
Semantic Preserving Embeddings for
Multi-Relational Graphs

Pedro Almagro Blanco
Complex Systems Modeling Group

Central University of Ecuador

Quito, Ecuador

Email: palmagro@uce.edu.ec

Fernando Sancho Caparrini
Department of Computer Science

and Artificial Intelligence

University of Seville, Spain

Email: fsancho@us.es

Abstract—In this paper a new machine learning approach to
the study of Multi-Relational Graphs as semantic data structures
is presented. It shows how vector representations that maintain
semantic and topological features of the original data can be
obtained from neural encoding architectures and considering the
topological properties of the graph. Also, semantic features of
these new representations are tested by using some machine
learning tasks and new directions on efficient link discovery
methodologies on large relational datasets are investigated.

Keywords—Multi-relational Graphs; Semantic Networks; Link
Discovery; Neural Autoenconder; Feature Extraction

I. INTRODUCTION

Because of the structural complexity of graphs (and spe-
cially, of multi-relational graphs), their study within the field of
Machine Learning have not been as prolific nor as successful
as other data structures with a more simple and defined
scheme, such as numerical series, images, or tables from
relational databases (that, finally, can be seen as data-frames
with heterogeneous structure in their columns). Consequently,
the most common approaches to include them in Machine
Learning projects have been through an oversimplification of
the internal structure of the graph (removing the multi feature
in them, and considering only one single type of nodes and
edges) in order to project its content in an easier way over
any of the simpler structures. In this sense, usually applying
Machine Learning methodologies on graphs has been carried
out by their linearization. In fact, these approaches reduce the
chances to obtain algorithms able to extract nontrivial semantic
information from semantic networks, since the projection of
the network leads to a loss of the structural richness that is
being studied and frequently characterizes this type of data
structures.

For example, a common approximation to learning from
graph structures has been by tackling it as a task of learning a
function defined on the nodes of the graph, and has received
a considerable attention in machine learning circles by repre-
senting the functions defined on the graph through a Hilbert
space associated with the graph Laplacian ([1], [2], [3], [4],
[5]). Only recently some other approaches taking into account
the rich structure of graphs, in the context of this work, have
been considered.

In recent years, complexity on the type of information that
needs to be manipulated and the consequent emergence of new
storage and retrieval systems, such as NoSQL solutions [6],

moving away from the rigid structure of the classical relational
model, make it necessary to find alternatives that maintain as
much as possible the rich semantic structure that characterizes
multi-relational graphs as the standard tool for representing
complex information.

One of the options that can be of interest to get more
flexible solutions to this problem, and that has been applied
previously to some other machine learning problems, goes
through building embeddings of the graph that, by projecting
its nodes on an adequate space (usually a vector space), are
able to render the semantic features of the graph over easily
recognizable objects in this new space. In this way, it is
understood that the semantic information stored in the graph
has been captured by the embedding and the resulting projected
structures.

In the next section, some of the background needed for
the development of the proposed solution, mainly focused
in embeddings, multi-relational graphs, and neural encoder
concepts are shown. In section 3 some previous related works
are presented, contextualizing the main contributions of this
work. Section 4 is devoted to the presentation of the proposal
for building semantic preserving embeddings by using neural
encoders, that will be validated with their application in
machine learning contexts in section 5. Finally, in section
6 some conclusions, final remarks and future work will be
shortly presented.

II. BACKGROUND

Along this paper, the term embedding is used as the
process to inject an instance X of some mathematical object
into another object Y preserving, in some way, the original
structure. This embedding is given by a function, f : X → Y ,
that sometimes is called a projection.

In this case, we are interested in embeddings preserving
the topological structures we can recognize in the graph (given
by the relations, or edges, between the nodes of the graph),
and also preserving the semantic structure (given by types
annotation in nodes and edges). Also, we will work with
embeddings into finite dimensional vector real spaces, Rn. In
this way, we are interested in finding embeddings that can
reflect, within the vector space features (distance, linearity,
clustering, etc.) some semantic features of the original graph.

In order to model situations with a wide variety of re-
lationships between the elements of the graph, the concept

of Multi-relational Graph is introduced, which in a first
approach slightly extends the standard graph definition by
adding tagging capabilities on edges and nodes:

Definition: A Multi-relational Graph is a triple, G =
(V,E, τ), where V is a set of nodes, E ⊆ V × V is a set
of edges (relations), and τ : V ∪E → Ω is a tagging function
for the elements of the graph on the set of tags, Ω (also named
types set along this paper).

Figure 1 shows a very simple example of a multi-relational
graph with seven nodes and seven edges, and with types
associated to the elements of the graph.

Fig. 1. Example of multi-relational graph with types on nodes and edges.

This concept has been used for some time in several
different contexts, although until the last decade formal defi-
nitions have not been offered and extended to a more general
framework: Property Graphs. In [7] a first formalization is
given in order to provide a formal definition of traversals as a
fundamental tool for the query task on this type of structures as
support for Graph DataBases. In [8] the equivalence between
Property Graphs and the Resource Description Framework
specification, RDF 1, is presented.

As some neural network techniques for the construction
of the embeddings will be used, next the specific model of
neural encoders to be used ([10], [11]) in the construction of
the embedding proposal is introduced. Any Artificial Neural
Networks background where it supports on is ommited, and
only some sketch about neural enconders functioning are
presented.

When adding a hidden layer on a feedforward neural
network, all the communication between the input and output
layers passes through the hidden layer. Thus, if we are trying to
approximate a function using this network, after adjusting the
parameters of the network, we can assume that the hidden layer
keeps the necessary information from the input to calculate the
output data. Therefore, always depending on the function to
be approximated, the hidden layer encodes the input data, and
the weights (and biases) between these layers define a coding
function2.

If the number of units in the hidden layer used for encoding
differs from the number of units in the input layer, then a

1RDF is a data exchange standard model primarily focused on Web, widely
used in the context of Semantic Web applications, which allows modeling of
flexible multi-type relationships between elements with a set of triplets in the
form (subject, predicate, object) [9].

2Similarly, the part of the neural network connecting the hidden layer to
the output layer can be seen as a decoding function.

dimensional change is made while encoding. This encoding
process through neural networks is one of the methods that
can be used to obtain embeddings that maintain some structural
features present in the training sets (eg closeness relationships,
or similarity) and that are related with the function the neural
network approximates [11]. In order to use such an encod-
ing to produce embeddings preserving semantic (topological)
structures on a graph we need to choose an adequate function
to approximate (it is common to approximate the identity
function). Next section will present some related works that use
similar ideas on other contexts to obtain semantic preserving
embeddings.

III. RELATED WORKS

A. Semantic preserving embeddings of texts: Word2Vec

One application of neural encoders that has delivered
impressive results has been made on corpus of texts and their
grammatical and semantic contents. In [12], Mikolov et al.
presented two neural architectures (CBOW and Skip-gram)
under the generic name of Word2Vec, to learn vector represen-
tations of words trying to capture many of the grammatical and
semantic properties of the words inside the corpus. Addition-
ally, they reduce significantly the computational complexity of
the learning process on very big corpus of texts (some other
approaches in this direction were made previously, but all of
them showing prohibitively high computational costs).

The general process passes through a first preprocessing
on the source texts to extract the vocabulary of interest that
will be projected (by common tasks on natural language
processing, like taking the lemmas of the words, removing
stopwords, etc.) and, for the words in this vocabulary, defining
their neighborhoods (contexts) to be considered. For every
occurrence of a word w in a text T of the corpus, the context of
w for that occurrence, C, is defined as a set of words of T that
are adjacent to that occurrence of w. The size of the context (or
window size, i.e. how long the adjacency is considered) is a free
parameter of the model, and has to be tuned to obtain the best
results. In some way, and this is what Mikolov’s work shows,
the contexts store the local semantic information needed to
preserve the global semantic relations that can be established
along the text of the corpus.

Both architectures consist in feedforward neural networks
with 3 layers (one only hidden layer), where input and output
layers will have as many units as the size of the vocabulary,
and each unit will be associated to each word following a one-
hot structure: if W = {w1, . . . , wk} is the vocabulary, then the
i-unit of these layers will encode the word wi (Figure 2). But
these architectures differ slightly in their functioning: while
CBOW takes the contexts of the words as input and tries to
output the word itself, Skip-gram takes the words as input and
tries to output their contexts.

When doing a supervised training process to estimate the
weights of the network, a set of training pairs in the form
(w,C) will be used in the case of Skip-gram, and a set of
training pairs of the form (C,w) in the case of CBOW. Note
that every word can, and usually will do, appear with several
associated contexts, and vice versa.

By learning the relations between words and their contexts,
this model captures several types of similarities [13], both

Fig. 2. Feedforward neural network structure used in CBOW and Skip-gram
architectures.

functional and structural, and by taking the information stored
in the hidden layer it provides an embedding into a vector
space that reflects these similarities as (almost) linear vector
structures and relations. It can capture similarities between
words playing the same role in the sentences they are involved
in, or even find more complex semantic relationships between
concepts [14].

B. Other Related Works

Although different methodologies manage multi-relational
data using different structures (RDF, Multi-Relational Graphs,
Property Graphs, Relational Database Systems, etc.), methods
which learn from multi-relational data can be grouped under
the same field: Multi-Relational Learning.

Multi-relational learning can be divided in three blocks:
(1) Statistical Relational Learning (SRL), where methods as
Markov Logic Networks [15] can be found, which performs
a multi-relational data codification using probabilistic models;
(2) Path Ranking Methods ([16], [17]), which explicitly ex-
plore the relation space of multi-relational data using random
walks; and (3) Embedding Based Methods, which obtain vector
representations of multi-relational data through Matrix/Tensor
Factorization ([18], [19], [20]), Bayessian Clusterization [21],
[22] or Neural Networks ([23], [24], [25], [26]). Embedding
Based Methods using neural networks have been demonstrated
to be powerful tools due to their high scalability and their
generalization possibilities. This section will focus in these
last methods as they are closer to the proposal.

Recently, different methods trying to learn vector represen-
tation of entities and links from knowledge bases using neural
networks have been developed ([24], [25], [27]). They all
represent entities as vectors and represent relations as operators
that combine the representations of the two entities that the
relation connects.

In [25], a multi-relational data embedding that models
different relation types by interpreting them as translations
operating on the low-dimensional embeddings of the entities, is
presented. This model tries to minimize the distances between
pairs of nodes connected in the graph, and to maximize the
distances between pairs of nodes not connected in the graph.
The optimization process is carry out using gradient descent
method. [24] follows a similar process but using a siamese
neural network to improve the behaviour of the embedding,
something that allows to work with graphs with more than 1

million elements. In [28], [29] a comparison of several vari-
ants of this kind for embedding multi-relational data (mainly
extracted from WordNet and FreeBase datasets) is presented.
In those papers the authors show results slightly better than the
original implementations, and in the range of those obtained
here, but must be taken into account that in this paper, the
goal is not related with a fine tuning of the parameters and the
accuracy results are reached with no optimization methods on
them. A more guided search in the space of hyperparameters
of the model will improve these results significantly.

Despite the relationship of these works with the one pre-
sented, the requirement imposed about maximizing unobserved
edges goes against one of the pursued goals: since complete
information in the datasets that will be used cannot be as-
sumed, edges that are not observed may be due to a lack of
information rather than a real absence. Indeed, predicting these
unobserved edges is one of the reasons we are interested in an
embedding that increases the analysis capability. In addition,
most of the methods that try to learn vector representations
of entities and links from a knowledge base are oriented to
link prediction, conditioning the embedding to this particular
task. In this way, the presented methodology pursues to obtain
embeddings capturing the similarity between entities’ contexts
avoiding to be conditioned by a particular task. Consequently,
after getting such an embedding, it can be used by several
machine learning tasks on the semantic graph simultaneously.

In [26] the authors use neural encoders to represent the
nodes of a classical graph (one single type of edge, not multi-
relational) using a similar idea to Word2Vec, changing the
contexts of the words by paths on the nodes. Later, they use
a Skip-gram encoder to achieve the embedding. In this work
the size of the networks are under 100 nodes, and the method
suggests there should be deeper information available for every
node, providing information about connections out of its direct
neighborhood. In [30] a similar methodology is presented: A
d-dimensional embedding of the entities from a classical graph
is obtained by (1) learning d/2 dimensions that capture vicinity
and (2) the rest of dimensions are learned by trying to obtain
a embedding in which nodes that share similar context are
placed closer.

In [31] a methodology that extends and joins ideas from
[26] and [30] is presented. The authors show an algorithm
that generates random walks on the graph guided by two
parameters that allow to modify the strategy under the random
walk construction in a spectrum ranging from Breath-First
Search (BFS) to Depth-First Search (DFS). The random walks
obtained by this procedure are used to generate contexts for
every node in the graph and to train a neural network similar
to that one in [26]. To embed a link they propose different
operators that combines the representation of the two entities
it connects: Mean, Hadamard Product and Distances. After
this work, [26] can be seen as a special case of [31] where
parameters guide the random walks through a DFS behaviour.
In these works ([26], [30], [31]) the semantic has not been
taking in account. Consequently, they must be considered as
initial experiments showing the keen interest of embedding
graphs into vector spaces using neural network architectures.

Some methodologies that embed multi-relational data into
vector spaces have been developed, but in the presented
methodology it is shown that using simple neural encoders

(CBOW) allows to train a neural network over big multi-
relational graphs to obtain vector representations of their
entities that keep the semantic characteristics of the original
data under less restricted constraints and, consequently, with a
wider application range.

IV. EMBEDDING MULTI-RELATIONAL GRAPHS IN

VECTOR SPACES

As it has been advanced in previous sections, the presented
methodology uses neural encoders to embed the elements of
a multi-relational graph into a n-dimensional vector space
(where n is the number of units in the hidden layer of the
encoder).

If semantic structure of a multi-relational graph is under-
stood as the function which assings types to nodes and links
(τ function) and in order to assess to what extent the semantic
structure of the graph is preserved, an embedding using only
the set of nodes into the vector space will be made. Thus,
following the analogy offered by the algorithm Word2Vec, the
vocabulary will be the set of nodes in the graph. A context,
C, associated with a node n ∈ V is obtained by randomly
selecting (with repetition) a number of nodes connected to n
by edges of the graph, regardless of the type of edge that
connects them, its direction, or the types of the nodes. The
number of nodes selected from its neighborhood will be the
Window Size.

In the process, a training set of samples consisting of pairs
(C, n), where n ∈ V and C is one of its associated contexts,
is generated. These samples will be used to train a CBOW-like
neural encoder and, later, the activations from the hidden layer
of the neural network are used as a representation of the input
node (Figure 3).

In this procedure the free parameters of the model, to be
tuned when doing real experiments to analyze its feasibility
and efficiency, are: D, the number of units in the hidden layer,
which determines the dimension of the vector space where
the graph is embedding to; N , the size of the training set, is
the number of pairs (C, n) used to train the encoder; and the
Window Size.

The embedding obtained from the trained neural encoder
will be denoted by π : V → R

D. Because of the binary nature
of the edges in multi-relational graphs, a new embedding of
the set of edges E, is obtained from the embedding of the
nodes (it will be denoted also with π):

Definition: If G = (V,E, τ) is a Multi-relational Graph,
and π : V → R

D is an embedding for the set of nodes, V , the
natural extension of π to the set of edges, π : E → R

D, will
be defined as follows:

if l = (s, t) ∈ E, then π(l) =
−−−−−→
π(s)π(t) = π(t)− π(s)

Despite nodes (entities) and relations (edges) are projected
into the same space, the former are projected as points while
the latter are projected as vectors, consequently there will be
more chances to find linear structures in the representations of
relations, while other clustering structures will be common for
nodes.

In order to check the good features of this embedding
methodology, in the next section some experimental results that

have been obtained using multi-relational graph representations
of some well-known datasets are presented.

V. SOME EMPIRICAL EVALUATIONS

In this section results of some empirical evaluation of the
proposal will be shown with two main goals: to verify that the
obtained vector representations preserve the semantic features
(types on entities and relations) of the original graph datasets,
and to evaluate different applications that make use of this
embedding proposal for classification and discovering tasks. It
is important to note that only some of the possible experiments
that this new methodology allows to perform are presented in
this work. We are conducting several other experiments to have
a more complete measure of the goodness of the proposal.

Also, it is key to emphasize that the first goal of the
presented methodology is not to optimize the obtained models
for any specific task, but to provide proofs that the resulting
embeddings can be useful for several machine learning tasks
simultaneously. A finer tuning in the parameters of the model
will provide for sure better accuracy levels for the different
semantic discovering tasks that the embeddings can be used
for.

A first problem to provide a comparison between experi-
ments is to determine an evaluation process to measure the
validity of the different embeddings. For that, and taking
into account that one of the goals is to preserve the existing
semantic properties in the original data, an evaluation of
the ability of the new representations to perform automatic
classification tasks have been carried out: specifically, how τ
function can be recovered from this embedding by using a
classical supervised machine learning algorithm.

Note that the embedding algorithm that we present here
does not receive information about types of nodes and edges
of the graph (that is, it is not informed about τ function) as the
contexts associated with different graph nodes are generated by
randomly selecting a number of connected nodes, regardless
their types (in nodes or edges). Hence, any reconstruction or
prediction of this tagging function can be interpreted as a
learning of the semantic information in the original graph by
the embedding.

As noted, the obtained embedding for a specific dataset is
not unique, and not only because the training process depends
on the initial and the stop conditions, but because it also
depends on the free parameters involved in the construction.
Therefore, it is mandatory to analyze the features of the
different embeddings that can be obtained by modifying these
parameters on the learning process.

In this situation, experiments with two big semantic graphs
obtained from well-known public datasets (WordNet R©[32]
and The Movie Database3 (TMDb), that were reduced and
converted into multi-relational graphs) have been carried out.

WordNet is a large lexical database of English words,
where the entities (Figure 4(a)) are grouped into sets of
synonyms and related by several criteria (4(c)). Only entities
connected with relations of types shown in 4(b) have been
considered, obtaining a graph with ≈ 97K nodes and ≈ 240K
edges.

3https://www.themoviedb.org

Fig. 3. Proposal methodology for semantic preserving embedding of multi-relational graphs as machine learning tasks feeder.

(a) Type Nodes Distribution (b) Type Edges Distribution

(c) Graph Scheme

Fig. 4. Distributions and Graph Scheme for WordNet Dataset.

TMDb is a database containing information about actors,
films, and TV contents. Only entities (Figure 5(a)) connected
by relationships from 5(b) have been considered, obtaining a
graph with ≈ 66K nodes and ≈ 125K edges. Let us note that
types Actor and Director are not disjoint, in the obtained
graph there are 846 nodes with both types, something that

will affect the classification performance.

For the CBOW architecture implementation a customized
version of Gensim4 library (v.0.12.4) for Word2Vec on Python

4https://radimrehurek.com/gensim

(a) Type Nodes Distribution (b) Type Edges Distribution

(c) Graph Scheme

Fig. 5. Distributions and Graph Scheme for TMDb Dataset.

2.7 has been used, as well as Neo4j5 (v.2.2.5) as Graph
Database engine for storing and retrieving the graph datasets.
The standard K-Nearest Neighbors (KNN) model [33] with
k = 3 for all the tests has been selected, if this model can find
good enough semantic patterns in the vector representations
we can infer that the embedding process has been successful.
Every experiment has been repeated 10 times in order to
decrease the standard deviation of the errors.

For both classification tasks, Type Nodes Prediction (TNP)
and Type Edges Prediction (TEP), some searches in the param-
eter space have been carried out in order to have some insight
about how they affect the robustness and accuracy of the
embeddings (Figure 6). WordNet shows a better performance
(≥ 95%) in TNP, while TMDb looks better (≥ 85%) in TEP.
After previous considerations, it can be confirmed that in both
datasets and in both tasks the embedding process preserve the
semantic information of the original datasets.

It is interesting the effect of the Window Size parameter in
TNP. While in WordNet better accuracy is reached as the value
of this parameter is increased, reflecting that more information
about concurrent connections is more informative, in TMDb
it looks like the best option is to consider only 3 related
neighbors for every context and the behaviour is different when
this parameter is odd/even. In any case, the optimum value for
this parameter is greater than 1 in all the cases, what means
that knowing about the concurrence of several connections help
inferring the semantic. In TNP task, also this dataset shows
that the model does not generalize well and some overfitting
appears when increasing the size of the training set, maybe
because of the size of the original graph.

For a more detailed analysis, the confusion matrices for
the best accuracy experiments in both datasets are provided

5http://neo4j.com

in Figure 7, showing that the overlapping between Actor and
Director decreases the performance of TNP in TMDb, and
also in the TEP because of the confusion between acts in and
directed type edges. The problems with Genre arises from the
fact that this entity type has very few associated nodes and
the model could not learn to differentiate it from other entity
types. Also, as Figure 8 shows, the edges associated to Genre
entities are grouped in non-unique clusters, but depending on
the specific genre it has, showing that they follow different
semantic rules than the other entity types, that appear as
clustered groups in the same representation.

In the next section, some comments about this low accuracy
fact are provided. From our point of view, it does not reveal
a weakness on the methodology but some ambiguity in the
semantic structure of data sources. In this sense, Wordnet is
a very curated dataset with well established semantic cate-
gories, while TMDb probably needs some extra work on the
ontology behind its semantic structure in order to avoid some
inconsistences and improve the quality and usefulness of the
embeddings.

To stress the semantic capabilities of the proposed embed-
ding, some more experiments have been performed. We present
here some results related with Entity Retrieval [34], [35], [36],
a set of challenging tasks that are considered to be among the
hardest in Information Retrieval topic. Specifically, we will try
to recover an entity in a relation knowing the source node of
the relation, and the type of relation we are looking for. For
example, in TMDb, starting with a movie, and looking for a
relation of type directed by we try to recover the director of
the movie.

To achieve this task, a subset of links, E′ ∈ E, has been
selected in the original graph G = (V,E, τ) which will be
deleted to obtain a new graph, G′ = (V,E \E′, τ). Then, we
learn the embedding from G′ and try to obtain the target node

(a) Dimensionality (b) Training Set Size (c) Window Size

(d) Dimensionality (e) Training Set Size (f) Window Size

Fig. 6. Accuracy of TNP (top) and TEP (bottom) as function of the free parameters of embedding for WordNet (red) and TMDb (blue).

(a) (b)

(c) (d)

Fig. 7. Confusion Matrices for the datasets and tasks. From left to right: (a) TNP on TMDb, (b) TNP on WordNet, (c) TEP on TMDb, (d) TEP on WordNet.

Fig. 8. 2D projection of embedded edges from TMDb Dataset.

TABLE I. TOP-10 ENTITIES RETRIEVED PROJECTING hypernym
FROM DIFFERENT NODES IN WORDNET.

spasm justification neoconservatism
1 ejection reading pruritus

2 rescue explanation conservatism

3 putting to death analysis sight

4 sexual activity proposition hawkishness

5 behavior modification religious doctrine coma

6 disturbance accusation scientific method

7 mastectomy assay autocracy

8 sales event confession judiciousness

9 instruction research reverie

10 debasement discouragement racism

of every link in E′ using only the point representing its source
node and the representative vector of its type.

Definition: Given a multi-relational graph G = (V,E, τ),
and an embedding of the graph on a vector space, π, the
representative vector associated to a link type α ∈ τ(E), π(α),
is the mean of all projections of links of the given type α. If
we denote Eα = τ−1({α}) = {l ∈ E : τ(l) = α}, then:

π(α) =
1

#(Eα)

∑

l∈Eα

π(l)

Given a link l = (s, t) ∈ E′ and its type τ(l), we will
try to obtain t from the actual information π(G′), τ(l) and s.
Following the expected linearization of the embedding on the
set of relations/links, and using this representative vector as a
real embedding for the deleted link, the predicted projection
of the target node for s can be recovered by: π(tl) = π(s) +
π(α). Of course, it is unlikely this new π(tl) to be one of
the projections of real nodes from G, for that, once π(tl) (the
point representing the entity retrieved) is obtained, a ranking
for the nodes in V can be built, ranking the entities according
to the closeness of its projections to π(tl).

Table I shows the first 10 entities in the ranking obtained
projecting hypernym type link for several nodes in WordNet
dataset. In this table the result is filtered to show only close
entities tagged with type noun.

To evaluate the accuracy of the entity retrieval method
presented, we will use Mean Reciprocal Rank metric [37], a
common metric in Information Retrieval field used in many re-
searches [38], [28]. This factor provides a statistic measure for

evaluating any process producing a list of possible responses
to a sample of queries, ordered by probability of correctness.

Figure 9 shows Entity Retrieval performance for WordNet
dataset as a function of the size of the training set, N . In this
case, the nodes have not been filtered according to their types,
something that would improve the obtained results.

Fig. 9. Entity Retrieval performance as a function of Training Set Size in
WordNet without filtering nodes according their types.

As observed, using the embedding proposal for Entity
Retrieval task in WordNet dataset allows to obtain correct
results over 0.18 with N ≥ 5M . This result tell us about
the quality of the representative vectors for WordNet graph:
(1) if the representative vector of a link type allows to get the
target of a given relation for a source node, then it should be
little deviation in the vectors which represent links of the given
type in the dataset and, (2) the set of source nodes and the set
of target nodes for a given link type should form two clusters
sufficiently disjoint in order to allow the representative vector
to connect them. Again, this task is heavily conditioned by the
semantic quality of the source dataset.

VI. CONCLUSIONS AND FUTURE WORK

In comparison with other machine learning tasks, there are
only a few works that have used neural networks encoders for
embedding multi-relational graphs, or similar graph structures,
into vector spaces. The presented methodology obtains, using
simple neural encoding architectures, vector representations
that maintain the semantic and topological features of the
original graph data. Moreover, with the obtained results, se-
mantic links that remain hidden in the original data (due
to incompleteness of the data stored in the graph or data
inconsistency) could be discovered.

Although in this work embeddings for multi-relational
graphs have been proposed, the presented methodology has
been developed for the more generic framework of Property
Graphs, where more information can be added in the elements
by means of properties. In this way, local information about
properties in nodes and edges can be used to increase the abil-
ity to preserve features in the embeddings and, consequently,
machine learning processes provide better performance when
applied to them. Some tasks related to this more generic
structure that can be improved from this new perspective and
that we are further developing in our current research, are
briefly presented hereafter.

Geometrical features of the structures formed by
nodes/edges in the new vector space can help assign types
or missing properties to the elements of the graph dataset
(using distance, linearity or clustering, for example, but not

only limited to this basis ones) or can even help to identify
new relationships between elements not explicitly presented in
the original graph. This action can be of fundamental interest
for very common processes that are performed on big relational
datasets, where incompleteness of data is an usual obstacle for
information retrieval tasks.

Also, as has been noted after the different results obtained
from the evaluation tests, the performance and accuracy of sev-
eral machine learning tasks on vector representations of graph
dataset (graph databases, overall) can provide information
about the semantic structure of the dataset itself, not only about
the algorithms in use. For example, the confusion of some
nodes/edges in classification tasks can tell us that the schema
behind the dataset needs to be adjusted in order to reflect the
semantic features of the data correctly. In this sense, a detailed
report about how the different types, properties and clusters
are overlapped and confused in the embeddings provides a
method to normalize the data schema itself, something which
is lacking in current Graph Database proposals, where there
is no normalization methods as it can be found in classical
relational databases.

Since usual operations in vector spaces are widely used
in current computing processors (CPUs and GPUs), this new
representation can help the development of more efficient
algorithms to analyze, repair and retrieve information from big
sets of multi-relational data, in general, and more specifically,
from big graph databases.

Finally, this work have mainly explored how linear vector
structures can be used for retrieving information on multi-
relational graphs, as entity retrieval experiments show, but it
is more likely that looking for more complex structures on the
projected space will improve dramatically the accuracy and
usefulness of the embedding. Indeed, using a second layer of
machine learning models after the neural encoding can improve
results for several necessary tasks on information retrieval for
semantic graphs. The results in this paper about using a neural
encoder to generate semantic preserving embeddings of multi-
relational graphs show that this is a research line that worths
to be considered.

ACKNOWLEDGMENT

This work has been partially supported by TIC-6064 Excel-
lence Project of the Junta de Andalucı́a and TIN2013-41086-P
from Spanish Ministry of Economy and Competitiveness (co-
financed with FEDER funds) and by Research and Graduate
Studies Head Department of Central University of Ecuador.

REFERENCES

[1] M. Herbster, M. Pontil, and L. Wainer, “Online learning over graphs,” in
Proceedings of the 22nd international conference on Machine learning.
ACM, 2005, pp. 305–312.

[2] M. Belkin, I. Matveeva, and P. Niyogi, “Regularization and semi-
supervised learning on large graphs,” in In COLT. Springer, 2004,
pp. 624–638.

[3] R. I. Kondor and J. D. Lafferty, “Diffusion kernels on graphs and other
discrete input spaces,” in Proceedings of the Nineteenth International
Conference on Machine Learning, ser. ICML ’02. San Francisco,
CA, USA: Morgan Kaufmann Publishers Inc., 2002, pp. 315–322.
[Online]. Available: http://dl.acm.org/citation.cfm?id=645531.655996

[4] X. Zhu, Z. Ghahramani, and J. Lafferty, “Semi-supervised learning
using gaussian fields and harmonic functions,” in IN ICML, 2003, pp.
912–919.

[5] A. J. Smola and R. Kondor, “Kernels and regularization on graphs,” in
Learning theory and kernel machines. Springer, 2003, pp. 144–158.

[6] I. Robinson, J. Webber, and E. Eifrem, Graph Databases. O’Reilly
Media, Inc., 2013.

[7] M. A. Rodriguez and P. Neubauer, “The graph traversal pattern,”
CoRR, vol. abs/1004.1001, 2010. [Online]. Available: http://arxiv.org/
abs/1004.1001

[8] O. Hartig, “Reconciliation of rdf* and property graphs,” CoRR, vol.
abs/1409.3288, 2014. [Online]. Available: http://arxiv.org/abs/1409.
3288

[9] D. Wood, M. Lanthaler, and R. Cyganiak. (2014, Feb.) RDF 1.1
concepts and abstract syntax. [Online]. Available: http://www.w3.org/
TR/2014/REC-rdf11-concepts-20140225/

[10] Y. Bengio, “Learning deep architectures for ai,” Found. Trends Mach.
Learn., vol. 2, no. 1, pp. 1–127, Jan. 2009. [Online]. Available:
http://dx.doi.org/10.1561/2200000006

[11] G. E. Hinton and R. R. Salakhutdinov, “Reducing the
dimensionality of data with neural networks,” Science,
vol. 313, no. 5786, pp. 504–507, Jul. 2006. [Online].
Available: http://www.ncbi.nlm.nih.gov/sites/entrez?db=pubmed&uid=
16873662&cmd=showdetailview&indexed=google

[12] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation
of word representations in vector space,” CoRR, vol. abs/1301.3781,
2013. [Online]. Available: http://arxiv.org/abs/1301.3781

[13] T. Mikolov, W. tau Yih, and G. Zweig, “Linguistic regularities in
continuous space word representations,” in Proceedings of the 2013
Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies. Atlanta,
Georgia: Association for Computational Linguistics, June 2013,
pp. 746–751. [Online]. Available: http://www.aclweb.org/anthology/
N13-1090

[14] T. Mikolov, J. Kopecky, L. Burget, O. Glembek, and J. Cernocky,
“Neural network based language models for highly inflective
languages,” in Proceedings of the 2009 IEEE International Conference
on Acoustics, Speech and Signal Processing, ser. ICASSP ’09.
Washington, DC, USA: IEEE Computer Society, 2009, pp. 4725–4728.
[Online]. Available: http://dx.doi.org/10.1109/ICASSP.2009.4960686

[15] M. Richardson and P. Domingos, “Markov logic networks,” Mach.
Learn., vol. 62, no. 1-2, pp. 107–136, Feb. 2006. [Online]. Available:
http://dx.doi.org/10.1007/s10994-006-5833-1

[16] X. Dong, E. Gabrilovich, G. Heitz, W. Horn, N. Lao, K. Murphy,
T. Strohmann, S. Sun, and W. Zhang, “Knowledge vault: A web-scale
approach to probabilistic knowledge fusion,” in Proceedings of the
20th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, ser. KDD ’14. New York, NY, USA: ACM, 2014,
pp. 601–610. [Online]. Available: http://doi.acm.org/10.1145/2623330.
2623623

[17] N. Lao, T. Mitchell, and W. W. Cohen, “Random walk inference
and learning in a large scale knowledge base,” in Proceedings
of the Conference on Empirical Methods in Natural Language
Processing, ser. EMNLP ’11. Stroudsburg, PA, USA: Association for
Computational Linguistics, 2011, pp. 529–539. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2145432.2145494

[18] A. P. Singh and G. J. Gordon, “Relational learning via collective matrix
factorization,” in Proceedings of the 14th ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining, ser. KDD ’08.
New York, NY, USA: ACM, 2008, pp. 650–658. [Online]. Available:
http://doi.acm.org/10.1145/1401890.1401969

[19] M. Nickel, V. Tresp, and H. peter Kriegel, “A three-way model
for collective learning on multi-relational data,” in Proceedings of
the 28th International Conference on Machine Learning (ICML-11),
L. Getoor and T. Scheffer, Eds. New York, NY, USA: ACM, 2011,
pp. 809–816. [Online]. Available: http://www.icml-2011.org/papers/
438 icmlpaper.pdf

[20] M. Nickel, V. Tresp, and H.-P. Kriegel, “Factorizing yago: Scalable
machine learning for linked data,” in Proceedings of the 21st
International Conference on World Wide Web, ser. WWW ’12. New
York, NY, USA: ACM, 2012, pp. 271–280. [Online]. Available:
http://doi.acm.org/10.1145/2187836.2187874

[21] C. Kemp, J. B. Tenenbaum, T. L. Griffiths, T. Yamada, and N. Ueda,
“Learning systems of concepts with an infinite relational model,” in
Proceedings of the 21st National Conference on Artificial Intelligence
- Volume 1, ser. AAAI’06. AAAI Press, 2006, pp. 381–388. [Online].
Available: http://dl.acm.org/citation.cfm?id=1597538.1597600

[22] I. Sutskever, J. B. Tenenbaum, and R. R. Salakhutdinov,
“Modelling relational data using bayesian clustered tensor
factorization,” in Advances in Neural Information Processing
Systems 22, Y. Bengio, D. Schuurmans, J. D. Lafferty, C. K. I.
Williams, and A. Culotta, Eds. Curran Associates, Inc.,
2009, pp. 1821–1828. [Online]. Available: http://papers.nips.cc/paper/
3863-modelling-relational-data-using-bayesian-clustered-tensor-factorization.
pdf

[23] A. Paccanaro and G. E. Hinton, “Learning distributed representations
of concepts using linear relational embedding,” IEEE Trans. on Knowl.
and Data Eng., vol. 13, no. 2, pp. 232–244, Mar. 2001. [Online].
Available: http://dx.doi.org/10.1109/69.917563

[24] X. Glorot, A. Bordes, J. Weston, and Y. Bengio, “A semantic matching
energy function for learning with multi-relational data,” CoRR, vol.
abs/1301.3485, 2013. [Online]. Available: http://arxiv.org/abs/1301.
3485

[25] A. Bordes, N. Usunier, A. Garcia-Duran, J. Weston, and
O. Yakhnenko, “Translating embeddings for modeling multi-relational
data,” in Advances in Neural Information Processing Systems
26, C. J. C. Burges, L. Bottou, M. Welling, Z. Ghahramani,
and K. Q. Weinberger, Eds. Curran Associates, Inc., 2013,
pp. 2787–2795. [Online]. Available: http://papers.nips.cc/paper/
5071-translating-embeddings-for-modeling-multi-relational-data.pdf

[26] B. Perozzi, R. Al-Rfou, and S. Skiena, “Deepwalk: Online learning
of social representations,” CoRR, vol. abs/1403.6652, 2014. [Online].
Available: http://arxiv.org/abs/1403.6652

[27] R. Socher, D. Chen, C. D. Manning, and A. Ng, “Reasoning
with neural tensor networks for knowledge base completion,”
in Advances in Neural Information Processing Systems 26,
C. J. C. Burges, L. Bottou, M. Welling, Z. Ghahramani,
and K. Q. Weinberger, Eds. Curran Associates, Inc.,
2013, pp. 926–934. [Online]. Available: http://papers.nips.cc/paper/
5028-reasoning-with-neural-tensor-networks-for-knowledge-base-completion.
pdf

[28] B. Yang, W. Yih, X. He, J. Gao, and L. Deng, “Learning multi-relational
semantics using neural-embedding models,” CoRR, vol. abs/1411.4072,
2014. [Online]. Available: http://arxiv.org/abs/1411.4072

[29] Bishan Yang, W. Yih, X. He, J. Gao, and L. Deng, “Embedding
entities and relations for learning and inference in knowledge
bases,” CoRR, vol. abs/1412.6575, 2014. [Online]. Available: http:
//arxiv.org/abs/1412.6575

[30] J. Tang, M. Qu, M. Wang, M. Zhang, J. Yan, and Q. Mei, “Line:
Large-scale information network embedding,” in Proceedings of the
24th International Conference on World Wide Web, ser. WWW ’15.
New York, NY, USA: ACM, 2015, pp. 1067–1077. [Online]. Available:
http://doi.acm.org/10.1145/2736277.2741093

[31] A. Grover and J. Leskovec, “node2vec: Scalable feature learning
for networks,” 2016, cite arxiv:1607.00653Comment: In Proceedings
of the 22nd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, 2016. [Online]. Available: http:
//arxiv.org/abs/1607.00653

[32] C. Fellbaum, WordNet: An Electronic Lexical Database. Bradford
Books, 1998.

[33] T. M. Cover and P. E. Hart, “Nearest neighbor pattern classification,”
IEEE Trans. Inf. Theor., vol. 13, no. 1, pp. 21–27, Sep. 2006. [Online].
Available: http://dx.doi.org/10.1109/TIT.1967.1053964

[34] H. Fang, R. R. Sinha, W. Wu, A. Doan, and C. Zhai, “Entity Retrieval
over Structured Data.”

[35] M. Sayyadian, A. Shakery, A. Doan, and C. Zhai, “Toward entity
retrieval over structured and text data,” 2004.

[36] N. Craswell, G. Demartini, J. Gaugaz, and T. Iofciu, L3S at INEX
2008: Retrieving Entities Using Structured Information. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2009, pp. 253–263. [Online].
Available: http://dx.doi.org/10.1007/978-3-642-03761-0 26

[37] E. M. Voorhees, “The trec-8 question answering track report,” in In
Proceedings of TREC-8, 1999, pp. 77–82.

[38] K. Chang, W. Yih, B. Yang, and C. Meek, “Typed tensor decomposition
of knowledge bases for relation extraction,” in Proceedings of the 2014
Conference on Empirical Methods in Natural Language Processing,
EMNLP 2014, October 25-29, 2014, Doha, Qatar, A meeting of
SIGDAT, a Special Interest Group of the ACL, 2014, pp. 1568–1579.
[Online]. Available: http://aclweb.org/anthology/D/D14/D14-1165.pdf

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

