
When your gain is also my gain.

A class of strategic models with

other-regarding agents
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Abstract

This paper explores the role of social preferences in a competitive frame-

work. More precisely, we study other-regarding strategic models where agents

show Rawlsian preferences and, therefore, they care about the best interest of

the worst-off agent. The representation of preferences proposed is the most

appropriate when the utilities of the agents are vector-valued and their com-

ponents are not compensable but complementary. In these cases, the im-

provement of the result for each agent has to be reached by simultaneously

improving all the components of the vector-valued utility. Depending on the

attitude exhibited by the agents with respect to the results of the others, we

distinguish different types of agents and relate them with the parameters of

the Rawlsian preference function. An analysis of the sets of equilibria in terms

of these parameters is presented. Particularly, in the case of two agents, the

equilibria for all the values of the parameters are completely described.
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1 Introduction

In many situations, the behaviour of individuals is inconsistent with the traditional

assumption reflected in competitive models where the self-interest is the main mo-

tivation of decision-makers. In fact, people often care for the well-being of others

and this behaviour may have economic consequences (see Nowack, 2006; Tabibnia et

al., 2008; Cooper and Kagel, 2013). The literature in psychological and behavioural

game theory shows that the assumption that in strategic situations agents are ratio-

nal and self-interested does not exclude that an individual may take also into account

the interests of others. Some contributions on this topic are Colman et al. (2011),

where the other-regarding concerns of the agents are modelled as functions of their

own and their opponents’ objective payoffs. They focused on Berge equilibria (Berge

1957, Abalo and Kostreva 2004, 2005) for games in which utility-maximizing agents

are motivated by social attitudes defined by payoff transformations. In Monroy et

al. (2017) other-regarding preferences are also incorporated into the problem of the

commons by assuming that the agents take into account the utilities of all of the

group. They studied the situation under different degrees of concern of each agent

with respect to the utilities of the others and presented results on the equilibria for

different types of agents.

In order to analyse other-regarding strategic models, the methodological frame-

work considered in the present paper is the theory of strategic vector-valued games.

We deal with non-cooperative games where the preferences of the agents are incom-

plete and they can be represented by vector-valued functions. In the literature, the

research regarding vector-valued utilities has mainly focused on the case in which the

preferences of the agents are represented by weighted additive value functions, as in

Keeney and Raiffa (1976), Mármol et al. (2017) and Monroy et al. (2017). Recently,

Rébillé (2019) has axiomatically characterized preferences which can be represented

by pseudo-linear utility functions and also by additive separable pseudo-linear utility

functions.

An important issue is to identify the contexts where other-regarding attitudes

such as interpersonal altruism, fairness, reciprocity or inequity aversion describe

the preferences of the agents and to what extent these other-regarding preferences

have relevant economic and social effects. These attitudes are in fact significant to

explain the behaviour of individuals when facing social dilemas as the sustaining of

common resources (Monroy et al., 2017) or the provision of public goods (Kolstad,

2011). In many of these cases an utilitarian approach, which considers additive
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value functions, can capture the social nature of agents’ preferences. Nevertheless,

in situations where inequity aversion has to be taken into account, maxmin value

functions, in the spirit of the egalitarian approach proposed by Rawls (1971), seem

to be more adequate (Charness and Rabin, 2002; Engelmann and Strobel, 2004).

Egalitarianism wants to improve the worst case, thereby, in a general setting, it

seeks to maximize the minimum of the weighted components of the vector-valued

utility functions.

Zapata et al. (2019) provided the theoretical bases for the analysis of the equi-

libria under the assumption that the preferences can be represented by a weighted

maxmin function, also known as Rawlsian function. This representation is the most

appropriate when the components of the utilities are not compensable but com-

plementary and, therefore, the improvement of the result for each agent has to be

reached by simultaneously improving all the components of the vector-valued utility.

Particularly, Rawlsian preferences are appropriate to better analyse decisions re-

lated to the consumption of goods or services with positive externalities, such as the

level of education achieved in an economy. In this case, the high level acquired by

a part of the population could not compensate for the low or null level achieved by

another part of it. Moreover, the egalitarian approach underlies relevant economic

issues such as income distribution. When other-regarding attitudes, especially fair-

ness and inequity aversion, are taken into account, agents are not only concerned

about their own income but also about how the total income generated by the soci-

ety is allocated among the population. However, agents could show a distaste for low

relative income of others for reasons of fairness or altruism but also for the effects in

their own wellbeing. Consider, for example, the case of neighbouring districts with

very different level of income within the same city where the richer district can fear

the social conflicts in the poorer district. The same could be applied for countries

where the richer ones fear the arrival of immigrants of the poorer ones. Likewise,

agents could seek improving the worst position when their own reputation or profits

depends on that of others. This would also be the case for decisions in research

groups that have to obtain financial support that depends on the reputation of both

each individual and the group as a whole.

In this paper we will analyse the role of Rawlsian preferences for a wide class

of strategic situations which includes Cournot oligopolies (Cournot, 1838) and the

problem of the commons (Hardin, 1968), among others.

We first recall some results on the links between the equilibria of vector-valued

games and the equilibria of scalar weighted maxmin games. We then address the
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interesting case in which the agents show social preferences that are represented

as Rawlsian functions. We provide results which permit the description of differ-

ent types of agents depending on their attitude with respect to the gains of the

others, that is, in terms of the parameters of the maxmin representation. Given

the vector-valued game that describes the other-regarding strategic model, and the

corresponding weights assigned by the agents, we establish the associated scalar

Rawlsian game. We also provide necessary conditions and sufficient conditions on

the weights of the agents which enable the identification of equilibria relying upon

agents social behaviour. The key result which allows us to perform a complete anal-

ysis of the equilibria for these strategic models is the description of the best response

function of the agents in terms of best responses of the classical model and of the

parameters that represent the importance that each agent attaches to the outcome

of the others.

The remainder of the paper is organized as follows. Section 2 includes some basic

concepts and previous results on the weighted maxmin approach for the equilibria

of vector-valued games. Different types of agents are defined and characterized in

Section 3. Section 4 is devoted to analyse a strategic model with Rawlsian prefer-

ences. The interesting case of two agents is specifically considered. Finally, Section

5 contains some concluding remarks and the proofs are included in the Appendix.

2 Preliminaries

We consider the following notation of vector inequalities: let x, y ∈ IRs, x > y

means xj > yj for all j; x ≥ y means xj ≥ yj for all j, with x 6= y; and x = y

means xj ≥ yj for all j. We denote the sets IRs
+ = {y ∈ IRs : y ≥ 0}, and

∆s = {y ∈ IRs
+ :
∑s

j=1 yj = 1}.
A vector-valued normal-form game is represented by G = {(Ai, ui)i∈N}, where

N = {1, . . . , n} is the set of agents, Ai is the set of strategies or actions that agent

i ∈ N can adopt and the mapping ui : ×i∈NAi → IRsi

+ is the vector-valued utility

function of agent i, ui := (ui1, . . . , u
i
si), where si is the number of components of the

utility function of agent i. We denote by J i = {1, ..., si} the set of indices of such

components. A profile of strategies, a = (a1, . . . , an) with ai ∈ Ai can be written as

a = (ai, a−i), where ai is the strategy of agent i, and a−i = (a1, . . . , ai−1, ai+1, . . . , an)

stands for the strategy combination of all agents except agent i.

The following definitions are the extensions of the concept of Nash equilibrium

4



(Nash, 1951) for games with vector-valued utilities.

Definition 2.1. An action profile a∗ is an equilibrium for the game with vector-

valued utilities G = {(Ai, ui)i∈N} if /∃ i ∈ N with ai ∈ Ai such that ui(ai, a∗−i) ≥
ui(a∗).

The set of all equilibria of game G is denoted by E(G).

Definition 2.2. An action profile a∗ is a weak equilibrium for the game with vector-

valued utilities G = {(Ai, ui)i∈N} if /∃ i ∈ N with ai ∈ Ai such that ui(ai, a∗−i) >

ui(a∗).

The set of all weak equilibria of game G is denoted by Ẽ(G).

Traditionally, the preferences of the agents with vector-valued utilities have been

represented by weighted additive value functions. However, in many situations, the

assumption that the utilities of the agents are transferable is far from realistic,

and it seems more appropriate to represent the preferences of each of the agents by

adopting a weighted Rawlsian function. In this setting, the smallest weighted utility

must increase in order to improve the results.

Given a vector-valued game G = {(Ai, ui)i∈N}, agent i considers the value of the

action profile a ∈ ×ni=1A
i as

wiγi(a) = min
j∈Ji

{
uij(a)

γij

}
,

where γij is the weight that indicates the importance that the agent i assigns to each

component of the utility function. If γij = 0 for some j ∈ J i, then the corresponding

quotient
uij(a)

γij
is not computed in order to evaluate the minimum. Denote γi ∈

∆si , γi = (γij)j∈Ji . Now consider the scalar Rawlsian game Gγ = {(Ai, wiγi)i∈N},
where γ ∈ ∆ = ×ni=1∆si .

An action profile a∗ is an equilibrium for the gameGγ if for all i ∈ N , wiγi(a
i, a∗−i) ≤

wiγi(a
∗) for all ai ∈ Ai. The set of equilibria for the weighted maxmin game Gγ is

denoted by E(Gγ).

The links between equilibria and weak equilibria for the vector-valued game G

and the equilibria of the scalar games Gγ for all possible weights are analysed in

Zapata et al. (2019). Thus, in general, the union of the equilibria sets of the scalar

games Gγ is contained in the set of weak equilibria of the vector-valued game G.

Moreover, the set of equilibria of G are generated when all the equilibria of the

scalar games Gγ, for all γ, are determined.
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Proposition 2.3. (Zapata et al., 2019) Let G = {(Ai, ui)i∈N} be a vector-valued

game. Then

E(G) ⊆ ∪{E(Gγ) : γ ∈ ∆} ⊆ Ẽ(G).

In particular, under certain concavity conditions, which often hold in applica-

tions, the three sets coincide.

Proposition 2.4. (Zapata et al., 2019) Let G = {(Ai, ui)i∈N} be a game with

vector-valued utilities such that each Ai is a non-empty convex subset of a finite

dimensional space and for each i, ui is strictly concave in ai. Then

E(G) = ∪{E(Gγ) : γ ∈ ∆} = Ẽ(G).

3 Agents with Rawlsian preferences

Let N = {1, ..., n} be a set of agents and for j ∈ N , let uj : ×ni=1A
i → IR+ be agent j

individual utility function. In our model, all the agents have the information about

the individual utility function of the others and thus consider the same collective

vector-valued utility function u : ×ni=1A
i → IRn

+, u := (uj)j∈N . This game is denoted

by G = {(Ai, u)i∈N}.
We assume that the preferences of each agent on the utilities of the rest of the

agents and of her own utility are represented by a real-valued function on the set of

vectors of utilities, which is consistent with the natural partial ordering in IRn. For

i ∈ N , νi : IRn
+ → IR provides the evaluation of agent i for each vector of utilities of

all the group. We adopt the term preference function to name such function.

In what follows the agents are classified depending on the attitude that they

show with respect to the individual utilities of the other agents1.

Definition 3.1. Let N be a set of agents with utilities u := (uj)j∈N . Let the

preferences of agent i be represented by the preference function νi. Agent i ∈ N is

a) equanimous if for each u ∈ IRn
+ and each π ∈ ΠN , νi(u) = νi(uπ).

b) impartial if for each u ∈ IRn
+, and each π ∈ ΠN , νi(ui, u−i) = νi(ui, uπ−i

).

c) egoistic if for all u, ū ∈ IRn
+, with ui < ūi, ν

i(u) < νi(ū).

1A permutation π in the set of agents N is a bijection π : N → N , ΠN denotes the set of

permutations in N and π−j denotes the corresponding permutation of the sets of agents N \ j.
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d) pro-self if for each u ∈ IRn
+, and for each j ∈ N such that ui > uj, ν

i(u) ≥
νi(ū), where ū ∈ IRn

+ is such that ūi = uj, ūj = ui, and ūk = uk for k 6= i, j.

e) pro-social if for each u ∈ IRn
+, and for each j ∈ N such that ui > uj, ν

i(u) ≤
νi(ū), where ū ∈ IRn

+ is such that ūi = uj, ūj = ui, and ūk = uk for k 6= i, j.

The definition of pro-self agent wants to capture the idea of an agent who cares

more for her utility than for that of the others, and thus, when comparing a situation

with another situation in which she switches her utility with another agent, she

(weakly) prefers the one in which she obtains the highest value. Note that the

extreme case of a pro-self agent is an egoistic agent, who only cares for her utility,

regardless of what the others obtain. Similarly, a pro-social agent cares more for the

utility of the others. Note also that if an agent is both pro-self and pro-social, then

she is an equanimous agent. The definition of impartial agent means that the agent

values the utility of all the others equally.

These types of agents were introduced in Monroy et al. (2017) where the rela-

tionship between the social attitude of the agents and the parameters corresponding

to the additive representation of preferences was established.

In the present paper, we consider a Rawlsian representation of the preferences,

that is, for each i ∈ N the preference function is

νi(u) = min
j∈N

{
uj
γij

}
with γi ∈ ∆n. Each component of γi, γij, is interpreted as the relative importance

that agent i assigns to the individual utility of agent j. In the maximization of the

worst individual weighted utility, the situations in which the individual weighted

utilities are equal plays a major role, since these levels determine the evaluation of

the group. In order to increase this evaluation, the individual weighted utilities must

increase from the level in which the equality is attained in the proportions indicated

by the weights. Therefore, by attaching a higher weight to one individual utility, its

value needs to increase in a higher proportion. For instance, in order to increase the

value of the preference function for a two-agent game, if the weight that one agent

assigns to her own utility is double than the one she attaches to the utility of the

other agent, then the value of her own utility needs to increase twice as much as the

other agent’s utility.

In the following Proposition the different types of the agents are characterized

in terms of these weights.
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Proposition 3.2. If the preference function of agent i ∈ N is νi(u) = minj∈N

{
uj
γij

}
,

with γi ∈ ∆n, then agent i is

a) equanimous if and only if γij = γik for all j, k ∈ N .

b) impartial if and only if γij = γik for all j, k 6= i.

c) egoistic if and only if γij = 0 for all j 6= i.

d) pro-self if and only if γii ≥ γij for all j ∈ N .

e) pro-social if and only if γii ≤ γij for all j ∈ N .

The relationship between each type of agent and the set of weights established

in this result permits the identification of the subsets of equilibria according with

the attitude of the agents towards the other agents.

4 A strategic model with Rawlsian preferences

We start from a symmetric situation with a set of agents N = {1, . . . , n}. Since we

are dealing with Rawlsian preferences, as stated in Section 3, all the agents consider

the same collective vector-valued utility function u := (uj)j∈N . The strategies of

the agents are represented by m = (m1, ...,mn), with mi ≥ 0 for all i ∈ N . Each

agent considers a real-valued utility function which, in this framework, represents

her own benefit, uj(m) = mjV (M), for j ∈ N , where M =
∑n

i=1m
i. Function

V is twice-continuously differentiable, strictly decreasing, concave and non-negative

on some bounded interval (0, M̄), and V (M) = 0 for M ≥ M̄ (as in Kreps and

Scheinkman, 1983). The benefit functions of the agents, uj, are strictly concave in

their own action since
∂2uj
∂(mj)2

(m) < 0.

The representation of this situation when each of the agents considers not only

her individual benefit but also the benefits of the others is formalized as the vector-

valued game G = {(Ai, u)i∈N}, where u := (uj)j∈N is the same collective function

for all the agents.

Previous analysis of these games have considered a weighted additive function

to represent the preferences of the agents (Monroy et al., 2017). In order to accom-

modate other types of situations we here represent the preferences by adopting a

weighted Rawlsian function in which the weights might be different for each agent.
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Thus, for agent i ∈ N :

wiγi(m) = min
j∈N

{
uj(m)

γij

}
= V (M) min

j∈N

{
mj

γij

}
,

where γi ∈ ∆n for i ∈ N , γ = (γi)i∈N and the component γij represents the impor-

tance that agent i assigns to the benefit of agent j in the sense explained previously.

This setting includes some standard models widely studied in the literature: on

the one hand, oligopoly models in which several firms compete with homogeneous

products in a static framework and, on the other hand, the model of the commons,

in which when individuals act independently, they spoil a shared-resource through

their collective action. In the classic analysis of this problem, the agents must

decide their strategy independently and simultaneously, taking into consideration

only their own benefit. It is well-known that, under the former assumptions on

the utility functions, a unique equilibrium of the scalar game exists, the standard

Cournot equilibrium. Let M∗ be the positive quantity such that m∗ = (M
∗

n
, ..., M

∗

n
)

is the Cournot equilibrium.

Given the game G = {(Ai, u)i∈N}, and the vector of weights of the agents γi,

the corresponding Rawlsian game is denoted by Gγ = {(Ai, wiγi)i∈N}. We call the

equilibria of the games E(Gγ), Rawlsian equilibria.

It follows from Proposition 2.3 that, in general, the set of Rawlsian equilibria is

contained in the set of weak equilibria of the vector-valued game G and contains the

set of equilibria of G. Moreover, in this model the equilibria of the weighted games

Gγ obtained are equilibria of the vector-valued game G by applying Proposition 2.4

since the functions uj are strictly concave in the action of agent j for all j ∈ N .

In order to analyse the existence of Rawlsian equilibria and to determine the

corresponding strategies we rely on the expression of the best response of the agents

in relation to the preference function, wiγi . The explicit expression of the best

response function, denoted here as Ri
γ(m

−i), is given in the following Proposition.

Let ri(m−i) be the best response of agent i for ui(m) = miV (M).

Proposition 4.1. The best response of agent i to the actions of the rest of the agents

in the Rawlsian game Gγ = {(Ai, wiγi)i∈N} is given by:

Ri
γ(m

−i) = min

{
ri(m−i), γii min

j 6=i
{m

j

γij
}
}
.

As a consequence of this result the following remarks on the Rawlsian equilibria

are straightforward:
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• If γii = 1 for all i ∈ N , that is, in the case in which all the agents are egoistic, the

model coincides with a standard Cournot oligopoly, and the unique equilibrium

of the Ralwsian game coincides with the Cournot equilibrium.

• If γii < 1 for all i ∈ N , thenm = (0, . . . , 0) is always identified as an equilibrium

of the strategic model. That is to say, if the agents are not (completely)

egoistic, and their preferences on the benefits of the group are represented

by weighted Rawlsian functions, in a situation in which each agent chooses

mi = 0, i ∈ N, no agent increases the value of her preference function by

individually choosing a different value.

• If γii = 0 for some i ∈ N , then, at any possible equilibrium mi = 0 holds. In

other words, at equilibrium, the strategy of a completely pro-social agent is

always her lowest value, zero.

• If the set of agents is divided into two groups, N0 and N1, such that N = N0∪
N1 with No = {i ∈ N, γii = 0} and N1 = {j ∈ N, γjj = 1} with | N1 | = p,

then the unique equilibrium is m, such that mi = 0 for i ∈ N0, and mj =
M∗(N1)
n−p for all j ∈ N1, where M∗(N1) stands for the Cournot quantity in a

classic oligopoly game involving only the egoistic agents in N1.

In this setting, the existence of a non-null equilibrium depends on the relation-

ships between the product of the importances that the agents assign to their own

benefits, γii · γ
j
j , and the product of the importances that they attach to the benefit

of the other agent, γij · γ
j
i , as stablished in the following results.

Lemma 4.2. Let m be an equilibrium of the Rawlsian game Gγ = {(Ai, wiγi)i∈N}.
If for i, j ∈ N , γii · γ

j
j < γij · γ

j
i , then mi = 0 and mj = 0.

As a consequence, we obtain a sufficient condition for the game having only the

trivial (null) equilibrium, m = θ, that is, mi = 0, for all i ∈ N .

Proposition 4.3. If for all i ∈ N , γii · γ
j
j < γij · γ

j
i for some j ∈ N , then m = θ is

the unique equilibrium of the game Gγ = {(Ai, wiγi)i∈N}.

It follows that when all the agents are strictly pro-social, that is, when the

agents assign less importance to their own benefit than to the benefit of others, the

unique equilibrium has null components. However, other situations in which some

of the agents are pro-social and some others are pro-self may also fulfil this sufficient

condition.
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The following Lemma will help to identify the equilibria in some other relevant

cases.

Lemma 4.4. Let m be an equilibrium of the Rawlsian game Gγ = {(Ai, wiγi)i∈N}.
If for i, j ∈ N , γii · γ

j
j = γij · γ

j
i , with γii · γ

j
j 6= 0, then mi =

γii
γij
mj.

As a natural consequence, we characterize the set of equilibria when γii ·γ
j
j = γij ·γ

j
i

for all i, j ∈ N .

Proposition 4.5. If γii · γ
j
j = γij · γ

j
i for all i, j ∈ N , then the set of equilibria of the

game Gγ = {(Ai, wiγi)i∈N} is

E(Gγ) = {m ∈ IRn : ∀ i ∈ N, 0 ≤ mi ≤ ri(m−i), mi =
γii
γij
mj,∀j ∈ N}.

The conditions γii · γ
j
j = γij · γ

j
i for all i, j ∈ N , include the cases in which γii = γij

for all i, j ∈ N . It follows that when all the agents are equanimous, a multiplicity

of equilibria exist. In each of these equilibria, the strategies of all the agents are

identical.

The following results refer to the set of equilibria when the inequality γii · γ
j
j >

γij · γ
j
i holds for all i, j ∈ N . The first one establishes the existence of the equilibria

when all the agents are pro-self.

Proposition 4.6. If γii > γij for all i, j ∈ N , then the unique non-null equilibrium

of the game Gγ = {(Ai, wiγi)i∈N} is m ∈ IRn such that mi = ri(m−i), for all i ∈ N .

Note that for strictly pro-self agents, two equilibria exist: the null equilibrium

and the standard Cournot equilibrium.

The following Lemma establishes conditions in which the strategy of an agent

at a non-null equilibrium does not correspond to the individual best response of the

agent.

Lemma 4.7. Let m be a non-null equilibrium of the Rawlsian game Gγ = {(Ai, wiγi)i∈N}
with γii · γ

j
j > γij · γ

j
i for all i, j ∈ N . If γii < γij, then mi 6= ri(m−i).

4.1 The case of two agents

We now consider the case of a two-person game for which we apply the results

established above in order to determine the corresponding equilibria. We simplify
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notation by setting the parameters γii = αi and γij = 1− αi, i, j = 1, 2, j 6= i. With

this notation αi represents the importance that agent i assigns to her own benefit

and 1− αi represents the importance that she attaches to the benefits of the other

agent, and therefore, agent i is pro-social when αi ≤ 1
2
, equanimous when αi = 1

2

and pro-self when αi ≥ 1
2
.

The Rawlsian function is written as

wiαi(m1,m2) = V (m1 +m2) min

{
mi

αi
,
mj

1− αi

}
,

and the best response of agent i to the actions of agent j is

Ri
α(mj) = min

{
ri(mj),

αi

1− αi
mj

}
.

It follows that if αi = 1 for i = 1, 2, that is, if both agents are egoistic, then the

unique equilibrium is the standard Cournot equilibrium. If αi < 1 for i = 1, 2 then

m = (0, 0) is always an equilibrium and if αi = 0, then at equilibrium mi = 0. From

Proposition 2.4, the whole set of equilibria of the Rawlsian game can be generated

by changing the parameters that represent the attitude of the agents. And when a

profile of strategies is obtained as an equilibrium of some Rawlsian game Gα, then

these strategies constitute an equilibrium of the vector-valued game.

The following result summarizes all the cases for two agents.

Proposition 4.8. Let Gα = {(Ai, wiαi)i=1,2} be the Rawlsian game.

1. If α1 + α2 < 1, then the unique equilibrium is m = (0, 0).

2. If α1 + α2 = 1, and α1 · α2 6= 0, then multiple equilibria exist

E(Gα) = {m : mi =
αi

1− αi
mj, 0 ≤ mi ≤ ri(mj), for i = 1, 2, j 6= i}.

3. If α1 + α2 > 1, a unique non-null equilibrium exists, m, and

a) If αi ≥ 1/2, αj > 1/2, i, j = 1, 2, then m1 = r1(m2), and m2 = r2(m1).

b) If αi < 1/2 and αj > 1/2, i, j = 1, 2, then mi = αi

1−αim
j, and mj = rj(mi).

Observe that the condition on the parameters in Case 1 means that either both

agents are pro-social, or one of the agents is pro-self and the other is a pro-social

agent who attaches a low importance to her own benefit. In Case 2, either both
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agents are equanimous, or one is pro-social and the other pro-self, and their im-

portances sum up to one. In Case 3a), either both agents are pro-self or one of

them is equanimous and the other pro-self. Finally, in Case 3b) one of the agents is

pro-social and the other is pro-self and their importances sum up to more than one.

Figure 1 illustrates the reaction functions and the equilibria for two-agent games

with Rawlsian preferences fulfilling α1 + α2 < 1. On the left-hand side, a case of

two pro-social agents is shown. On the right-hand side, one of the agents is pro-

social and the other one is a pro-self agent. In both cases, the unique equilibrium is

m = (0, 0).

r1

m2

m1

r2

m1

m2

r1

r2

Figure 1: Equilibria for two agents when α1 + α2 < 1.

When α1 +α2 = 1, a multiplicity of equilibria exists (Figure 2). On the left-hand

side, the case of two equanimous agents is illustrated. On the right-hand side, a case

of one pro-social agent and one pro-self agent is shown.

m1

m2

r1

r2

m1

m2

r1

r2

Figure 2: Equilibria for two agents when α1 + α2 = 1.
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Note that when all the agents are pro-self, the unique non-null equilibrium co-

incides with that of the case without social preferences, that is, the Cournot equi-

librium (Figure 3, left-hand side). A non-null equilibrium may exist different from

the Cournot equilibrium when α1 +α2 > 1 and one agent is a pro-self agent and the

other is a pro-social agent (Figure 3, right-hand side). This equilibrium is located

on the best-response of the pro-self agent.

m1

m2

r2

r1

m1

m2

r1

r2

Figure 3: Equilibria for two agents when α1 + α2 > 1.

5 Concluding remarks

It is well-known that utilitarianism is the most applied theory in the analysis of

strategic models. However, we have illustrated the usefulness of the egalitarian

framework in contexts where the components of the utility of the agents are not

compensable. The adoption of a weighted Rawlsian function as a representation of

the agents’ preferences presents two interesting features.

On the one hand, the behaviour of the agents with relation to the outcomes

of the others is provided by the parameters of such function, which permits the

classification of different types of agents. On the other hand, specific conditions

on the weights allows the characterization of equilibria for some other-regarding

strategic situations. For instance, in the extreme situation in which all the agents

are strictly pro-social, the only equilibrium is the null equilibrium. In the opposite

situation, if all the agents are pro-self, then the unique non-null equilibrium of the

general model coincides with the Cournot equilibrium. In the case in which all the

agents are equanimous a multiplicity of equilibria exists. In these equilibria, the
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strategy of each agent can be expressed proportionally to the strategy of one of

the agents. Moreover, in a mixed situation in which agents with different attitudes

are included various possibilities of interaction can arise. A particular case is when

at least one agent is pro-social and the product of the importances that the agents

assign to their own benefits is greater than the product of the importances that they

attach to the benefit of the other agent. In this situation, other equilibria different

from Cournot equilibrium emerge which are located on the individual reaction curves

of the pro-self agents.

The results obtained when considering Rawlsian preferences to identify the equi-

libria of games with other-regarding preferences show some similarities and differ-

ences with respect to those obtained in Monroy et al. (2017) for the additive case.

With both preference representations, if only an agent exhibits a pro-social be-

haviour, regardless of the behaviour of the rest of the agents, the standard Cournot

equilibrium is not an equilibrium in the game with other-regarding preferences. And

also in both cases, when all the agents are egoistic, the standard Cournot equilib-

rium is the unique equilibrium. In addition, when agents are equanimous, multiple

equilibria exist in both representations. For the Rawlsian representation, all the

equilibria are symmetric and the null equilibrium and the standard Cournot equi-

librium are included. However, for the additive model, in the case of equanimous

agents, the profile formed by the null strategies of the agents and the Cournot equi-

librium are not equilibria for the Rawlsian game. There is only one symmetric

equilibrium and coincides with one of the equilibria of the Rawlsian representation.

The analysis presented herein may help explain the equilibria that can be achieved

in certain strategic situations where other-regarding preferences play a crucial role.

Take for instance, the strategic decisions of individuals in a pandemic situation,

where they can decide whether to stay at home or to spend some time outside.

The utility of an individual depends increasingly on the time outside and also on

the probability of not being infected which depends decreasingly on the total time

that all the individuals spend outside. It is plausible to assume that individuals are

concerned about the well-being of others in a Rawlsian sense, that is, in order to

make their decisions they consider the worst-case situations but assigning different

importance to different individuals. Our analysis explains why when individuals are

pro-social, an equilibrium consists of staying at home. It also explains that depend-

ing on the intensity of the social attitudes of the individuals, other equilibria may

exist in which some individuals spend some time outside and some others not.

Needless to say that an equilibrium situation does not necessarily entail a social
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optimal situation. This optimum will clearly be attained when the probability of

being infected is null which is only achieved at the null equilibrium.

Acknowledgements: The research of the authors is partially supported by the Span-

ish Ministry of Science, Innovation and Universities, Project PGC2018-095786-B-I00.

(MINECO/FEDER).

6 Appendix

Proof Proposition 3.2: a) If agent i is equanimous, then for all u ∈ IRn, νi(u) =

νi(uπ). Suppose on the contrary that γij > γik for some k, j ∈ N , and take u =

(γij)j∈N . Thus, νi(u) = 1. Now consider ū such that ūr = ur for r 6= k, j, ūj = uk,

and ūk = uj. It follows that νi(ū) =
γik
γij
< 1, which is a contradiction and therefore,

γij = γik for all k, j ∈ N .

The reverse is straightforward.

b) The result follows by applying the same reasoning as in a) to the set N \ i.
c) Suppose on the contrary that γij > 0 for some j 6= i. Take u such that ur = 1

for all r ∈ N , and ū such that ūi = 2 and ūr = 0 for all r 6= i. Now we have that

νi(u) = minr∈N{ 1

γjr
} > 0, whereas νi(ū) = 0, and this is a contradiction.

Reciprocally, consider γij = 0 for all j 6= i, thus γii = 1, then νi(u) = ui
γii

. For any ū

with ui < ūi, ν
i(ū) = ūi

γii
> νi(u).

d) If the agent is pro-self, then for any u ∈ IRn
+ such that ui > uj, we have that

νi(u) = min
{
ui
γii
,
uj
γij
,mink 6=i,j

{
uk
γik

}}
, and νi(ū) = min

{
ui
γij
,
uj
γii
,mink 6=i,j

{
uk
γik

}}
.

We first prove that, if agent i is pro-self then γii 6= 0. Suppose that γii = 0, and

take u such that ui > uj, and uk = γik(1 + ui
γij

), for k 6= i, j with γik 6= 0. For this

u, νi(u) =
uj
γij

and νi(ū) = ui
γij

. Therefore, νi(u) < νi(ū), which is a contradiction.

Thus, γii 6= 0.

Suppose now that γij > γii for some j 6= i, and take u ∈ IRn
+ such that ui > uj and

uk = γik(
ui
γij

+
uj
γii

) for all k 6= i, j with γik 6= 0. Then uk
γik

= ui
γij

+
uj
γii
>

uj
γii
> ui

γij
. As a

consequence, nor the value of νi(u), nor that of νi(ū), is attained at mink 6=i,j

{
uk
γik

}
.

Hence, νi(u) = min
{
ui
γii
,
uj
γij

}
=

uj
γij

and νi(ū) = min
{
uj
γii
, ui
γij

}
. Now

uj
γij
< ui

γii
and for

all k 6= i, j,
uj
γij
< uk

γik
. Therefore, νi(u) < νi(ū). This is a contradiction, and thus,

γii ≥ γij for all j ∈ N .

Reciprocally, it γii ≥ γij for all j ∈ N , let u ∈ IRn
+ be such that ui > uj. We are
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going to prove that νi(u) ≥ νi(ū). Note that νi(ū) = min
{
uj
γii
,mink 6=i,j

{
uk
γik

}}
, since

uj
γii
< ui

γij
.

On the one hand, if νi(ū) =
uj
γii

, then
uj
γii
≤ uk

γik
for all k 6= i, j. Since ui

γii
>

uj
γii

,
uj
γij
≥ uj

γii

and uk
γik
≥ uj

γii
for all k 6= i, j, then νi(u) ≥ νi(ū).

On the other hand, if νi(ū) = ur
γir

, for some r 6= i, j, then ur
γir
≤ uj

γii
< ui

γii
, and ur

γir
≤ uk

γik

for all k 6= i, j. Moreover,
uj
γij
≥ ur

γir
, since, on the contrary, if ur

γir
>

uj
γij
>

uj
γii

, which is

a contradiction. Therefore, νi(u) ≥ νi(ū).

e) The reasoning is analogous to that in d). 2

Proof Proposition 4.1: First, we observe that the preference function of agent i

can be written as

wiγi(m) = V (M) min

{
mi

γii
,min
j 6=i

{
mj

γij

}}
.

Given m = (m1, . . . ,mn), let s ∈ N be such that ms

γis
= minj 6=i{m

j

γij
}. For this m,

wiγi(m) =

{
mi

γii
V (M) if mi

γii
≤ ms

γis
ms

γis
V (M) if ms

γis
≤ mi

γii

The best response of agent i to the strategies of the others, Ri
γ(m

−i), is an action

of agent i, m̄i, that has to be selected either in (m̄i,m−i) ∈ A1 = {m : mi

γii
≤ ms

γis
}, or

(m̄i,m−i) ∈ A2 = {m : ms

γis
≤ mi

γii
}.

Two cases must be considered depending on the value of ri(m−i):

We first analyse the case in which ri(m−i) ≤ ms

γis
. If m̄i is selected such that

(m̄i,m−i) ∈ A1, then m̄i = ri(m−i) since ri(m−i) is the best response in A1. On the

other hand, if m̄i is selected such that (m̄i,m−i) ∈ A2, since wiγi(m) = ms

γis
V (M) and

V is decreasing in M = m1+...+mn, then m̄i should be set as small as possible, that

is, m̄i = γii
ms

γis
. If so, (m̄i,m−i) ∈ A1 and the best response should be m̄i = ri(m−i).

Therefore, when ri(m−i) ≤ ms

γis
, the best response is Ri

γ(m
−i) = ri(m−i).

Second, we analyse the case in which ri(m−i) ≥ ms

γis
. On the one hand, if m̄i is

selected such that (m̄i,m−i) ∈ A1, where ri(m−i) is the best response, then the

strict concavity of wiγi in mi takes us to choose the highest value in this region,

that is, m̄i = γii
ms

γis
. It follows that (m̄i,m−i) ∈ A2 and in A2 the best response is

m̄i = γii
ms

γis
. On the other hand, if m̄i is selected such that (m̄i,m−i) ∈ A2, the best

response is straightforward m̄i = γii
ms

γis
. Then when ri(m−i) ≥ ms

γis
, Ri

γ(m
−i) = γii

ms

γis
.

It follows that for any m−i the best response is Ri
γ(m

−i) = min
{
ri(m−i), γii

ms

γis

}
.2
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Proof Lemma 4.2: By definition, the profile of strategies m is an equilibrium of

the game Gγ = {(Ai, wiγi)i∈N} if and only if mi = Ri
γ(m

−i) for all i ∈ N . As a

consequence, given i ∈ N , mi ≤ ri(m−i) and mi ≤ γii
γij
mj for all j 6= i.

We prove that if for i, j ∈ N , γii · γ
j
j < γij · γ

j
i , then at equilibrium mi = 0. Suppose

on the contrary that for i, j ∈ N such that γii · γ
j
j < γij · γ

j
i and mi 6= 0. We

have that mi ≤ γii
γij
mj for all j 6= i, and therefore, γii 6= 0 holds. If γij · γ

j
i = 0,

then the inequality γii · γ
j
j ≥ γij · γ

j
i is straightforward, which is a contradiction.

If γij · γ
j
i 6= 0, since mj is an equilibrium strategy, we also have that mj ≤ γjj

γji
mi,

and hence, mi ≤ γii
γij
mj ≤ γii

γij

γjj

γji
mi, where γjj 6= 0 (since, otherwise mi = 0). Thus

mi ≤ γii
γij

γjj

γji
mi, and since mi 6= 0, then γii · γ

j
j ≥ γij · γ

j
i , which is a contradiction. 2

Proof Lemma 4.4: As established in the proof of Lemma 4.2, if the profile of

strategies m is an equilibrium of the game Gγ, then 0 ≤ mi ≤ ri(m−i) and mi ≤
γii
γij
mj for all j 6= i.

We now prove that if for i ∈ N , γii · γ
j
j = γij · γ

j
i for some j ∈ N , then at equilibrium

mi = γii minj 6=i{m
j

γij
}. Suppose on the contrary that mi = ri(m−i) < γii minj 6=i{m

j

γij
},

then mi = ri(m−i) <
γii
γij
mj for each j ∈ N . Since mj ≤ γjj

γji
mi, we have that

mi <
γii
γij
mj ≤ γii

γij

γjj

γji
mi. Since γii · γ

j
j = γij · γ

j
i , it follows that mi < mi, which is a

contradiction. Therefore, at equilibrium mi 6= ri(m−i) , then mi = γii minj 6=i{m
j

γij
}

must hold.

Moreover, if mi <
γii
γij
mj for j ∈ N such that γii ·γ

j
j = γij ·γ

j
i , then, similarly as before

mi <
γii
γij
mj ≤ γii

γij

γjj

γji
mi = mi, which is a contradiction. As a consequence, mi =

γii
γij
mj

for j ∈ N such that γii · γ
j
j = γij · γ

j
i . 2

Proof Proposition 4.5: The first inclusion is straightforward by Proposition 4.1

and Lemma 4.4. We now prove that if mi =
γii
γij
mj for all j, and 0 ≤ mi ≤ ri(m−i),

then mi = Ri
γ(m

−i). If mi < Ri
γ(m

−i), then mi <
γii
γij
mj = mi, which is a contra-

diction. If mi > Ri
γ(m

−i), since mi =
γii
γij
mj, for all j 6= i, then Ri

γ(m
−i) = ri(m−i).

Hence mi > ri(m−i), which is also a contradiction. Therefore, mi = Ri
γ(m

−i). And

if mi = Ri
γ(m

−i) for all i ∈ N , then m is an equilibrium of Gγ. 2

Proof Proposition 4.6: For the case of two agents, Kreps and Scheinkman (1983)

proved that if rj(mi) < mi, then ri(rj(mi)) < mi. This result can straightfor-
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wardly be generalized for the case of n agents as follows: If rj(m−j) < mi, then

ri(rj(m−j),m−{i,j}) < mi (where m−{i,j} denotes the strategy combination of all

agents except agents i and j). We will use this fact in the proof of our result.

We first prove that if mi = ri(m−i) for all i ∈ N , then m is an equilibrium

of Gγ. Note that under these conditions, m is the Cournot equilibrium of the

strategic model in which each agent values only its own benefit (ui(m) = miV (M))

and it follows from the symmetry of this game that mi = mj for all i, j ∈ N .

As a consequence, since γii > γij,
mi

γii
= mj

γii
< mj

γij
holds for all j 6= i, Therefore,

wiγi(m) = V (
∑

k∈N m
k)m

i

γii
= ui(m)

γii
.

Consider a deviation from mi. For ε > 0, mi−ε
γii

< mi

γii
= mj

γii
< mj

γij
holds. Hence

wiγi(m
i − ε,m−i) = V (

∑
k∈N m

k − ε)m
i−ε
γii

= ui(m
i−ε,m−i)

γii
and, since ui is strictly

concave in its own action and the best response is mi, we have that wiγi(m) >

wiγi(m
i − ε,m−i). Now consider ε > 0 such that mi

γii
< mi+ε

γii
< mj

γij
. For this ε,

wiγi(m
i + ε,m−i) = V (

∑
k∈N m

k + ε)m
i+ε
γii

= ui(m
i+ε,m−i)

γii
and, since ui is strictly

concave in its own action and the best response is mi, wiγi(m) > wiγi(m
i + ε,m−i).

Therefore, m is an equilibrium of Gγ.

Reciprocally, we will prove that if m is an equilibrium of Gγ, then mi = ri(m−i)

for all i ∈ N . Suppose on the contrary that an agent i exists such that mi < ri(m−i),

that is, mi =
γii
γij
mj for some j and mi ≤ γii

γik
mk for all k 6= i, j. Since m is an

equilibrium of Gγ, for this j one of the following situations happens: a) mj =
γjj

γji
mi,

b) mj = rj(m−j) and c) mj =
γjj

γjk
mk for some k 6= i, j.

a) If mj =
γjj

γji
mi, then mi =

γii
γij

γjj

γji
mi Since γii > γij and γjj > γji for all i, j ∈ N , it

follows that mi > mi, which is a contradiction.

b) If mj = rj(m−j), with γii > γij, then mj = rj(m−j) < mi. Since when

rj(m−j) < mi, then ri(rj(m−j),m−{i,j}) < mi, it follows that ri(m−i) < mi.

And this is a contradiction since m is an equilibrium of Gγ and consequently

mi ≤ ri(m−i).

c) If mj =
γjj

γjk
mk for some k 6= i, j, an analogous reasoning can be made for mk,

that is, three situations regarding the value of mk arise. The two first cases

yield a contradiction as above. In the third case mk =
γkk
γkr
mr holds for some

r 6= i, j, k. Hence, mi =
γii
γij

γjj

γjk

γkk
γkr
mr. The recursive application of this reasoning
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leads to the expression mi =
γii
γij

γjj

γjk

γkk
γkr
. . .mi. Since all the quotients are greater

than one, mi > mi, which is also a contradiction.

Therefore, the result follows. 2

Proof Lemma 4.7: Suppose on the contrary that mi = ri(m−i). Since m is an

equilibrium of Gγ and γii < γij for some j 6= i, it follows that for this j, mi ≤ γii
γij
mj <

mj holds, that is, ri(m−i) < mj . Hence, rj(m−j) < mj since ui is strictly concave

and V is strictly decreasing, which is a contradiction since m is an equilibrium of

Gγ and consequently mj ≤ rj(m−j). 2

Proof Proposition 4.8: Note that with the simplified notation, for the case of two

agents, the condition γ1
1 · γ2

2 < γ1
2 · γ2

1 can be written as α1 + α2 < 1. The condition

γ1
1 ·γ2

2 = γ1
2 ·γ2

1 can be written as α1 +α2 = 1, and γ1
1 > γ1

2 is equivalent to α1 > 1/2.

Thus, the results in 1) and 2) follow from the general analysis presented in Propo-

sitions 4.3 and 4.5.

In case 3a), when α1, α2 > 1/2, the result follows from Proposition 4.6. Other-

wise, without loss of generality, consider α1 = 1/2 and α2 > 1/2. We are going to

prove that if m is an equilibrium of Gγ, then m1 = r1(m2) and m2 = r2(m1).

Since m is an equilibrium of Gγ, then mi = ri(mj) or mi = αi

1−αim
j, i, j = 1, 2.

Four different situations can occur: First, if m1 = α1

1−α1m
2 = m2 and m2 = α2

1−α2m
1,

then m1 = α2

1−α2m
1 and since α2

1−α2 > 1, m1 > m1, which is a contradiction. Second,

if m1 = r1(m2) and m2 = α2

1−α2m
1, then m2 > m1 since α2 > 1/2. Moreover, since

m2 > r1(m2) = m1, it follows that m2 > r2(m1), which is a contradiction since

m is an equilibrium of Gγ, and m2 ≤ r2(m1) holds. Third, m1 = α1

1−α1m
2 = m2

and m2 = r2(m1). By definition of the best responses r1 and r2, it follows that

V (m1 +m2)+m2V ′(m1 +m2) = 0 and V (m1 +m2)+m1V ′(m1 +m2) > 0, since u1 is

strictly concave. Hence, (m1−m2)V ′(m1 +m2) > 0, and consequently m1−m2 < 0,

since V ′ is negative. And this is a contradiction. Therefore, if m is a non-null

equilibrium of Gγ, then m1 = r1(m2) and m2 = r2(m1).

Conversely, we are going to prove that if m1 = r1(m2) and m2 = r2(m1), then m

is an equilibrium ofGγ. Sincem1 = r1(m2) andm2 = r2(m1), thenm1 = m2. Taking

into account that α1 = 1/2 = 1−α1, the Rawlsian function is w1
α1(m1,m2) = V (m1+

m2)m
1

1/2
= V (m1 +m2)m

2

1/2
= u1(m1,m2)

1/2
= u2(m1,m2)

1/2
. Recall that u1 is strictly concave,

then it follows that w1
α1(m1 − ε,m2) < w1

α1(m1,m2), as we proved in Proposition

4.6. Moreover, m2

1/2
= m1

1/2
< m1+ε

1/2
. Since V is strictly decreasing, w1

α1(m1 + ε,m2) =

V (m1 +m2 + ε)m
2

1/2
< V (m1 +m2)m

2

1/2
= w1

α1(m1,m2), and the result follows.
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The reasoning for w2
α2 can be made analogously as in the proof of Proposition 4.6.

In order to prove case 3b), consider α1 < 1/2 and α2 > 1/2 with α1 +α2 > 1. By

Lemma 4.7, if m is an equilibrium of Gγ, then m1 6= r1(m2), and thus m1 = α1

1−α1m
2.

We now prove that m2 = r2(m1). Suppose on the contrary that m2 = α2

1−α2m
1.

Hence m2 = α2

1−α2
α1

1−α1m
2. Since α2

1−α2
α1

1−α1 > 1 is equivalent to α1 + α2 > 1, it

follows that m2 > m2, which is a contradiction. The reciprocal result follows with

an analogous reasoning to that in 3a). 2
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