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Abstract—Signal acquisition from mechanical systems
working in faulty conditions is normally expensive. As a
consequence, supervised learning-based approaches are
hardly applicable. To address this problem, a one-shot
learning-based approach is proposed for multi-class clas-
sification of signals coming from a feature space created
only from healthy condition signals and one single sam-
ple for each faulty class. First, a transformation mapping
between the input signal space and a feature space is
learned through a bidirectional generative adversarial net-
work. Next, the identification of different health condition
regions in this feature space is carried out by means of a
single input signal per fault. The method is applied to three
fault diagnosis problems of a 3D printer and outperforms
other methods in the literature.

Index Terms—Deep learning, Fault diagnosis, One-shot
learning, 3D printer.

[. INTRODUCTION

HE use of additive manufacturing technologies, i.e., the

process of making 3D objects by adding layer upon layer
of raw material, has increased significantly i nr ecent years
[1]. This popularity is mainly due to the time saved in the
prototyping processes, as well as the technology’s flexibility
to be applied in almost all manufacturing areas [2], [3].

The quality of manufactured products is highly dependent
on the machine’s (viz. 3D printer) health condition [4]], and
therefore early fault diagnosis of the machine is a fundamental
task.
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Currently, machine learning-based methods are becoming
the preferred design methods for machinery fault diagnosis,
including fault diagnosis in 3D printers [5]. The general design
methodology includes different types of signal acquisition
[6]—[9ll, signal processing-based feature extraction [10]—[12],
feature selection, and fault diagnoser synthesis (see [[13], [[14]]
for a survey on these topics with an emphasis on fuzzy for-
malisms). Feature extraction and selection are very challenging
phases because an inappropriate feature space for classification
may lead to poor classification performance. [15] uses the
wavelet packet transform for feature extraction together with
random forest classifiers for fault diagnosis of spur gears.
In an extension of this work, [16] propose feature selection
by introducing genetic algorithms into a wrapper strategy.
In [17], a filtering-based approach for feature extraction is
applied to additive manufacturing fault diagnosis. Moreover,
[18] and [19] develop unsupervised approaches for feature
selection based on Rough Set Theory with application in the
fault diagnosis of rotating machinery.

The use of deep learning techniques in fault diagnosis
in [20] permits feature extraction, selection, and fault clas-
sification in a single phase. Similarly, [21] uses a Sparse
AutoEncoder (SAE) network for 3D printer fault diagnosis,
[22] presents a Deep Convolutional AutoEncoder (DCAE) for
automatic feature extraction in helical gears, [23] proposes
a Convolutional Deep Belief Network (CDBN) for electric
locomotive bearing fault diagnosis, and [24] introduces a
transfer learning SVM-based approach. While these works
exhibit competitive performances in their application, all of
them explicitly or implicitly assume that enough data are
available for every machine’s health condition. However, from
the signal acquisition perspective, such a situation — if even
possible — is extremely expensive. Some works address this
issue through unsupervised approaches. For example, [25]]
introduces the SAE-based sensor fusion for the 3D printer
condition assessment, [26] combines an echo state network
with a Variational AutoEncoder (ESN-VAE) for helical gear-
box fault detection, and [27] uses a generative adversarial
network (GAN) to capture the probability distribution of the
healthy (no fault) condition. Meanwhile, [28] introduce the
categorical GAN for condition clustering. None of these works
require data availability in the sense mentioned above, but they
only distinguish between the healthy and faulty conditions.

Another way to deal with the data availability issue is
through the one-shot learning approach [29]. In this case, a
model is trained to compare pairs of inputs instead of classify-



ing them. After training the model, only one example of a new
class is required to classify a sample according to its similarity.
The applicability of one-shot learning has been tested, for
example, in human activity recognition [30], multitask traffic
classification [|31]], a nd r obust m aterial c lassification [3 2]. In
the field of fault diagnosis, it has been applied to fault classifi-
cation of rolling bearings with limited data [33]]. Although data
requirements are reduced, its applicability is limited because it
needs pairs of examples in different conditions in the training
stage. To the best of our knowledge, no work has been reported
addressing realistic data acquisition restrictions (rich in data
from healthy conditions but little or no data from faulty
conditions) to properly conduct feature extraction, selection,
and fault diagnosis under semi-supervised or unsupervised
frameworks.

In this work, we propose a one-shot learning method for
fault diagnosis in 3D printers. The contributions of this work
include the following: (i) an unsupervised learning procedure
based on bidirectional generative adversarial networks (Bi-
GANs) to map the signal input space into a feature space
suitable for classification, by using only signals acquired in the
healthy condition; (ii) the definition of representative vectors
(RV's) representing health condition regions adequate for fault
diagnosis; (iii) a method to classify a signal into one of the
health conditions in the feature space; and (iv) the application
of the proposed method to three exemplar cases of fault
diagnosis in 3D printers, including a comparison with existing
feature extraction and feature classification methods.

The remainder of the paper is organized as follows. Section
describes the complete methodology proposed. Section [l
presents the case studies on 3D printer fault diagnosis. Finally,
Section [IV]is dedicated to presenting some conclusions of the
work.

[I. METHODOLOGY

The core of the proposed method is to learn a mapping
from the signal space to an adequate feature space in an
unsupervised way. This mapping allows us to obtain vectors
that represent health condition regions in the feature space and
that are suitable for classification under strict data availability
requirements. Fault diagnosis is accomplished from these
vectors as follows.

Let v be a vector in this feature space representing a certain
health condition. Inputs from the same health condition will
be represented by vectors close to v. Under ideal mapping,
different health conditions will occupy different and separable
regions in the feature space, and consequently, unseen signals
can be classified into the same class as the nearest RV.

Since the goal is to provide an adequate feature space
and mapping (and not the class), the only data required
during training is a set of input signals from the same health
condition. In the actual context of fault diagnosis, signals from
the healthy operating condition are feasible and cost-effective
as they are usually very easy to obtain.

Consequently, to accomplish the fault diagnosis task, the
following 4-step method is proposed (Fig. [1):

1) Acquisition of input signals: in this step, signal ac-

quisition from the healthy condition, and one signal
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Fig. 1. Proposed methodology for one-shot learning fault diagnosis.

signals

from each faulty condition, are required as information
sources for the subsequent steps;

2) Input-to-feature space mapping: by using unsupervised
learning of a feature model based on BiGAN, a mapping
from the original signal space to the feature space is es-
tablished using only signals from the healthy condition;

3) One-shot learning: the mappings of each signal from
each faulty condition are calculated and stored for later
diagnosis of forthcoming unseen signals (representative
vectors);

4) Fault diagnosis: new unseen signals are mapped into the
feature space and classified according to their proximity
to the existing representative vectors.

Details of these steps are presented below. In what follows,
let us suppose that we are working with a machine that can
operate in K possible conditions, C' = {c, ..., cx }, where ¢;
will represent the only healthy condition. Let s(t) € RT*! be
an input signal of large enough length, T, to capture signal
dynamics. For a signal acquisition system operating for P
seconds at a sampling frequency f, (samples/seconds), the
signal length will be T'= P - f,.

A. Acquisition of input signals

In this step, a first set Djyqiyp Of signals in condition c; is
built. These signals are abundant and can be easily obtained.
Additionally, a second set Dgpor = {s.(t) | ¢ # c1}, which
contains one signal per faulty condition, is also acquired.
Note that this last set is not required for training, and it can
be obtained (as will most often be the case) incrementally
whenever the machine manifests a particular fault throughout
its useful life. This is in clear contrast with the classical fault
classification approach, where a dataset with enough signals
from every machine condition is required for training.

From a practical point of view, a new signal should be added
to Dspot When an expert inspects the machine and finds a new
previously unseen faulty condition. Although it is beyond the
scope of this work to propose an approach to automatically
determine new conditions, the ability to detect unseen fault
conditions of the resulting model is discussed in Section

B. Input-to-feature space mapping

The space of signals, S, that can be obtained from struc-
turally non-trivial machinery operating conditions is highly



complex. Dealing directly with this space would result in a
fruitless diagnosis. Therefore, it is often necessary to embed
it into a more informative feature space (usually, a vector space
of dimension d), m : S — F.

For classification tasks such as fault diagnosis, we expect m
to group vectors from the same class (machine condition), and
separate different classes. Standard supervised deep learning
techniques propose to find m by minimizing a 1oss function
through a large number of training instances from all available
classes.

However, to find m in an unsupervised way, we propose an
idea based on the inverse transformation sampling technique

[34]: if a known distribution is assigned to F, then it is
possible to find m ~! and improve m and m ~! simultaneously.

When approximating m and m ™! by neural networks, the
input for m~! comes from uniformly sampling a random

vector of F, while its output is in S. Since these two networks
are closely related, we can use the adversarial paradigm to
consider an Encoder (Enc) for m, a Generator (Gen) for
m~!, and a Discriminator (Dis) network for optimizing all
together. These three models together form a BiGAN model
[35], whose optimization can be represented by the following

mitlimax optimization problem over a loss function L:

argmin argmax L(0pis, OGen, Ognc) (1)
0Gen,0Enc  OpDis
where 0p;s, OGen and 0 g, represent the parameters (weights)
associated with the Dis, Gen, and Enc networks, respectively.
The training procedure can be solved through a gradient-based
optimization algorithm such as Adam [36].

To model Enc and Dis, we choose 1D convolutional neural
networks (IDCNNs), and a 1D transpose convolutional neu-
ral network (1IDTCNN, also called a deconvolutional neural
network) for Gen, because these network architectures can
directly deal with raw input signals (IDCNN) or generated
signals (IDTCNN) that are characterized by the presence of
cyclo-stationary patterns. Besides, the risk of over-fitting in
convolutional-based models is lower than in a fully connected
neural network because of the lower number of parameters in
the former.

Since Gen and Enc will approximate inverse functions,
we will take them with exactly symmetric architectures. Their
number of layers and output channels in each layer are
selected to minimize the amount of information loss during the
transformations with an input length factor reduction of 2 (see
Fig. @) Furthermore, for the three neural networks, the batch
normalization process described in [37] is applied to decrease
the number of iterations for the convergence and directly deal
with unnormalized inputs. However, this normalization is not
applied to the last layer to avoid the variance increasing at the
output. Additionally, the dimension matching in each layer is
controlled by selecting the correct padding factor. For more
information, refer to [38|.

The specific network architectures used for the 3D printer
fault diagnosis scenarios will be described in Section

C. One-shot learning

From the previous step, we obtain the E'nc network opti-
mized to transform input signals in the healthy condition to a
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Fig. 2. Architecture of BiGAN. Each layer is described by its output
length and channels; e.g., T' x 2 means 2 output channels of length 7.

neighbor region ([—1, 1]¢) of the origin of 7. Moreover, during
Enc training, the orthogonality of the space is achieved with
the optimization.

Additionally, we hypothesize that the restriction in the range
of the mapping ([—1,1]9) trains Enc to group signals with
similar patterns. As mentioned before, not only must healthy
condition signals be grouped in one region in F, but faulty
condition signals should also be located in disjoint regions in
F grouped by their class condition. This hypothesis will be
experimentally tested in Section

Based on this assumption, a single representative vector,
RV, of each class condition is obtained by applying Enc to
each signal si(t) of Dgpot, i-€.,

RVy, = Enc(sg(t)), Vsi(t) € Dspot 2

The obtained RV's are the unique representatives of each
condition in the feature space. Together, these vectors form
the knowledge basis to perform the classification of previously
unseen signals projected on F. Moreover, since the computa-
tion of these vectors is independent of the mapping definition,
retraining is not required, and thus the available knowledge can
be incremented with signal projections under new conditions
without affecting previously stored knowledge.

D. Fault diagnosis

In this last step, Enc is used to project a previously unseen
signal s: f = Enc(s), and then its class is obtained by
comparing f with every RV obtained with Eq.

The simplest way to perform this comparison is by means
of any distance/norm in F. Then, the estimated ¢ condition
of the new signal is assigned as the condition of the nearest
representative:

¢ = argmin ||RV, — f|| 3)
ceC
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Fig. 3. 3D printer experimental setup.

This is a special case of the popular k-NN algorithm [39],
with £ = 1 and only one instance per class (RV,).

I1l. APPLICATION AND RESULTS

In this section we present the test bed created for the
acquisition of magnetic field signals in 3D printers for two
failure modes, joint bearing and belt, with different locations
for each of them. Then, the method presented in the previous
section is applied to the 3D printer fault diagnosis, and
compared with other unsupervised one-shot and supervised
learning methods.

A. Delta 3D printer test bed

The experimental platform in Fig. 3] was used to collect
data that served for the evaluation of the models. The 3D
printer SLD-BL600-6 (SHILEIDI brand) consists mainly of
a belt-driven mechanism of 3 degrees of freedom in delta
type kinematic configuration, which is controlled by 3 bipolar
stepper motors. The terminal points of each arm are coupled
to the mobile elements employing joint bearings in order to
have free rotational movement.

The magnetic field measurements were acquired with an
AKS8963 electronic compass integrated with a WIT MEMS
BWT901 sensor. The resolution of this device was set to
14 bits, obtaining a sensitivity of 0.6 7" in a total measure-
ment range of £4900uT. A frequency f; = 100 samples/s
was configured in this sensor, and the measured signals were
sent to and stored in an Inspiron N4110 Laptop.

The eight evaluated conditions of the 3D printer are pre-
sented in Table m one healthy condition (c;), 3 fault mode
locations by belt (co, c3, c4), and 4 fault modes by joint bearing
(cs, ..., cg). The belt faults were simulated by decreasing the
effective tension of each synchronous belt by 1.5mm, and
failures by joint bearing were created by unscrewing the
corresponding clamping screw by 2 turns (0.7 mm).

For each of these conditions, 20 circular patterns of 75 mm
radius each with a total duration of 324 s were made by the
head of the printer in the xy plane, and the magnetic field
signals were stored during this time. This process was repeated
3 times, obtaining 3 signals of 32400 samples length each.
The first two signals were used to create the datasets Dpcqirn
and Dgpo: used in our approach, and one more dataset Dy,.qin
used for the comparison with supervised models. The third
signal, in all cases, was used for building the Dy.,; dataset

Fault code Fault mode Location

c1 = H - -

co = SBI1 belt axis 1

c3 = SB2 belt axis 2

cqy = SB3 belt axis 3

cs = JB1 joint bearing arm 1, base end
ce = JB2 joint bearing arm 2, base end
cr = JB3 joint bearing arm 3, base end
cg = JB4 joint bearing  arm 1, carriage end

TABLE T
SIMULATED FAULTY CONDITIONS.

(a) c1 (b) c2

() c3 (d) ca

Fig. 4. Magnetic signals of healthy condition and fault in belts.

for evaluating the models’ performance. In order to facilitate
the evaluation process, we will take care that Dy is balanced,
i.e., with an equal number of samples for every identified
machine condition.

By sliding an extraction window over the original signal
every 10 steps, 3078 sub-signals of length T' = 1620 samples
(32400/20), equivalent to the period required for one circle,
were extracted from each acquired signal. This resulted in sizes
of 49248 (6156 per condition), 6156 (only for c1), 24624 (3078
per condition), and 8 (1 per condition) for Diyqin, Dhealths
Diyest, and Do, respectively. Figures [ and [5] show a chunk
of these signals for the belt fault mode and joint bearing fault
mode, respectively.

Table [l shows details about the architectures of the neural
networks for this study (for signals of length 1620, the optimal
number of layers is 10). The Adam optimization algorithm
[[36]] was set to values for learning rate, batch size, and number
of epochs of 0.0002, 64 and 1000, respectively, for the three
models.

B. Comparison with traditional methods

As previously mentioned, to our knowledge no other similar
approaches in the field of fault diagnosis have been published
for the solution of the problem addressed here. Therefore, it
is not possible to provide a completely fair comparison with
previous methods under the same conditions. However, the
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Fig. 5. Magnetic signals under faults in joint bearings.

Values

layer 1 2 3 4 5 6 7 8 9 10
kernel length 4 4 3 4 3 4 3 3 2 3
output channels 2 4 8 16 32 64 128 256 512 100

Model Parameter

Ene uput length 810 405 202 101 50 25 12 6 3 1
padding no no yes no yes no yes no no yes
activation func. LRL LRL LRL LRL LRL LRL LRL LRL LRL LIN
layer 1 2 3 4 5 6 7 8 9 10
kernel length 3 2 3 3 4 3 4 3 4 4

Gen output channels 512 256 128 64 32 16 8 4 2 1
output length 3 6 12 25 50 101 202 405 810 1620
padding yes no no yes no yes no yes Nno  no
activation func. LRL LRL LRL LRL LRL LRL LRL LRL LRL LIN
layer 1 2 3 4 5 6 7 8 9 10
kernel length 4 4 3 4 3 4 3 3 2 3

Dis output channels 2 4 8 16 32 64 128 256 512 1

" output shape 810 405 202 101 50 25 12 5 3 1
padding no no yes no yes no yes Nno no yes
activation func. LRL LRL LRL LRL LRL LRL LRL LRL LRL LIN

TABLETI

ARCHITECTURE OF Enc, Gen AND Dis NETWORKS
(LRL = LEAKY-RELU, LIN = LINEAR)

core of the proposed method focuses on creating a useful
embedding from the raw signal space into a feature space.
Since this is also the aim of traditional approaches based on
feature engineering, some kind of comparison is possible. The
comparison is performed with the following methods:

1) One-Shot learning with expert Knowledge-based fea-
tures (OS+EK): in this method, the feature space is ob-
tained by previously reported expert knowledge. There-
fore, the Dy.qi1p, dataset is not applicable, but steps 1,
3, and 4 are maintained with no modifications.

2) Random forest with expert Knowledge-based features
(RF+EK): This approach follows the methodology re-
ported in [15] for fault diagnosis model building. It
uses features extracted with expert knowledge from
Dyyqin to train a random forest classifier. Hyperparam-
eter optimization of this model is carried out using
the grid search technique with the out-of-bag error as
the performance metric. As we mentioned, real-world
applications will not allow this data acquisition, but it is

f-score precision recall
Scenario  Cond. Prop. OS+EK RF+EK Prop. OS+EK RF+EK Prop. OS+EK RF+EK
H 100.0  87.79 100.0 100.0  92.67 100.0 100.0 8340  100.0
Belt SB1 100.0 8895 100.0 100.0 8491 100.0 100.0 93.41  100.0
SB2  100.0  100.0  66.67 100.0  100.0 50.0 100.0 100.0  100.0
SB3  100.0 100.0 0.0 100.0 100.0 0.0 100.0 100.0 0.0
H 99.74 7886  99.97 99.48 87.27 100.0 100.0  71.93  99.94
Joint JBI  100.0 8325 100.0 100.0 87.62 100.0 100.0  79.31 100.00
bearing JB2 9856  99.18 9834 97.16 9997 96.73 100.0 9841  100.0
IB3 100.0 9995  98.25 100.0 9990 99.93 100.0 100.0  96.62
JB4 9825 7040 100.0 100.0 6259  100.0 96.56  80.44  100.0
H 99.74  77.37 100.0 9948  83.71 100.0 100.0  71.93  100.0
JB1 100.0  59.96 100.0 100.0  85.41 100.0 100.0  46.20  100.0
JB2 9856 86.99 98.07 97.16 78.02 96.22 100.0 9828  100.0
Combined JB3 9997 9533 73.67 99.94 9841 59.75 100.0 9243  96.07
JB4 9820 69.71 100.0 99.90  68.54 100.0 96.56  70.92 100.0
SB1 9995 63.88 100.0 100.0 52.16 100.0 99.90 8239  100.0
SB2  100.0 83.80 85.01 100.0 99.55 7393 1000 7235 100.0
SB3 9997  95.68 0.0 100.0 9298 0.0 99.94 98.54 0.0
TABLE TN

DIAGNOSIS RESULTS OF COMPARED METHODS
(PROP. IS THE METHOD PROPOSED HERE)

presented for comparative reasons.

It must be noted that other comparisons with supervised fault
diagnosis approaches do not contribute to the evaluation of the
proposal, and, consequently, they are beyond the scope of this
work.

Two important points need to be made: (i) the input of our
method is the raw magnetic field signal without preprocessing
or feature extraction, and (ii) OS+EK and RF+EK have the
same expert knowledge-based features (EK features). These
EK features are the scalars: crest factor, shape factor, absolute
mean amplitude, square root amplitude, kurtosis, variance
value, clearance factor, impulse indicator, and skewness factor.
Specifically, the feature vector for each signal is created by the
following (details can be found in [40]):

1) Calculate the 9 EK features of the signal in the time
domain.

2) Calculate the 9 EK features of the signal in the frequency
domain.

3) Decompose the signal in 32 time—frequency coefficients
through wavelet packet transform (5 levels) and calculate
the 9 EK features of each coefficient.

4) Group previous features into a 306-length vector (9 time
+ 9 frequency + 9 x 32 time-frequency).

Thus, for OS+EK, the RV's are the feature vectors computed
with signals from Dy, ; meanwhile, for RF+EK, the classifier
is created through the feature vectors computed with signals
from Dirgin.

For each scenario (failure in belts, failures in joint bearings,
and the combination of these two scenarios), 20 trials of
diagnosing with the D;.; dataset were performed and com-
pared, all of them containing the healthy condition. Table
summarizes the diagnosis results for each scenario and method
averaged over these trials, and Table m shows confusion
matrices for each fault condition and method in the combined
scenario (the most challenging).

F-score, precision, and recall were 100% in the diagnosis of
belt faults when applying our proposal. However, in the case of
joint bearing failures, some examples from JB4 were classified
as JB2 and some even as H. The JB4 condition has the worst
recall (96.56%) and JB2 the worst precision (97.16%) for the
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H 37 0 0 0 0 0 0 0
JBI 0 308 0 0 0 0 0 0
JB2 0 0 30 0 0 0 0 0
prop. B3 0 0 0 308 0 0 0 0
JB4& 16 0 9 0 292 0 0 0
SBI 0 0 O 0 3 3075 0 0
SB2 0 0 0 0 0 0 3078 0
SB3 0 0 0 2 0 0 0 307
H 214 1 1 0 55 27 0 0
JBI 0 142 0 0 64 152 0 0
JB2 46 0 3025 1 0 0 6 0
B3 0 0 0 285 0 0 4 229
OS+EK 14 977 171 0 0 2183 47 0 0
SBI 108 71 0 0 363 253 0 0
SB2 0 0 81 0 0 0 227 0
SB3 0 0 0 45 0 0 0 3033
H 37 0 0 0 0 0 0 0
JBI 0 309 0 0 0 0 0 0
JB2 0 0 309 0 0 0 0 0
JB3 0 0 121 2958 0 0 0 0
RE+EK 754 0 0 0 0 309 0 0 0
SBI 0 0 O 0 0 3079 0 0
SB2 0 0 0 0 0 0 3079 0
SB3 0 0 0 1993 0 0 1086 O
TABLE TV

CONFUSION MATRICES IN THE COMBINED CASE

combined case. The 90 examples of JB4 that are misclassified
as JB2 are the main reason for a precision loss in JB2.

In belt faults, the OS+EK method has decrements in pre-
cision and recall in the healthy condition. The former is ex-
plained by the decrease in recall in SB1, showing that instances
from SB1 were misclassified as healthy. The decrease in recall
shows that instances from H were misclassified as SB1. In joint
bearings, this method presents the worst performance with a
minimum f-score of 70.4% for JB4. In the combined case,
the worst recall (46.20%) can be seen in JB1 and the worst
precision (52.16%) in SB1. This can be explained by the 1592
examples of JB1 that are misclassified as SBI.

The results for RF+EK show that the model misclassified all
instances from SB3 as SB2 in the belt faults case. In the joint
bearings case, examples from JB3 are confused with those
from JB2, and some examples from H are confused with those
from JB3. In the combined case, the worst precision and recall
are obtained in SB3, as in the first case. The loss of precision
and recall in SB3 is because all examples from this condition
are misclassified in SB2 and JB3. This differs from the first
case where the loss of these metrics was due only to instances
classified in SB2. These findings suggest that JB3 must occupy
a zone close to SB2 in the expert-Knowledge feature space.

C. Comparison with other deep learning methods

It is necessary to compare our proposal with other state-of-
the-art methods focused on the unsupervised feature extraction
task. DCAE, CDBN, and ESN-VAE were selected for this pur-
pose, all using raw magnetic field signals as input and trained
with the Dj,cq¢n, dataset. More details about DCAE, CDBN
and ESN-VAE architecture and optimization can be seen in
[22], [23]], and [26]], respectively. To allow a comparison, after
feature learning with these methods, step 3 of our proposal
will produce RV's, and step 4 will perform the diagnosis over
Dtest-

Figure [6(f)] shows the results of these DL methods in the
three scenarios and compares them to the results obtained
by the proposed method. Although all of the DL methods
outperform OS+EK, and ESN-VAE surpasses RF+EK in the
combined case, their performances are far behind the perfor-
mance of our method. Notice also that the other DL methods
have reported state-of-the-art results extracting features using
examples from all of the machinery conditions, but they
have not been tested using examples in the healthy condition
only. Our proposal shows a performance at least as good
as RF+EK (supervised approach with data from all of the
conditions) for the fault diagnosis in joint bearings (99.31%),
and considerably higher performance (100% and 99.95%) in
the other two cases. Furthermore, our proposal is not affected
by the increase in the number of conditions as the accuracy
for belt and joint bearing cases with 4 classes are 100% and
99.31%, respectively, and is 99.55% for the combined case
with 8 classes. In contrast, OS+EK shows a lower performance
when faced with a larger number of conditions.

All of these considerations show that instances from new
conditions occupy sufficiently separated zones in the feature
space. Figures compare the feature spaces through a
2D projection of the instances in Dy, using the t-SNE algo-
rithm [41]], which projects the points from a high-dimensional
space (306 dimensions for EK features, 100 dimensions for
the others) to a 2D space. The high complexity that the
classifier has to deal with in order to separate the conditions
in the feature spaces of the different methods is remarkable.
Specifically, examples from the SB3 condition appear widely
scattered in all other models, making it difficult to classify
them correctly. However, this is not the case in our proposal,
where a correct grouping and separation of the instances of all
the 3D printer conditions can be observed. Undoubtedly, these
observations experimentally prove the hypothesis proposed in

Section [EC

D. Sensibility and detectability tests

The sensibility of the proposed method on the Dpeqen S€t
size in the combined case has also been evaluated. Figure
shows the average accuracy performance on D;.¢; and the 95%
confidence interval using the models obtained by using 10%
(616) to 100% (6156) of the samples from Djcqpepn (in steps
of 10%). Twenty trials were performed by randomly selecting
the elements from Dy, ., and Dy, in order to reduce the
bias caused by different network initialization and elements in
Dgpor. As expected, performance increases with training set
size, and it only requires 60% (3694 examples) of the training
data to overcome the other traditional and DL approaches with
an accuracy of 92.07% =+ 1.24.

With our method, signals from a totally new faulty condition
will be classified as the condition of the closest RV. However,
it would be more interesting to recognize if they do not
belong to any of the currently known conditions. To include an
approximation of this feature in our proposal, let d;,,., and dg,,,
be the minimum and average distances, respectively, from a
current condition set of signals to the centroid of some known
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Fig. 6. (a-e) 2D projections using t-SNE, and (f) overall comparison.
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Fig. 7. Diagnosis performance under different training set sizes.

condition cluster, c. We also let d$,, be the maximum distance
between the samples in c to its centroid. Then, the ratios

c c
c _ davg c o dnrt (4)
ravg — c 9 Tmﬂt — Jc )
far far

report the average and worst undetectabilities, respectively. We
can use the protocol of classifying the current condition as ¢
when r{ , < 1.

Table [V] summarizes the detection ability of this new pro-

tocol in each available fault condition. Although most of the

Known condition clusters

Unseen H JB1 JB2 JB3 B4 SB1 SB2 SB3
faults

JB1 13.16 1419 - - 1002 1087 2.13 231 3.00 337 155 192 813 886 225 246
JB2 244 297 383 396 - - 1.01 1.14 156 1.67 3.01 3.16 1.06 1.51 1.86 2.00
JB3 6.88 794 3.15 326 350 441 - - 195 221 266 274 1.76 2.53 0.58 0.73
JB4 4.68 562 251 281 343 408 120 135 - - 143 177 3.08 358 1.84 2.04
SB1 879 9.64 125 155 641 7.4 146 161 137 L71 - - 515 577 179 198
SB2 435 475 355 366 141 177 066 076 160 167 278 289 - - 145 156
SB3 9.72 11.11 294 316 606 7.16 2.15 262 273 3.13 285 3.12 411 498 - -
TABLE V

UNDETECTABILITY RATIOS UNDER UNSEEN FAULT CONDITIONS.

faults can be detected as different conditions, two mistakes
are observed: JB3 detected as SB3, and SB2 detected as
JB3. However, it is important to stress that these ratios show
extreme conditions, and in practical cases it will be fulfilled
only when (i) the RV of the known condition is the farthest
point of its cluster, and (ii) the new sample is the closest point
to the centroid of the known condition cluster. Meeting both
conditions is not easy, and therefore the probability of mistake
is reduced in real-world cases.

IV. CONCLUSIONS

In this work, a new one-shot learning-based method has
been proposed for fault diagnosis in industrial devices when a
large amount of signals from some healthy conditions and only
one signal from some of the fault conditions are available. In
our methodology, a first step of signal acquisition is required
considering the real conditions of data availability, where
signals in the healthy condition are available in abundance
in the initial current lifetime of the machine. Next, a mapping
function is obtained that transforms signals under an unknown
probability distribution into vectors of a feature space under
a known uniform distribution. This mapping is learned from
signals in the healthy condition only by using a BiGAN-based
approach. Representatives of the classification regions of each
health condition are then obtained by mapping fault condition
signals (usually only one, thus achieving the one-shot learning)
into the feature space. Finally, condition classification of a new
signal is determined by measuring the distances between the
mapping of the signal to the precomputed RV's.

The proposed approach has been applied in 3 cases of
fault diagnosis in 3D printers: 3 failures in belts, 4 failures
in joint bearings, and the combination of these failures (7
failures plus the healthy condition). The resulting model was
able to correctly diagnose these 3D printer conditions from
signals acquired with a magnetic field sensor. For comparative
purposes, other methods from the literature have also been
applied to the same case studies, and the results allow us to
make the following statements:

1) Magnetic field signals contain information useful for the
fault diagnosis in 3D printers. These signals could be an
alternative to the use of vibration and acoustic emission
signals, resulting in a considerable reduction in the cost
of diagnostic systems.

2) Signals in the healthy condition provides enough infor-
mation to create a mapping to a suitable feature space
under an unsupervised approach. Only one signal in
every fault condition is required to separate classification
regions in this space.
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Our method needs far fewer examples for the construc-
tion of this mapping (only 60% of those needed for other
methods using DL techniques).

We have also provided a mechanism (only a first and
simple protocol has been presented here) to recognize
when a new sample should not be classified as any of
the current known conditions (healthy or not).
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