulation examples
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Fig. 5. Estimated dPlN-lN mixtures via multistart and VNS and pdf of the generator model, under n¼200 (left panel) and n¼1000 (right panel) in Example 2.
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Fig. 7. DIAMOND data histogram and fitted pdfs by the 4-components dPlN-lN model.

Table 11
Fitted dPlN-lN model and objective values LMLðyj�Þ under the ML approach, and comparison between multistart and VNS for the samples of Example 2.

Procedure ML (n¼200) ML (n¼1000)

Multistart
LMLðyj�Þ �3.6171 �3.726
Components 1 2 3 4 5 1 2 3 4 5
α 0.1974 þ1 þ1 þ1 þ1 0.2217 þ1 þ1 þ1 þ1
β 0.8234 þ1 þ1 þ1 þ1 0.5602 þ1 þ1 þ1 þ1
ν 19.4703 6.994 �8.05 �6.2655 7.2362 19.7883 �0.7623 6.8621 2.9684 �19.5222
τ 0.9857 3.5265 4.4725 2.0476 0.9584 2.1151 8.7996 1.8939 4.3346 2.5912
ω 0.3783 0.3783 0.0812 0.0812 0.0812 0.3808 0.3214 0.2957 0.001 0.001

VNS
LMLðyj�Þ �3.6141 �3.7201
Components 1 2 3 4 5 1 2 3 4 5
α 0.2134 þ1 þ1 þ1 þ1 0.2371 þ1 þ1 þ1 þ1
β þ1 þ1 þ1 þ1 þ1 þ1 þ1 þ1 þ1 þ1
ν 18.3368 �4.0803 8.2105 7.0856 28.8979 18.4135 �3.6105 6.8577 8.9156 28.8963
τ 0.9978 5.4792 3.6956 1.4291 3.4567 2.3017 7.0886 1.5859 3.7479 2.1366
ω 0.3084 0.2223 0.2223 0.2223 0.0246 0.3527 0.2548 0.2426 0.1352 0.0146
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illustrate the overfit of the last one and the versatility of the
considered model.

2. The VNS approach turns out to be an efficient heuristic when
statistical estimation is considered for the dPlN-lN mixture
model. On one hand it provides comparable or better perfor-
mance than the multistart approach. On the other hand, it
avoids numerical inconsistencies which are encountered if
multistart is used instead.

3. Exploiting the structure of the problem is shown to be helpful
to reduce numerical troubles. In particular, the strategy of
dividing the feasible region into four subregions decreases
the number of cases where the optimisation procedure fails
to converge. The value of c¼1 outperforms larger values, and
the numerical examples provide validations for such a choice.

Different issues concerning the ML problem considered here
remain unexplored. First, several alternatives are possible to
choose a reasonable starting point for the VNS which exploit the
structure of the problem. Our proposal, namely, splitting the
ordered sample into subsets of equal cardinality and fit to normal
variables, can be replaced by more sophisticated strategies, such as
addressing the problem of fitting to a mixture of normals or other
simple mixtures, Aitkin and Rubin [2] and Melnykov and Maitra [21].
Second, local search procedures have been implemented through
standard routines (fmincon function in MATLAB). Other local-search
procedures designed for mixture models, such as the well-known EM
algorithm, Dempster et al. [9] can be adapted to this context. Third, it
may be of interest to consider the number of components as a new
parameter to be estimated. In other words, instead of having an
optimisation problem in fixed dimension, the number of variables
would also be a decision variable. See Carrizosa et al. [6] for another
clustering problem with variable number of clusters.

The analysis carried out in the paper can be generalised in
different ways. First, although the VNS is in principle applicable to
any ML problem as in (1), exploiting the specific structure of the
problem, as done here, is likely to yield better results. Numerical
testing to identify those pdfs for which VNS outperforms the
benchmark strategies is a challenging research topic. Second,
investigating the obtained results under a different inference
approach from ML estimation might be of interest. Although less
popular than ML estimation, the Kolmogorov criterion has been
considered in a number of works, see for example Chen and
Kalbfleish [7], Luceño [20], Parr and Schucany [25], and Weber
et al. [31]. To explore the situations under which the Kolmogorov
criterion outperforms the ML estimation approach is an appealing
perspective that we hope to address in our future work. Finally,
our analysis is confined to one-dimensional data; fitting to mixtures of
multivariate data, as analysed for the normal case e.g. in Boldea and
Magnus [4], is a promising extension. How to properly adapt our
heuristics to this new framework, as well as a thorough comparison of
VNS versus other benchmark Global Optimisation procedures when
applied to such ML problems, deserve further analysis.
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