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a b s t r a c t 

Modelling complex processes from raw time series increases the necessity to build Deep

Learning (DL) architectures that can manage this type of data structure. However, as DL

models become deeper, larger and more diverse datasets are necessary and knowledge

extraction will become more difficult. In an attempt to sidestep these issues, in this pa- 

per a methodology based on two main steps is presented, the first being to increase size

and diversity of time-series datasets for training, and the second to retrieve knowledge

from the obtained model. This methodology is compared with other approaches reported

in the literature and is tested under two configuration setups of Condition-Based Mainte- 

nance problems: fault diagnosis of bearing, and fault severity assessment of a helical gear- 

box, obtaining not only a performance improvement in comparison, but also in retrieving

knowledge about how the signals are being classified.

 

 

 

 

 

 

 

 

 

1. Introduction

The complexity of time series is directly related to the process that produces them, and is usually associated with their

variability and the difficulty of extracting patterns that can be used to make inferences about the process. 

Dynamical systems, such as engines, gearboxes, and mechanical transmission lines, that are found as key points in indus-

trial production chains, are excellent representative of processes generating complex time series. Identification of the healthy

state of their components is a central task from social [10] and economic perspectives. The behavior of signals obtained by

measuring some variables, e.g., vibration, acoustic emission, oil state, and temperature, change under different states of the

process [29] . However, the number and variety of signals that can be obtained is very limited in practical situations. 

Changes in the system components produce a response in the measured signal. For example, vibration and acoustic

emission signals have immediate responses to internal events in mechanical systems and have been traditionally used to

component diagnosis [21] . These events are cyclic over time with a period that depends on the rotational speed of the

component [18] . 

Usually, techniques from signal processing are used to recognize the presence of repetitive patterns. For example, in

[19] the extraction of impulsive transients from noisy signals are proposed using a multiscale clustered gray infogram, while
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spectral kurtosis is proposed as a representation of impulsiveness in signals in [1] . Both approaches are based on the study

of cyclostationarity of signals as proposed in [4] (or [8] , for a more exhaustive review). However, all these works are focused

on obtaining the most informative spectrum from certain patterns of frequency bands to be analyzed in order to identify

interesting behaviors. They provide a physical interpretation of the phenomenon, but need a high a priori knowledge of the

process configuration. 

In recent years the tendency has been changed to address complex system modelling through data-driven approaches

emphasizing the power of Machine Learning (ML) techniques. For reference, in [7] and [9] a classical ML approach based on

feature extraction, feature selection, and parameter optimization with Random Forest classifiers were proposed. Other works

try to avoid feature extraction and feature selection stages by the use of Deep Learning (DL) models, as in [14] , in which

a modified Convolutional Neural Network (CNN) is used for real-time fault detection in motors. The use of DL techniques

allows addressing more complex problems, but the obtained models are closer to black boxes in which no information about

the system can be extracted. Furthermore, datasets to train DL models should be sufficiently large to provide the desired

generalization capacity in the specific application, and this size is commonly limited in real world applications, where few

resources of hardware and accessibility are available. 

Additionally, models based on the theory of evolving connectionist systems, which can deal naturally with time series,

have been developed as a proposal closer to biological reasoning systems [15] (more detailed surveys can be found in

[16] and [25] ). For example, in [27] knowledge is extracted from data streams as fuzzy logic sentences by using spiking

networks. These approaches present significant advances in terms of knowledge representation and interpretability; however,

unlike the aim of this work, they do not seek the global representation of the knowledge captured by the model.

As will be seen, and unlike evolutionary connectionist approaches that learn from temporal changes, the extraction of

knowledge from the proposed method is represented in a spectrum of frequencies with higher powers in sectors in which

the network will look for the presence of frequency patterns. Therefore, this proposal is aimed at dynamic cyclo-stationary

systems. In this context, an informative spectrum refers to the frequency response of the network represented as a filter

pointing out the bands that will be attenuated and those that will be amplified at any input. It is informative because it

provides additional information to be interpreted by experts. For example, in a rotating mechanical system with unknown

constructive characteristics, this spectrum would provide information on the internal rotation frequencies of the components

that are being diagnosed along with the bands where their faults are evident. 

Motivated by the drawbacks of most of the approaches regarding the interpretability/explainability of the proposed mod-

els, in this work the extraction of an informative spectrum from a time-series signal by using a one-dimensional (1D) deep

CNN (DCNN) is proposed. In this context, the main contributions of this paper are (i) a technique for dynamic batch gen-

eration that improves the generalization capacity of the DL model with long time-series as input; (ii) an algorithm to build

an informative spectrum from the DL model, independently of specific time-series input; and (iii) a methodology to create

diagnosis applications for dynamical systems able to provide additional information to experts. 

The rest of the paper is organized as follows. In Section 2 , the DL model is formalized and the proposed online dynamical

batch-generation technique and informative spectrum extraction algorithm are presented, followed by presentation of a 

general methodology with which to build a mode identification system. To cross-check this methodology for fault diagnosis

problems, two case studies and a comparison with other techniques are shown in Section 3 . Finally, Section 4 presents

several conclusions and directions for future work. 

2. Methodology

Since the origination of CNNs [11] , they have been successfully applied in image recognition tasks under a variety of

conditions [17] . 

In the original CNN architecture the input is a 2D data structure to be passed through a layer of 2D convolutional kernels

trained to extract patterns from it. This process can be repeated using a chain of convolutional layers to build DCNN models,

providing a hierarchical system for pattern extraction. 

To apply this model to time series, a dimensional transformation to a suitable 2D data structure must be performed.

For example, in [6] a transformation from the time domain to time-frequency domain was proposed using the frequency

ordered coefficients of the last level in the decomposition tree of a Wavelet Packet Transform (WPT), and in [23,30] the

transformation was performed through a Short-Time Fourier Transform (STFT), in which both the time and frequency res-

olution of the resulting spectrogram are constants. Regardless of the transformation method, these approaches should be

carefully used because they involve implicit loss of information in time or frequency due to the Uncertainty Principle [12] . 

In addition, the high complexity of inner structure of signals shows that lacking a correct way to measure similarity of

signals from different operation modes may lead to identify two signals being captured from the same mode as distant as

two signals captured from different modes. For example, Fig. 1 shows six acquired vibratory signals from five different faulty

modes ( Fig. 1 (b) and (e) are under the same faulty mode) of a piece of rotating machinery, and Table 1 shows the distance

matrix between pairs of signals using the Dynamic Time Warping (DTW) algorithm [24] . As can be seen, the most similar

pairs correspond to signals from (Fault 3, Fault 5), (Fault 5, Fault 6), and (Fault 1, Fault 3), not necessarily from the same

faulty mode. 



Fig. 1. Samples of acquired vibration signals of a piece of rotating machinery.

Table 1

Matrix distances (using DTW algorithm) between signals from

Fig. 1 .

Signals (a) (b) (c) (d) (e)

(b) 17.355

(c) 10.868 19.086

(d) 17.929 19.845 20.715

(e) 11.459 18.588 9.484 22.493

(f) 15.885 25.305 12.684 29.59 10.714

 

 

 

 

 

 

 

 

 

2.1. 1D Deep convolutional neural networks 

Based on the same principles of the original DCNN, a 1D DCNN, specifically designed to handle time series, is presented

here. Several works have used this architecture previously but, to the best of our knowledge, none provided a formalization

as follows (see Fig. 2 ). 

In a layer l a set of 1D convolutional kernels, given by h 
k, j 

l
(t) , are applied to a multi-channel time series x k 

l 
(t)

(1 ≤ k ≤ M l ) in the following way to obtain the output layer o 
j 

l
: 

o j 
l 
(t) = 

Ml∑

k =1

x k l (t) ∗ h 

k, j 

l 
(t) + b j 

l 
, 1 ≤ j ≤ N l , (1)

where M l and N l are, respectively, the number of channels and kernels in the layer, b 
j 

l
is a set of free parameters, and t ∈ [1,

T l ] is the time discrete variable, with T l being the length of the discrete time-series input in the layer. 

As usual in neural networks, an element-wise non-linear function, f , is applied to the output of the convolutional process.

Several options have been commonly reported for this task, e.g., tanh, sigmoidal , and ReLU functions, that have demonstrated

advantages for accelerating the convergence of deep neural network models in the training process. 

Next, a sub-sampling operation is performed to obtain a translation invariance property. A popular sub-sampling is the

max − pooling function, which moves a sliding window of a pre-fixed size, ρ , with no overlapping, and then selects the

maximum value inside the window: 

x j 
l+1 

(τ ) = max _ pooling[ f (o j 
l 
(t))] (2)



Fig. 2. Architecture of proposed 1D DCNN.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

where T l+1 = 

T l 
ρ , and τ ∈ [1 , T l+1 ] .

A model with stacked convolutional layers can be obtained by connecting the output of the l th layer with the input for

the (l + 1) th layer: x 
j 

l+1
= o 

j 

l
. 

After the application of all these layers, the channels obtained from the last one, L , are stacked together, x 
1 ... M 1 
L +1 

=
(x 1 

L +1 
, . . . , x 

M L 
L +1 

) , and then an additional softmax layer, σ , is applied to model the probability distribution of possible modes,

C , conditioned on the input evidence: 

p c = p(y = c| x 1 ... M 1 

1 
) = σ (x 1 ... M L 

L +1 
) c ∀ c ∈ C. (3)

Finally, the predicted mode will be the one with higher probability: 

ˆ y = argmax 
c∈ C

p c . (4) 

2.2. Dynamic batch generation for time series 

As usual in supervised ML models for classification, an optimization stage is applied to find the set of parameters, � =
{ h k, j 

l
(t) , b 

j 

l 
} l,k, j , that minimizes the cross-entropy cost function for C process modes:

H(�) = − 1 

| C| 
∑

c∈ C
1 { y = c} ln (p c ) + (1 − 1 { y = c} ]) ln (1 − p c ) , (5)

and for this, typically, a gradient-based algorithm is used, e.g. Stochastic Gradient Descent (SGD) or Adam, together with

back-propagation to compute the gradients and a dataset D of pairs ( x ( t ), y ), where x ( t ) is an obtained signal and y the

associated state of the system. As usual, D is partitioned into three subsets: train D tr , validation D v , and test D t , where D tr 

and D v are used during the optimization stage and D t is used for testing the accuracy and generalization capacity of the

resulting model. 

In several real world applications the number of instances per process mode on the dataset is very limited, which has

become a problem for the application of classical ML methodologies and which is accentuated in DL-based models in which

the number of parameters is larger and more data are required [28] . Moreover, as the problem becomes more complex, the

number of parameters must be increased to ensure a correct discrimination between different modes. 

When working with signals, although the number of instances can be limited, it is not the case with their lengths. For

example, in measurement-based rotating machinery diagnosis, each time series is composed of a large number of samples

obtained from one measurement under some sampling rate (e.g., 10 s measured under 50,0 0 0 samples / s gives a time series

of 50 0,0 0 0 samples ), and this fact will be taken advantage of here to propose a modification in the batch-selection process

for the learning algorithm that can be applied to any iterative gradient-based optimization method. 

Essentially, our proposal consists of independently applying S times (the desired batch size) a random variable that

uniformly takes an element from D tr ( (x , y ) 
uniform ←−−−−− D tr ) and extracts a section of prefixed length L from its domain. This

stochastic process can be inserted in every epoch of the training loop (see Algorithm 1 ). 

This technique aims at improving the generalization capacity of the model by increasing the diversity of the samples

to be used in the optimization stage. New subsignals obtained from randomly selected instances from the original dataset

could overlap, but they show slight differences enough to provide better results because higher diversity batches with no

repeated instances between iterations increases the information about each mode of the process. 



Data : D tr , L (length of subsignal), S (batch size) 

Result : completed epoch on training stage 

foreach iteration in epoch do 

B = ∅ ; 
foreach i ≤ S do 

( � x , y ) 
uniform ←−−−−− D tr ;

t 
uniform ←−−−−− [1 , T − L ] ; 

B = B ∪ { ( � x [ t ,t + L ) , y ) } ;
end 

Run training algorithm with B ; 

end 

Algorithm 1: Re-sampling-based batch algorithm. 

Fig. 3. Coefficients and spectrum associated with a kernel.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.3. Algorithm for explanatory spectrum extraction 

In general, a CNN can be seen as a set of filters interacting between them in order to remove or highlight some patterns

on the input. After a correct learning process, the highlighted patterns are those that respond to certain properties of the

optimized filter for the learning task. This fact has special relevance in the 1D DCNN model, in which both the inputs and

filters are time series and it is possible to analyze their specific significance in terms of their frequencies. 

Every kernel h 
k, j 

l
(t) has a specific behavior as a multi-band pass filter in its frequency domain (see Fig. 3 ). Every filter

is convolved with the input [see Eq. (1) ] and highlights the frequency bands having high amplitude on the filter spectrum

while reducing frequency bands with low amplitude. This phenomenon is explained by the Convolution Theorem, which

states a convolution in the time domain is equivalent to a point-wise product in the frequency domain [2] . 

Additionally, from Eq. (1) , for each filter group { h k 
l
} 1 ≤k ≤M l

, the resulting signals of the convolution process are added

together. Because of the linearity of the Fourier Transform (FT), in every layer this is equivalent to sum all the signals’

frequency spectra. 

From this fact, a method is proposed herein that combines these operations in all layers of the 1D DCNN in order to

obtain the informative frequency spectrum codified by the network ( Algorithm 2 ). 

The input spectrum is the fast FT (FFT) of the δ impulse function, which by definition is 1 in all the frequency compo-

nents. The previous statement initialize the prior knowledge about the spectrum with a constant probability distribution. In

effect, if X k 
1 

(the spectrum of the k th input channel to the network) is considered a random variable, then its distribution is

uniform. This assumption is valid for most of the problems, where some prior knowledge about the spectrum is not avail-

able. However, this can be included easily in Algorithm 2 by replacing the term FFT ( δ) with a vector per input channel that

would contain the highest values in the most important frequency components. 

For every layer, the element-wise multiplication with F F T (h 
k, j 

l 
) produces a restriction in some frequency bands that

passes to the next layer according to the filter frequency spectra, while the addition process guarantees to keep the maxi-

mum spectrum envelope in the resulting spectrum. 



Data : 1D DCNN, R (layer up to which the spectrum will be obtained) 

Result : Spectrum stack 

X 
1 ... M 1 
1 

← F F T (δ) ; 

foreach l < R do 

foreach j ≤ N l do 

X ′ 
j 
= 

∑ 

k ≤M l 
X k

l 
� F F T (h 

k, j 

l 
) ; 

X l+1 ← X ′ 
j 
; 

end 

end 

Return: X 
1 ... M R 
R 

Algorithm 2: Explanatory Spectrum Extraction Algorithm. 

Table 2

Summary of benchmark datasets.

Dataset Classes Training size Testing size Length Best reported

FordA 2 3601 1320 500 Shapelet Transform (ST) [13]

ECG5000 5 500 4500 140 Collective of Transformation-Based Ensembles (COTE) [3]

ECG200 2 100 100 96 Bag-of-SFA-Symbols (BOSS) [26]

StarlightCurves 3 1000 8236 1024 COTE

 

 

 

 

The output spectrum set, X 
1 ... M R 
R 

, contains as many elements as convolutional filters available in the R th layer. To sum-

marize all these components in only one informative spectrum, IS R , they just must be aggregated: 

IS R = 

M R∑

j=1

X 

j 
R 
. (6) 

2.4. Informative spectrum envelope 

From the preceding sections, a general four-step methodology can be given to obtain an informative spectrum envelope

from a set of time-series measurements obtained from a signal-generating system. Fig. 4 provides a visual understanding of

the entire process: 

1. Signals Acquisition: Obtain a set of representative signals of every interesting mode of the system (in fault diagnosis,

each mode is a faulty condition, including the healthy one). The signals must contain all presented frequencies in the

selected variable (from the Nyquist Theorem [22] , this is achieved by ensuring an acquisition rate of, at least, twice the

maximum frequency generated by the process).

2. Model Construction: Train and validate the 1D DCNN model with signals from the previous step. Use Algorithm 1 to

maximize the diversity of signals along with the learning iterations.

3. Layer-wise Spectrum Extraction: Apply Algorithm 2 to extract a set of informative general spectra providing a global

view of the system.

4. Spectrum Aggregation: Combine the spectrum set obtained from the preceding step through the sum of all its elements,

obtaining the general informative spectrum.

The source code implementation of the preceding algorithms and the entire methodology is available in [5] .

3. Evaluation

3.1. Experiments 

To evaluate our methodology in general time-series classification tasks, it was applied to the following four benchmark

datasets: 

1. FordA: Diagnose whether an automotive system has a symptom through the measures of the engine noise.

2. ECG50 0 0: Classify the congestive heart failure in five categories using the electrocardiogram (ECG) signal.

3. ECG200: Determine whether a patient has myocardial infarction using the ECG signal.

4. StarlightCurves: Classify celestial objects in one of three types through the signals obtained from their brightness

changes.

Table 2 summarizes the characteristics of each one of the benchmark datasets, as well as the name of the best model

applied to each case reported in the literature. 



Fig. 4. Four-step methodology.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Additionally, to test our methodology, two fault diagnosis tasks in real industrial cases have been addressed: (a) mixed

single and multi-component fault diagnosis on a bearing, and (b) fault severity assessment on a helical gearbox. The two

experimental setups were assembled in the Vibratory Analysis Lab of the Universidad Politécnica Salesiana, Ecuador, under

the support of the GIDTEC group. 

In both cases, a motor Siemens 1LA7 090-4YA60 , with 1.49 kW and four poles, was coupled to the input of the machine to

provide rotation force (driven by a speed controller Danfoss VLT 1.5 kW ). At output, a magnetic break was coupled by a belt

to simulate load [driven by a power source TDK Lambda GEN 150-10 , 0 − 150 V, 10 A ]. The signal acquisition was performed

through a Data Acquisition Card DAQ6212 (National Instruments). The measured variable is the vibration in the vertical axis

of the damaged component that was acquired by a unidirectional accelerometer IMI Sensor 603C01 , 100 mV / g . The electrical

signals returned by the accelerometer were converted from analog to digital using a cDAQ6234 card (National Instruments).

For every faulty mode, and every operation speed and load, a pre-fixed number of signals were acquired, obtaining a

labelled dataset of signals. Details for every experimental setup are presented in the following subsections. 

3.1.1. Single and multi-component fault diagnosis on bearing 

For this experiment, two SKF 1207 Ektn9/C3 bearings were mounted in a 30 − mm shaft, each one using a housing SKF

Snl 507-606 ( Fig. 5 ). 

A total of 7( faulty modes ) × 3(speeds ) × 3(loads ) × 5(signals ) = 315 vibration signals were acquired. Faulty modes are

described in Table 3 . Speeds correspond to 8, 12, and 15 Hz of rotational speed of the motor. Loads correspond to 0, 10, and

20 V of voltage levels of the source power of the magnetic break. The sampling rate of the acquisition card was set to 50,

0 0 0 samples / s with an acquisition time of 20 s , obtaining time series of 1, 0 0 0, 0 0 0 samples length. 



Fig. 5. Experimental setup for single and multi-component fault diagnosis.

Table 3

Faulty modes in bearing configuration.

Faulty mode Bearing 1 Bearing 2

P1 healthy healthy

P2 inner race fault healthy

P3 outer race fault healthy

P4 rolling element fault healthy

P5 inner race fault outer race fault

P6 inner race fault rolling element fault

P7 outer race fault rolling element fault

Fig. 6. Experimental setup for fault severity assessment on helical gearbox.

 

 

 

 

 

 

 

3.1.2. Fault severity assessment on helical gearbox 

For this experiment, a one-stage gearbox was composed by a helical input pinion of 35 teeth coupled with an output

gear of 45 teeth, both of 2.25 module and mounted on independent shafts. Both elements are built of steel E410 and employ

a Lovejoy motor as the type of coupling ( Fig. 6 ). 

A total of 10(damage l e v el s ) × 5(speeds ) × 3(loads ) × 5(signals ) = 750 vibration signals were acquired. The 10 severity

levels of damage are only in the input pinion (see Table 4 ), while the output gear is maintained in healthy condition. The

five speeds correspond to 8 Hz, 12 Hz, 15 Hz, 8–15 Hz sine profile and 8–15 Hz square profile of rotational speed of the

motor. In the case of the variable-speed profile, the period is 2 s . The three loads are the voltage levels of the source power of

the magnetic break: 0, 10, and 30 V . The sampling rate of the acquisition card is set to 50, 0 0 0 samples / s with an acquisition

time of 10 s , obtaining time series of 500, 000 samples length. 



Table 4

Damage levels of helical gear tooth breakage fault.

Code Description Damage (mm) Percentage of tooth (%)

P1 Level 1 (Normal) 0.0 100.0

P2 Level 2 2.37 88.42

P3 Level 3 4.0 80.42

P4 Level 4 5.73 71.94

P5 Level 5 7.6 62.81

P6 Level 6 10.57 48.29

P7 Level 7 12.37 39.48

P8 Level 8 14.33 29.85

P9 Level 9 17.5 14.36

P10 Level 10 (without tooth) 20.43 0.0

Fig. 7. Comparative classification results in benchmarks.

Table 5

1D DCNN architectures.

ID Number of layers Number of kernels Length of kernels

1D DCNN-1 1 18 20

1D DCNN-2 2 18 × 36 20

1D DCNN-3 3 18 × 36 × 72 20

1D DCNN-4 4 18 × 36 × 72 × 144 20

 

 

 

 

 

 

 

 

 

3.2. Results and discussion 

First, the comparison results of the proposal with the other methods reported in the literature for the benchmark cases

in Table 2 are presented in Fig. 7 . The results show positive improvements obtained with the 1D DCNN in all cases. Specif-

ically, improvements of 0.16%, 2.09%, 0.95%, and 2.04% were obtained for FordA, ECG50 0 0, ECG20 0, and StarlightCurves,

respectively. 

As in the reported models, length of time-series and size of training dataset affect the 1D DCNN performance. However,

due to the re-sampling algorithm, this effect is decreased as the signal length is allowed to increment the size of the dataset

(as the results for ECG50 0 0 show). In the same way, the obtained results for ECG200 suggest that when dataset size and

signal length are too low the resulting model shows poor performance because re-sampling cannot be correctly applied. 

Second, following the proposed methodology, four model architectures ( Table 5 ) were analyzed for each fault diagnosis

problem. Each model was trained using Algorithm 1 with a learning rate = 0 . 0 0 05 , no decay rate, 40 epochs, 100 batches,

and batch size = 300 . The length of the signals was 16, 384 samples , equivalent to 0.32768 s . In each layer a sub-sampling



Table 6

Case 1. Accuracy of 1D

DCNN and PFSC models.

ID Accuracy

1D DCNN-1 0.771

1D DCNN-2 0.974

1D DCNN-3 0.993

1D DCNN-4 0.999

PFSC 0.975

Fig. 8. Case 1. Layer-wise spectrum of 1D DCNN-4.

 

 

 

 

 

 

by a factor of 2 was carried out, and hence the number of kernels is duplicated in order to maintain constant information

through layers. 

Table 6 shows the accuracy of each model for the first experimental setup. Additionally, results of the Probabilistic Fuzzy

System Classifier (PFSC) (in which the authors added an additional feature-extraction stage before building the classifier

[20] ) are shown as a comparison with other models reported in the literature applied to the same dataset. Signals from the

test set (1, 0 0 0, 0 0 0 samples length) are split, without overlapping, in sub-signals of 16, 384 samples length to be similar to

those from the training set, maintaining the class label.

The informative spectrum obtained from Algorithm 2 for the best model, 1D DCNN-4, is presented in Fig. 8 . In the

spectrum of layer 1, the inclusion of all the frequencies from 0 up to the Nyquist value can be seen. As depth of layers is

increased, high frequencies are discarded, resulting in a frequency range from 0 up to 10,0 0 0 Hz in layer 4. One can deduce



Fig. 9. Case 1.Information extraction from P3 faulty mode test signal.

Table 7

Case 2. Accuracy of 1D

DCNN and SCAE models.

ID Accuracy

1D DCNN-1 0.471

1D DCNN-2 0.924

1D DCNN-3 0.949

1D DCNN-4 0.975

SCAE 0.947

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

that, for this task, reducing the sampling rate to 20, 0 0 0 samples / s is possible with the inclusion of an analog low-pass pre-

filter with a cutoff frequency of 10,0 0 0 Hz to avoid aliasing in the captured signal. Furthermore, the spectra show that the

most relevant information is in the low-frequency range between 0 and 20 0 0 Hz. 

Fig. 9 is included in order to analyze the incidence of the above informative spectrum over a specific P3 fault mode

test signal, showing the original and modified spectra, which were computed by element-wise multiplication of the original

signal spectrum and the 1D DCNN-4 informative spectrum (limited to 50 0 0 Hz because over that frequency its amplitude is

negligible). The result shows a significant reduction of the maximum peak frequency in the original spectrum and highlights

a frequency peak at 436.45 Hz. Since the P3 faulty mode is related to outer race damage, the input frequency to the machine

is approximately 15 Hz and it has 15 rolling elements; then, the frequency to the rolling element put in contact with the

fault is 225 Hz. Consequently, the highlighted frequency is its first harmonic. The minimal difference in the calculus is

due to an input frequency deviating from 15 Hz; in fact, the measured input frequency is 14.5 Hz, obtaining a perfect

coincidence with the highlighted first harmonic and showing perfect physical equivalence with the information provided by

the spectrum generated by the proposed algorithm. 

Table 7 shows the accuracy of each 1D DCNN model for the second experimental setup. The SCAE model from [6] is

included as a comparison with other models reported in the literature applied to the same dataset. This model uses an un-

supervised feature-extraction process through a 2D Deep Stacked Convolutional AutoEncoder together with a CNN working

on a representation in time-frequency domain of the time-series obtained using the Wavelet Packet Transform. Again, 1D

DCNN-4 is the best model, overcoming the performance of the SCAE model by 2.8%. 

Table 8 presents more detailed comparison between the 1D DCNN-4 and SCAE models, showing the difference between

Precision, Recall, and F -value metrics obtained from the evaluation of both models. 1D DCNN-4 shows an improvement in

Precision and Recall on all faulty modes with an exception in Precision for P4 (but its effect is vanishing in comparison with

the increments in the other faulty modes). In some modes, e.g., P6 where Recall is very similar (0.915 in 1D DCNN-4 and

0.913 in SCAE), the increment of 0.071 in Precision shows an improvement in the performance of 1D DCNN-4. 

Fig. 10 shows the informative spectrum obtained from Algorithm 2 for the best model, i.e., 1D-DCNN-4. As in the previous

case, the spectrum of layer-1 includes a large group of frequencies from 0 up to the Nyquist value and, as the depth is

increased, high frequencies are discarded, resulting in an informative frequency range from 0 up to 60 0 0 Hz in layer-4. This

means that for this task reducing the sampling rate to 12, 0 0 0 samples / s is possible with the inclusion of analog low-pass

pre-filter with a cutoff frequency of 60 0 0 Hz in order to avoid aliasing in the captured signal. Furthermore, the spectrum

shows that the most relevant information is in the low-frequency range between 0 and 30 0 0 Hz. 

As in the previous case, Fig. 11 shows the analysis of the incidence of the informative spectrum over a specific test signal

labelled in the P3 fault mode. The spectrum has been limited to 10,0 0 0 Hz because over that frequency its amplitude is



Fig. 10. Case 2. Layer-wise spectrum of 1D DCNN-4.

Fig. 11. Case 2. Information extraction from P3 faulty mode test signal.



Table 8

Case 2. Detailed differences for faulty modes between 1D DCNN-4 and SCAE models.

Faulty mode Difference precision Difference recall Difference F -value

P1 0.023 0.009 0.014

P2 0.026 0.014 0.020

P3 0.025 0.060 0.042

P4 −0.010 0.049 0.018

P5 0.050 0.049 0.049

P6 0.071 0.002 0.035

P7 0.037 0.068 0.052

P8 0.036 0.004 0.020

P9 0.003 0.024 0.014

P10 0.032 0.003 0.017

Avg. 0.029 0.028 0.028

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

negligible. One can see a significant reduction of the peak between 40 0 0 and 50 0 0 Hz in the original spectrum and the

highlight of the range is 0–10 0 0 Hz, showing that it as a noise source that hides the critical information. 

4. Conclusions

In this paper, three main goals were attained to manage a deep learning process on time-series data. The first, not

fully new, was to provide a complete adaptation of Deep Convolutional Neural Networks for 1D cases in order to use them

for multi-channel signal learning. In the second, an algorithm was provided to increase the diversity of time series to be

used during the batch-selection stage in iterated learning processes that can be applied together with several gradient-

based training algorithms. Finally, the last goal was to provide an algorithm that can extract an informative spectrum of the

process from the deep-layer model, adding an explainable layer to the usual black box nature of deep learning models. 

Additionally, a general methodology was built and applied to fault diagnosis tasks in rotating machinery, as well as to

four benchmark datasets, showing an improvement in accuracy in comparison to state-of-the-art techniques. 

The models built by this methodology can successfully discriminate captured signals from different health states of ma-

chinery under multiple operating conditions of speed and load, showing that the models capture aspects from the inner

states of the systems. Moreover, most importantly, the proposed methodology provides the extraction of information as

frequency patterns that can be interpreted for a signal processing expert (not necessarily an expert in Deep Learning), in-

creasing the knowledge about the system/process that generates the signals. In the specific applications shown in the paper,

the obtained spectra show that low frequencies store the most discriminative information, and consequently the maximum

informative frequency that allows us to reduce the acquisition hardware requirements for the task. 

In contrast to other learning-based models, the proposed methodology allows one to extract knowledge of the system

from the resulting model, transforming a learning process into a knowledge-extraction process. 

Specifically, the algorithms and methodology presented here show additional advantages compared with other machine

learning and signal processing approaches when applied to fault diagnosis in rotating machinery: the performance obtained

by the models built for single and multi-fault diagnosis and fault severity evaluation tasks overcome those reported by other

state-of-the-art approaches, while adding an explainable layer. 
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