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Einstein-Podolsky-Rosen steering is a form of quantum nonlocality intermediate between entanglement
and Bell nonlocality. Although Schrödinger already mooted the idea in 1935, steering still defies a complete
understanding. In analogy to ‘‘all-versus-nothing’’ proofs of Bell nonlocality, here we present a proof of
steering without inequalities rendering the detection of correlations leading to a violation of steering
inequalities unnecessary. We show that, given any two-qubit entangled state, the existence of certain
projective measurement by Alice so that Bob’s normalized conditional states can be regarded as two
different pure states provides a criterion for Alice-to-Bob steerability. A steering inequality equivalent to the
all-versus-nothing proof is also obtained. Our result clearly demonstrates that there exist many quantum
states which do not violate any previously known steering inequality but are indeed steerable. Our method
offers advantages over the existing methods for experimentally testing steerability, and sheds new light on
the asymmetric steering problem.

Q
uantum nonlocality is an invaluable resource in numerous quantum information protocols. It is part of a
hierarchical structure1: quantum states that have Bell nonlocality2 form a subset of Einstein-Podolsky-
Rosen steerable states which, in turn, form a subset of entangled states. The concept of steering can

historically be traced back to Schrödinger’s reply3 to the Einstein-Podolsky-Rosen argument4, and it has since
been rigorously formulated by Wiseman, Jones, and Doherty1.

Within the steering scenario, Alice prepares a bipartite system, keeps one particle and sends the other one to
Bob. She announces that the Bob’s particle is entangled with hers, and thus that she has the ability to ‘‘steer’’ the
state of Bob’s particle at a distance. This means that she could prepare Bob’s particle in different states by
measuring her particle using different settings. However, Bob does not trust Alice; Bob worries that she may
send him some unentangled particles and fabricate the results using her knowledge about the local hidden state
(LHS) of his particles. Bob’s task is to prove that no such hidden states exist.

The study of Bell nonlocality have witnessed phenomenal developments to date with important widespread
applications5–7. Its existence can be demonstrated through two different approaches: the first concerns the
violations of Bell inequalities, and the second relies on an all-versus-nothing (AVN) proof without inequal-
ities8–11. The AVN proof shows a logical contradiction between the local-hidden-variable models and quantum
mechanics, and thus offers an elegant argument of the nonexistence of local-hidden-variable models. What is
possible with Bell nonlocality and local hidden variables should also be possible with steering and local hidden
states. In stark contrast to Bell nonlocality, the study of steering is still at its infancy. Recent works like Refs. 1,12
put steering on firmer grounds. Like Bell nonlocality, this topic is generally of broad interest, as it hinges on
questions pertaining to the foundations of quantum physics13, and at the same time reveals new possibilities for
quantum information14. Einstein-Podolsky-Rosen steering can be detected through the violation of a steering
inequality, which rules out the LHS model in the same spirit in which the violation of a Bell inequality rules out the
local-hidden-variable model. Recently, several steering inequalities have been proposed and experimentally
tested15–18. Nevertheless, steering is far from being completely understood and the subject deserves further
investigation.

The AVN proof for Bell nonlocality8–11 has been developed to rule out any local-hidden-variable models. Likewise,
it is interesting to find out if there an analogous AVN proof which can rule out any LHS models for steering. The
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purpose of this work is to present an affirmative answer to this question
by showing that Einstein-Podolsky-Rosen steering without inequal-
ities exists in a two-qubit system. This proof is an analogy of AVN
argument for Bell nonlocality without inequalities, and offers advan-
tages over the existing methods for experimentally testing steerability
as well as shedding new light on the asymmetric steering problem. In
addition, a steering inequality based on the AVN proof is also
obtained.

Results
Steering without inequalities for two qubits. The two-setting steer-
ing scenario can be described as follows: at the beginning, Alice
prepares a two-qubit state rAB. She keeps one qubit and sends the
other to Bob. She then announces that it is entangled with the one she
holds (see Fig. 1), and that she could remotely ‘‘steer’’ his state by
projective measurements Pn̂

a~ z {1ð Þan̂:~s½ �=2, with n̂ the mea-
surement direction, a (with a 5 0, 1) the Alice’s measurement
result, the 2 3 2 identity matrix, and ~s~ sx, sy, sz

� �
the vector

of the Pauli matrices. Bob then asks Alice to perform two projective
measurements Pn̂1

a and Pn̂2
a (with n̂1=n̂2) on her qubit and to tell

him the measurement results of a. After Alice’s measurement has
been done, Bob obtains the four conditional states ~r

n̂j
a . Alice could

cheat Bob if there exists an ensemble 2jrj

n o
(see the gray box with

colored particles in Fig. 1) and a stochastic map 2 ajÂ, j
� �

from j to
a, such that the following equations hold,

~r
n̂j
a ~

X
j

2 a n̂j, j
��� �

2jrj, a~0, 1; j~1, 2ð Þ: ð1Þ

In order for Bob to be convinced that Alice can steer his state, Bob
needs to be sure that no such hidden states are indeed possible. If we
demand that Bob’s states possess an LHS description, then his
density matrices should satisfy Eq. (1). A contradiction among the
four equations, meaning that they cannot have a common solution of

2jrj

n o
and 2 a n̂, jjð ÞÞ, convinces Bob that an LHS model does not

exist and that Alice can steer the state of his qubit.
It is worth mentioning that the set of equations (1) plays an ana-

logous role to the one in the standard Greenberger-Horne-Zeilinger
(GHZ) argument8. The principal difference between the arguments
is that the set of equations in (1) deal with density matrices whereas
in the GHZ argument, each equation pertains to the outcomes of
measurements and therefore corresponds to real numbers. The

constraints imposed by LHS model on density matrices are much
stricter than constraints imposed by real numbers. This provides an
intuitive explanation as to why AVN proof would work for the
Einstein-Podolsky-Rosen steering of two-qubit states.

Suppose that Alice initially prepares a product state rAB 5

jyAæÆyAjfl jyBæÆyBj. It can be verified that, for any projective mea-
surement Pn̂

a (with Pn̂
a= yAj i yAh j and y\

A

�� �
y\

A

� ��) performed by
Alice, Bob always obtains two identical pure normalized conditional
states as rn̂

a~~rn̂
a

�
tr~rn̂

a~ yBj i yBh j, (a 5 0, 1), which means that Alice
cannot steer Bob’s state. Moreover, Bob can obtain two identical pure
normalized conditional states if and only if rAB is a direct-product
state. Hence, hereafter we assume that rn̂

0 and rn̂
1 are two different

pure states, i.e., rn̂
0=rn̂

1 .
For a general rAB, rn̂

a are not pure. If they are pure, then rAB

possesses the following uniform form:

rAB~Pn̂
0 6 ~rn̂

0zPn̂
1 6 ~rn̂

1z z n̂j i {n̂h j6M

z { n̂j i zn̂h j6M{,

where + n̂j i are eigenstates of n̂:~s,M is a 2 3 2 complex matrix
under the positivity condition of rAB, and M{ is the Hermitian
conjugation ofM.

For rAB, it is not difficult to find thatM~0 if and only if rAB is
separable, and the state rAB admits a LHS (which means that it is not
steerable) if and only ifM~0 (see the Methods section). In a two-
setting steering protocol of n̂1, n̂2f g, if Bob can obtain two different
pure normalized conditional states along Alice’s projective direction
n̂1 (or n̂2), the following three propositions are equivalent: (i)M=0.
(ii) rAB is entangled. (iii) No LHS model exists for Bob’s states, so rAB

is steerable (in the sense of Alice steering Bob’s state). We thus have
our steering argument concluded, and that is given any two-qubit
entangled state, the existence of certain projective measurement by
Alice so that Bob’s normalized conditional states are two different
pure states provides a criterion for Alice-to-Bob steerability.

Although the standard GHZ argument is elegant for providing
a full contradiction between local-hidden-variable model and quan-
tum mechanics (with 100% success probability) , its validity is only
limited to some pure states with high symmetry, such as N-qubit
GHZ states and cluster states with N $ 319. Hardy attempted to
extend the GHZ argument to an arbitrary two-qubit system9.
However, Hardy’s argument works for only 9% of the runs of a
specially constructed experiment. Moreover, Hardy’s proof is not

Figure 1 | The steering scenario illustration. Alice first prepares a two-qubit state and keeps one qubit. She then sends the other qubit to Bob and

announces that it is entangled with the one she possesses (see the pair of red balls and green arrows). Thus she could remotely ‘‘steer’’ Bob’s state by

projective measurements. However, Bob does not trust Alice and he worries that she may fabricate the results using her knowledge about LHS. In the two-

setting steering scenario, Bob asks Alice to perform two specific projective measurements on her qubit (see the red dashed arrow) and to let him know the

measurement results (see the blue dashed arrow). After Alice’s measurement (see the measurement device), Bob obtains four conditional states (see the

dashed circle). Alice could cheat Bob if there exists an ensemble (see the gray box with colored particles) and a stochastic map, such that the set of

equations (1) holds. To be convinced that Alice can steer his state, Bob needs to confirm that no such hidden states are possible.
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valid for two-qubit maximally entangled state. To overcome this,
Cabello proposed an AVN proof for two observers, each possessing
a two-qubit maximally entangled state10,11. Nowadays, there is no
AVN proof of Bell nonlocality for a genuine two-qubit state pre-
sented. However, we show that for any two-qubit entangled state
rAB, if there exists a projective direction n̂ such that Bob’s normalized
conditional states rn̂

a become two different pure states, then Alice can
steer Bob’s state. Our steering argument is not only valid for two-
qubit pure states, but it is also applicable to a wider class of states
including mixed states.

The AVN proof versus the known steering inequalities. Let us
compare our result with the known steering inequalities. First, they
play different roles in demonstrating steering: steering inequality
follows a similar approach to the Bell inequality for Bell nonlo-
cality, while steering without inequality serves as an analogous coun-
terpart to the GHZ test of Bell nonlocality without Bell inequalities.

Secondly, our argument shows that there are many quantum steer-
able states that do not violate any known steering inequalities. For an
example, consider the state

rh
V~V Y hð Þj i Y hð Þh jz 1{Vð Þ W hð Þj i W hð Þh j, ð2Þ

where jY(h)æ 5 cos hj00æ 1 sin hj11æ, jW(h)æ 5 cos hj10æ 1 sin hj01æ.
It is entangled when V g [0, 1/2) < (1/2, 1] and h g (0, p/2). It can
be easily verified that, for state (2), after Alice performs an x̂-dir-
ection measurement on her qubit, Bob’s normalized conditional
states are just two different pure states, cos hj0æ 1 sin hj1æ and cos
hj0æ 2 sin hj1æ. Thus, based on our AVN proof of steering, Alice can
always steer Bob’s state using just a two-setting protocol x̂, ẑf g. On
the other hand, a class of N-setting steering inequality SN~
1
N

XN

k~1
Ak~s

B
k

� �
{CNƒ0 has been introduced in Ref. 15 to show

the ability of Alice steering Bob’s state. By running a numerical check
of a 10-setting steering inequality of the above form, we observe that,
for some regions of V and h, the steering inequality cannot detect the
steering of state (2)(as shown in Fig. 2 a). The colors denote different
violation values, as shown in the legend. The blank region indicates
that the steerability of state (2) cannot be detected by resorting to this
inequality.

Finally, unlike quantum entanglement and Bell nonlocality, the
definition of steering is asymmetric1,20. Our AVN proof can shed light
on this problem. The state (2) is not symmetric under a permutation

of Alice and Bob (even with local unitary transformations acting on
the state). The known steering inequalities in Ref. 15 do not reveal
asymmetric steering (see Fig. 2 a). However, our argument presents a
promising way to reveal asymmetric steering. According to our AVN
proof, the state (2) exhibits two-setting asymmetric steering. On one
hand, Alice can always steer Bob’s state using just the two-setting
protocol x̂, ẑf g. On the other hand, after Bob has performed a pro-
jective measurement along an arbitrary n̂-direction on his qubit,
Alice’s normalized conditional states can never be cast into two
different pure states, allowing for the existence of LHS models.
Take the state with parameters V 5 3/5 and h 5 p/8 as an example
(whose corresponding point is outside of the colored region in Fig. 2
a): Numerical results show that, for any two-setting protocol

n̂1, n̂2f g, there is always a solution of LHS for Alice’s conditional
states. In short, this example illustrates a state in which the steering
scenario is not interchangeable. This result can be of practical
importance, since asymmetric steering has applications in one-way
quantum cryptography21 and may have potential applications in
other fields of quantum information processing.

A steering inequality. It is known that a Bell inequality can be
derived from the GHZ argument22. This is also the case for the
steering without inequalities argument. The steering inequality
equivalent to the AVN proof reads

W3h i{CLHSƒ0, ð3Þ

subject to the constraint W1h i~ W2h i~0. HereW j are projectors as

W1~Pn̂
06rn̂\

0 ,W2~Pn̂
16rn̂\

1 ,W3~ zj i zh j6 n̂Bj i n̂Bh j, with rn̂\

a

orthogonal to rn̂
a , zj i~ zn̂j iz {n̂j ið Þ

� ffiffiffi
2
p

, n̂Bj i~cos hB
2 0j iz

sin hB
2 eiQB 1j i, W j

� �
~tr W j%AB

� �
, and CLHS~maxn̂B tr n̂Bj i n̂Bh j ~rn̂

0z
��	

~rn̂
1Þ
�

2Þ� is the upper bound for the LHS model. Its physical
implication can be described as follows: Suppose Alice performs a
projective measurement in the n̂-direction and finds that Bob can
obtain two different pure normalized conditional states, then
W1h i~ W2h i~0. They then perform a joint-measurement W3 (in

which Alice’s measurement direction is perpendicular to n̂-
direction). According to Lemma 2 (see the Methods section), the
LHS model requires M~0, thus the probability W3h i is bounded
by CLHS. However, with quantum mechanics, this bound is always
exceeded due to a non-vanishingM.

Figure 2 | (a) Detecting steerability of the state (2) using the ten-setting steering inequalities. We explore the steering of state (2) via violation of

the ten-setting inequality presented in Ref. 15. The colors denote different values of quantum violation, as scaled in the legend. The blank region indicates

that steerability of (2) cannot be detected by this inequality. With the replacement Ak?~sA
k and~sB

k?Bk in the above inequality, one obtains a similar

steering inequality S’Nƒ0 to show Bob’s ability of steering Alice’s state. The inequality S’N~10ƒ0 yields the same violation region. This indicates that

steering inequalities in Ref. 15 cannot reveal asymmetric steering. (b) Detecting steerability using the steering inequality (3). We show the steering of the

state rcol through violation of inequality (3). Quantum prediction of the left-hand-side of the inequality always succeeds 0 unless V 5 0 or h 5 0, p/2.

www.nature.com/scientificreports
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As an instance, we investigate the steering of state rcol~
V Y hð Þj i Y hð Þh jz 1{Vð Þ col, with color noise col~ 00j i 00h jzð
11j i 11h jÞ=2 by using our inequality (3). We find that Bob’s

conditional states on Alice’s projective measurement in the z-dir-
ection are two different pure states j0æÆ0j and j1æÆ1j, and the upper
bound is CLHS 5 (1 1 V j cos 2hj)/4. The quantum prediction of the
left-hand-side of inequality (3) reads 1

2V sin2 h for h g [0, p/4], and
1
2V cos2 h for h g [p/4, p/2], which do not vanish unless V 5 0 or h

5 0, p/2 (see Fig. 2 b). The violation of the inequality clearly demon-
strates that the state rcol possesses steerability except V 5 0 or h 5 0,
p/2.

Discussion
We have presented an AVN proof of Einstein-Podolsky-Rosen steer-
ing for two qubits without inequalities based on a two-setting steer-
ing protocol. The argument is valid for any two-qubit entangled state,
both pure and mixed. We show that many quantum states that do not
violate any known steering inequalities are indeed steerable states.
This provides a new perspective for understanding steerability and
offers an elegant argument for the nonexistence of LHS models with-
out resorting to steering inequalities. The result also sheds new light
on the asymmetric steerability – a phenomenon with no counterpart
in quantum entanglement and Bell nonlocality. The result is testable
through measurements of Bob’s conditional states and provides a
simple alternative to the existing experimental method for detecting
steerability15–18. Theoretically, a two-setting steering protocol can be
used to show that no LHS models exist for rAB if the state satisfies the
condition given in our AVN argument. Experimentally, the deter-
mination of the steerability of a quantum state can be done by per-
forming quantum state tomography23 on Bob’s qubit. Moreover, a
steering inequality is obtained from our AVN argument, and this
inequality offers another way to test steerability of states. Like Bell
nonlocality whose importance has only been realized with the rapid
development of quantum information science, we anticipate further
developments in this exciting area.

Methods
We prove two Lemmas in the section. The steerability of rAB is equivalent to that of
the state %AB~ UA6ð ÞrAB U{

A6


 �
. It is always possible for Alice to choose an

appropriate unitary matrix U that rotates the direction n̂ to the direction ẑ. Therefore,
we can initially set n̂~ẑ by studying the state %AB instead of rAB. After Alice performs
a projective measurement in the ẑ-direction, Bob’s unnormalized conditional states
are

~rẑ
0~trA 0j i 0h j6ð Þ%AB½ �~m1 Q1j i Q1h j, ð4aÞ

~rẑ
1~trA 1j i 1h j6ð Þ%AB½ �~m2 Q2j i Q2h j, ð4bÞ

with m1~tr ~rẑ
0

� �
, m2~tr ~rẑ

1

� �
, rẑ

0~ Q1j i Q1h j, and rẑ
1~ Q2j i Q2h j. Then one has

%AB~m1 0j i 0h j6 Q1j i Q1h jzm2 1j i 1h j6 Q2j i Q2h j

z 0j i 1h j6Mz 1j i 0h j6M{:

Lemma 1.M~0 if and only if %AB is separable.

Proof. Look at the form of %AB , obviouslyM~0 implies %AB is separable. To prove
the converse, one needs the definition of separability: %AB~

P
i pi tAi6tBi , where tAi

and tBi are, respectively, Alice and Bob’s local density matrices, and pi . 0 satisfyP
i pi~1. For convenience, let tmn

Ai m, n~1, 2ð Þ denote the element of Alice’s density
matrix tAi. By calculating trA 0j i 0h j6ð Þ%AB½ � and trA 1j i 1h j6ð Þ%AB½ �, one hasP

i pi t11
AitBi~m1 Q1j i Q1h j,

P
i pi t22

AitBi~m2 Q2j i Q2h j. Let Q\
1

�� �
and Q\

2

�� �
be two pure

states that are orthogonal to jQ1æ and jQ2æ, respectively. Notice that

tr
P

i pi tmm
Ai tBi| Q\

m

�� �
Q\

m

� ��	 �
~0, m~1, 2ð Þ, thus, for any index i, we have

tmm
Ai tr tBi Q\

m

�� �
Q\

m

� ��� �
~0, which results in

t11
Ait

22
Ai tr tBi Q\

1

�� �
Q\

1

� ��� �
ztr tBi Q\

2

�� �
Q\

2

� ��� �	 �
~0: ð5Þ

Since Q\
1

�� �
= Q\

2

�� �
, they cannot be simultaneously perpendicular to the state tBi, thus

t11
Ait

22
Ai~0, which yields t12

Ai~t21
Ai~0 due to positivity condition of tAi. So

M~
P

i pit
12
AitBi~0. Lemma 1 is henceforth proved.

Lemma 2. The state %AB admits a local-hidden-state (LHS) model (which means that
it is not steerable) if and only ifM~0.

Proof.M~0 implies %AB is separable, thus %AB admits a LHS model. Now we focus
on the proof of necessity. If Alice’s measurement setting is ẑ, x̂f g, then one has

~rx̂
0~

1
2

m1 Q1j i Q1h jzm2 Q2j i Q2h jzMzM{� �
, ð6aÞ

~rx̂
1~

1
2

m1 Q1j i Q1h jzm2 Q2j i Q2h j{M{M{� �
: ð6bÞ

Substitute Eqs. (4a)(4b)(6a)(6b) into Eq. (1) and due to Q\
1

� ��~rẑ
0 Q\

1

�� �
~0 and

Q\
2

� ��~rẑ
1 Q\

2

�� �
~0, one immediately has rj g {jQ1æÆQ1j, jQ2æÆQ2j} for any j. Based on

which, Eqs. (6a) (6b) are valid only ifMzM{~ ax Q1j i Q1h jzbx Q2j i Q2h jð Þ=2, with

ax, bx[R. Similarly, if Alice’s measurement setting is ẑ, ŷf g, then one has

M{M{~i ay Q1j i Q1h jzby Q2j i Q2h j

 �.

2, with ay, by[R. If there exists a LHS model

for Bob’s states, thenM~a Q1j i Q1h jzb Q2j i Q2h j, with a 5 ax 1 iay, b 5 bx 1 iby.
SubstituteM into Eq. (5), we have

%AB~m1Ta6 Q1j i Q1h jzm2Tb6 Q2j i Q2h j,

with Ta~
1 a
a� 0


 �
and Tb~

0 b
b� 1


 �
. Now we construct the following two

projectors: Q1~ x1j i x1h j6 Q\
2

�� �
Q\

2

� ��, Q2~ x2j i x2h j6 Q\
1

�� �
Q\

1

� ��, where jx1æ is the

eigenvector of Ta with eigenvalue v1~ 1{

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1z4 aj j2

q
 ��
2ƒ0, and jx2æ is the

eigenvector of Tb with eigenvalue v2~ 1{

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1z4 bj j2

q
 ��
2ƒ0. Because %AB is a

density matrix, one has

tr %ABQ1ð Þ~v1m1 Q\
2

��Q1

� ��� ��2§0,

tr %ABQ2ð Þ~v2m2 Q\
1

��Q2

� ��� ��2§0:

This leads toM~0. Lemma 2 is henceforth proved.
Three measurement settings were mentioned in the proof of Lemma 2. This does

not mean that we need a three-setting protocol to show steering. For a given entangled
state %AB , a two-setting protocol is enough to demonstrate steering. Lemma 2 shows
thatMzM{ andM{M{ cannot be linearly expanded of jQ1æÆQ1j and jQ2æÆQ2j
simultaneously (because that meansM~0 and rAB is separable). For a given %AB , if
MzM{

= ax Q1j i Q1h jzbx Q2j i Q2h jð Þ=2, then using ẑ, x̂f g to demonstrate steering,
otherwise using ẑ, ŷf g.
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