
Improving Skip-Gram based Graph Embeddings via
Centrality-Weighted Sampling

Pedro Almagro Blanco pedro.almagro@ub.edu
Universitat de Barcelona Institute of Complex Systems (UBICS)
Departament de F́ısica de la Matèria Condensada
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Abstract

Network embedding techniques inspired by word2vec represent an effective unsuper-
vised relational learning model. Commonly, by means of a Skip-Gram procedure, these
techniques learn low dimensional vector representations of the nodes in a graph by sam-
pling node-context examples. Although many ways of sampling the context of a node have
been proposed, the effects of the way a node is chosen have not been analyzed in depth.
To fill this gap, we have re-implemented the main four word2vec inspired graph embedding
techniques under the same framework and analyzed how different sampling distributions
affects embeddings performance when tested in node classification problems. We present a
set of experiments on different well known real data sets that show how the use of popular
centrality distributions in sampling leads to improvements, obtaining speeds of up to 2
times in learning times and increasing accuracy in all cases.

1. Introduction

The application of neural encoders to texts has provided very interesting results. In 2013, T.
Mikolov et al. (Mikolov, Chen, Corrado, & Dean, 2013a) presented two architectures, under
the generic name of word2vec, minimizing computational complexity of word representation
while maintaining grammatical properties present in the texts from which the words are
extracted: Continuous bag-of-words (CBOW), and Skip-gram. In them a context of a word
in a text is defined as the set of words that appear in its adjacent positions, and both
architectures consist of feed-fordward artificial neural networks with three layers: an input
layer, a hidden (encoding) layer and an output layer, but they differ in the objective function
they try to approximate. On the one hand, CBOW architecture receives the context of a
given word as input and tries to predict that word as output. On the other hand, Skip-
gram architecture receives the word as input and tries to predict the context associated
with it. The main objective of the work of Mikolov et al. is to reduce the complexity in the
neural model allowing the system to learn from a large volume of textual data. Through the
relationship established between vocabulary words and their contexts, the model captures
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different types of similarity, both functional and structural, and provides an embedding of
words in vector space that reflects these similarities (Mikolov, Yih, & Zweig, 2013d). In
the case of Skip-Gram architecture, two main optimizations have been presented: Negative
Sampling, that modifies only some of the weights related to negative examples (words not
in context), and Hierarchical Softmax, where the output vector is determined by a tree-like
traversal of the network layers (Mikolov, Sutskever, Chen, Corrado, & Dean, 2013b).

Graph data appears in a number of application domains such as chemistry, social sci-
ences, and physics, where logical problems commonly addressed are node classification
(Neville & Jensen, 2000), link prediction (Liben-Nowell & Kleinberg, 2007), and network
representation learning (Zhang, Yin, Zhu, & Zhang, 2018), to name but a few. Many
successful methods inspired by language modeling have been developed recently for graph
embedding. Those methods allow to obtain vector representations of nodes in a low dimen-
sional space through sampling the relations between them in a graph.

In this work, we evaluate the use of centrality measures to improve efficiency of four of the
most popular word2vec inspired graph embedding techniques: DeepWalk (Perozzi, Al-Rfou,
& Skiena, 2014), LINE (Tang, Qu, Wang, Zhang, Yan, & Mei, 2015), node2vec (Grover &
Leskovec, 2016) and Neighborhood Based Node Embeddings (NBNE) (Pimentel, Veloso, &
Ziviani, 2018). We analyze the previous four models using five different centrality measures,
and we obtain some important conclusions: (1) in all cases, centrality-weighted sampling
speeds up convergence (x2 in some cases) of node classification tasks and, (2) there is a fixed
ranking in the goodness of centralities when used in this context. This conclusions have
been obtained from comprehensive experiments over two well-known datasets. Obtained
results present a new application for node centrality measures to improve the efficiency of
language modeling based graph embedding techniques.

The rest of the paper is arranged as follows. In Section 2 we summarize the fundamentals
of language modeling through Skip-Gram model. The four graph embedding techniques
under evaluation will be presented in Section 3. In Section 4 we present our approach to
improve efficiency of Skip-Gram based graph embedding techniques. Section 5 is devoted
to outline our experiments, and their results are presented in Section 6. In Section 7 we
present works related to this one presented here. We close with our conclusions in Section
8.

2. Language Modeling with Skip-Gram

In the following, we will present some basics related to language modeling necessary to
describe the implementation that we have carried out of the four methods under study.
In general terms, the goal of language modeling is to estimate the likelihood of a spe-
cific sequence of words appearing in a corpus. More formally, given a sequence of words
w1, w2, ..., wn, where wi ∈ W (W is the vocabulary), we would like to maximize:

Pr(wn|w1, w2, ..., wn−1)

over all the training corpus.

As mentioned above, recent works have focused on using probabilistic neural networks
to build general representations of words. The goal is to learn a latent representation,
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φ : W → R|W|×d. This mapping φ represents the d-dimensional latent representation
associated with each word w in the vocabulary.

Skip-Gram is a language model that, from a corpus of texts, maximizes the co-occurrence
probability among the words that appear within a context (of prefixed size, c) in a sentence
of the corpus. First, instead of using the context to predict a missing word, it uses one
word to predict the context. Secondly, the context is composed of the words appearing to
both the right and left of the given word in the sentence. Finally, it removes the ordering
constraint on the problem, requiring the model to maximize the probability of any word
appearing in the context regardless of its offset from the given word. More formally, given
a sequence of training words w1, w2, ..., wn, the objective of the Skip-Gram model is to
maximize the average log probability:

1

n

n∑
i=1

∑
−c≤j≤c,j 6=0

log Pr(wi+j | wi)

As we will see later, these relaxations are particularly desirable for graph representation
learning: the order independence assumption better captures the sense of neighbourhood as
it is provided in graphs; moreover, this fact will be quite useful for speeding up the training
time by building small models giving one vertex at a time.

The basic Skip-Gram formulation defines Pr(wi+j | wi) using the soft-max function as:

Pr(wi+j | wi) =
exp(φ(wi+j)

′Tφ(wi))∑W
w=1 exp(φ(w)′Tφ(wi))

where φ(w) and φ(w)′ are the input and output vector representations of w, respectively.
Optimizing this model by gradient descent means taking a training example and adjusting
all the parameters of the model. In other words, each training example will tweak all of the
parameters in the model. Usually, the size of the vocabulary means that Skip-Gram model
has a tremendous number of parameters, all of which would be updated by every one of the
many training examples. To speed up the training time, Skip-Gram authors presented two
approximations: Negative Sampling and Hierarchical Soft-max (Mikolov, Sutskever, Chen,
Corrado, & Dean, 2013c).

2.1 Negative Sampling

Negative Sampling faces the cost of calculating Pr(wi+j | wi) by allowing each training
example to only modify a small percentage of the parameters, rather than all of them. For
each observed pair (wi+j , wi) we sample k negative context words w ∈ W from a noise
distribution Pn(w).

log σ(φ(wi+j)
′Tφ(wi))−

k∑
p=1

Ewp ∼ Pn(w)[log σ(φ(wp)
′Tφ(wi))]

which is used to replace every log Pr(wi+j | wi) term in the Skip-Gram objective. Thus
the task is to distinguish the correct samples from negative ones obtained from the noise
distribution Pn(w), where there are k negative samples for each positive data sample.
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2.2 Hierarchical Soft-max

Other way to deal with the high costs of calculating Pr(wi+j | wi) is Hierarchical Softmax.
This model factorizes the conditional probability assigning the words to the leaves of a
binary tree, turning the prediction problem into maximizing the probability of a specific
path in the hierarchy. If the path to word wi+j is identified by a sequence of tree nodes,
(b0 = root, b1, b2, ..., blog|W|=wi+j

), then:

Pr(wi+j | wi) =

log|W|∏
l=1

Pr(bl|wi)

Now, Pr(bl|wi) could be modeled by a binary classifier that is assigned to the parent of
the node bl as next equation shows:

Pr(bl | wi) = σ(φ(wi)
Tα(bl))

where σ(x) = 1/(1+exp(−x)) and α(bl) ∈ Rd is the representation assigned to tree node
bl ’s parent. This reduces the computational complexity of calculating Pr(wi+j |wi) from
O(|W|) to O(log|W|). Also, unlike the standard soft-max formulation of the Skip-Gram
which assigns two representations φ(w) and φ′(w) to each word w, the hierarchical soft-max
formulation has one representation φ(w) for each word w and one representation α(bl) for
every inner parent node of bl in the binary tree.

3. Graph Embedding Techniques Inspired by Language Modeling

Recent work in graph embedding uses Skip-Gram probabilistic neural networks to build
general representations of the nodes in a graph. In this work we analyze how centrality
measures can be used to improve efficiency of the four graph embedding techniques presented
below. As we don’t work with weights nor attributes, we will not describe details of the
techniques related with that aspects.

3.1 DeepWalk

DeepWalk is a generalization of language modeling that explores a graphG = (V,E) through
a stream of short random walks and learns representation of nodes using a Skip-Gram archi-
tecture (Perozzi et al., 2014). These walks can be thought of as short sentences and phrases
in a special language; the direct analog is to estimate, given a random walk v1, v2, v3, ..., vn,
the likelihood of observing vertex vi+j given a vertex vi in the random walk, i.e.

Pr(vi+j |vi) =
exp(ψ(vi+j)

′Tψ(vi))∑V
v=1 exp(φ(v)′Tφ(vi))

The goal is to learn a latent representation, ψ : V → R|V |×d. This mapping ψ represents
the d-dimensional latent representation associated with each vertex v in the graph. The
objective of the Skip-gram model is to maximize the average log probability:

1

n

n∑
i=1

∑
−c≤j≤c,j 6=0

log Pr(vi+j | vi)
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where c represents context size. DeepWalk applies a Skip-Gram model with Hierar-
chical Soft-max to random walks formulating a method which generates low-dimensional
representations of networks in a continuous vector space.

3.2 LINE

LINE (Large-scale Information Network Embedding) also uses a similar Skip-Gram archi-
tecture to embed the networks but it differs in some aspects from DeepWalk. First, LINE
don’t use random walks to generate examples, however it uses solely the neighbor infor-
mation of every node to preserving both the first-order and second-order proximity. LINE
model trains the first-order proximity and second-order proximity separately and then con-
catenate the obtained embeddings for each vertex (Tang et al., 2015). The first-order
proximity tries to maximize for each edge (vi, vj) ∈ E, the joint probability:

Pr(vi | vj) = σ(ψ(vi)
Tψ(vj))

As it uses the same input and output vector representations, first-order proximity can
deal only with undirected graphs. To avoid the trivial solution ψ(vik) =∞, for i = 1, ..., |V |
and k = 1, ..., d, the first-order proximity is approximated using a Negative Sampling ar-
chitecture. The second-order proximity is also learned using Negative Sampling but using
different input and output vector representations (as presented in Section 2.1). In both cases
positive examples are formed by a node and one of his neighbors and negative examples

are extracted from a modified unigram distribution Pn(v) ∝ d
3/4
v as proposed in (Mikolov

et al., 2013c), where dv is the out-degree of vertex v.

3.3 node2vec

node2vec is a generalization of DeepWalk in which random walks are guided by two parame-
ters p and q. Given a random walk that has just crossed the edge (t, v) ∈ E, the probability
of taking the edge (v, x) ∈ E corresponds to:

γpq(v, x) =


1
p if dis(t, x) = 0

1 if dis(t, x) = 1
1
q if dis(t, x) = 2

where dis(t, x) represents the length of the minimum path between node t and node
x. node2vec is identical to DeepWalk with the exception that it explores new methods
to generate random walks, at the cost of introducing more hyperparamenters (Grover &
Leskovec, 2016).

3.4 Neighborhood Based Node Embedding

Neighborhood Based Node Embedding (NBNE) uses a Skip-Gram model with Negative
Sampling to learn representations of nodes in a graph from positive examples formed by a
node and one of his neighbors and negative examples extracted from a modified unigram

distribution Pn(v) ∝ d
3/4
v . NBNE is equivalent to second-order proximity in LINE, its

performance is lower than previous models but its training is faster due to the simplicity of
its algorithm (Pimentel et al., 2018).

5



4. Method

Under the premise that more central nodes are more informative when learning repre-
sentations for later classification, we have implemented the four methods under the same
Negative Sampling architecture and we have introduced λi (the prestige of vertex vi) in the
conditional probability.

4.1 Overview

All graph embedding techniques under analysis requires a set of positive examples and a
set of negative examples. Negative examples will be drawn from the uniform distribution.
Positive examples will be generated in a different manner for each case: DeepWalk and
node2vec consider a set of short truncated random walks as corpus from which to extract
positive examples while LINE and NBNE generate positive examples using the neighbors
of a node.

4.2 Algorithm

To increase efficiency, we decide to use one negative example for each positive example
(k = 1). Then, in our framework, the term log Pr(vi+j | vi) for DeepWalk and node2vec
objective function becomes:

log λiσ(ψ(vi+j)
′Tψ(vi))− Evp ∼ Pn(v)[log σ(ψ(vp)

′Tψ(vi))]

In the case of DeepWalk, vi+j is obtained from random walks with a context of size
c = 30. In the case of node2vec, vi+j is obtained from modified random walks as described
in Section 3.3 and also with a context of size c = 30. The term log Pr(vj , vi) to be maximized
in NBNE becomes

log λiσ(ψ(vj)
′Tψ(vi))− Evp ∼ Pn(v)[log σ(ψ(vp)

′Tψ(vi))]

for each edge (vi, vj) ∈ E. In the case of LINE, we have approximated the first-order
proximity by using NBNE and second-order proximity by selecting nodes at distance 2
as positive examples. The presented framework allows to compare different embedding
approaches under a common framework taking advantage of high parallelism.

4.3 Centrality-weighted Sampling

Next we describe the centrality-weighted sampling treatment which improves the effec-
tiveness of the embeddings when facing node classification tasks. We will use centrality
information of node vi to determine parameter λi. Centrality measures under considera-
tion are Degree, Betweenness Centrality (BC) (Freeman, 1977), Closeness Centrality (Clos)
(Bavelas, 1950), PageRank (PR) (Page, Brin, Motwani, & Winograd, 1998) and Load Cen-
trality (Brandes, 2008). As we will show in next sections, efficiency of all techniques under
analysis is improved using proposed sampling techniques.
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Dataset |V | |E| #classes

Cora 2,708 5,429 7
Citeseer 3,327 4,732 6

Table 1: Dataset statistics.

5. Experimental Design

To train the models, we used 1M positive examples (and 1M negative examples) and 200
dimensions (as in original methods). A single learning process iterates through all posi-
tive and negative examples with a batch size of 100k. We used the same random initial
weights for every centrality measure following (Grover & Leskovec, 2016). Stochastic gradi-
ent descent (SGD) (Recht, Re, Wright, & Niu, 2011) is used in our experiments to optimize
free parameters. The derivatives are estimated using the back-propagation algorithm and
the learning rate for SGD is 0.1%. Our framework was implemented with the TensorFlow
(Abadi, Barham, Chen, Chen, Davis, Dean, Devin, Ghemawat, Irving, Isard, Kudlur, Lev-
enberg, Monga, Moore, Murray, Steiner, Tucker, Vasudevan, Warden, Wicke, Yu, & Zheng,
2016) wrapper Keras (Chollet et al., 2015). We used the logistic regression classifier from
LibLinear (Fan, Chang, Hsieh, Wang, & Lin, 2008). All experiments were run on hardware
with 32GB RAM, a single 3.4 GHz CPU, and two GeForce GTX 1080 GPUs.

5.1 Datasets

We evaluate the influence of centrality weighted sampling with the following two com-
monly used benchmark data sets: Cora (McCallum, 2017) and Citeseer (Giles, Bollacker, &
Lawrence, 1998). Cora and Citeseer are citation networks where nodes represent documents
and links represent citations. In both cases, class labels represent the main topic of the doc-
ument each node have exactly one class label. Statistics about data sets are summarized in
Table 1.

6. Experiments

Let us perform empirical evaluations with the objective of analyze how centrality measures
can help to improve the efficiency of presented graph embedding methods when facing node
classification.

In the label classification setting, every node is assigned one label from a finite set.
During the training phase, we observe the representation of a certain fraction of nodes and
their labels. The task is to predict the labels for the remaining nodes. Each experiment has
been repeated 4 times, obtaining a standard deviation smaller than 0,006% in all cases. In
Figure 6 we show two 2-D representations of node representations achieved with node2vec
over CiteSeer data (color of a node indicates the topic of the document). Embedding
at the right side have been achieved with Betweenness Centrality weighted sampling and
embedding at the left side without weighted sampling. Both embeddings have been achieved
training only with 400k samples.
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Figure 1: Visualization of a fraction of CiteSeer network. Documents are mapped to the
2-D space using the t-SNE package (only 400k samples). (right) Embedding
achieved with node2vec+BC, embedding achieved with node2vec baseline.

Metric DeepWalk LINE node2vec NBNE

BC 0.6338 0.5386 0.6337 0.5354
Load 0.6329 0.5375 0.6330 0.5354
Deg 0.6380 0.5206 0.6375 0.5195
PR 0.6330 0.5162 0.6373 0.5116
Clos 0.5932 0.4912 0.5858 0.4876
Base 0.5805 0.4848 0.5952 0.4667

Table 2: Micro-F1 for node classification in Cora data set.

6.1 Cora

Experiments with Cora data set reveal that the use of centrality measures when sampling
nodes to participates as positive examples in the different graph embedding methods pre-
sented in Section 3 leads to a representative speedup in the convergence to an optimal
embedding for node classification.

The results for this data set are listed in Table 2. We include the baseline and the
centrality-weighted results. node2vec and DeepWalk significantly outperforms all existing
approaches on Cora data set. Both obtain the highest improvement with BC but their
results are really similar to those obtained using Load. Also, we can mention that node2vec
and DeepWalk do not take full advantage of PageRank centrality. Another fact that we can
observe in this table is the clear ranking between different centrality measures. Betweenness
Centrality ranks first, next Load, next Degree, next PageRank and at the last place we find
Closeness Centrality. Betweenness and Load have similar behaviors. It can be due to the
similarity between those two metrics.

Figure 2 presents the relation bwetween Micro-F1 metric and the number of examples
used to obtain the embedding in Cora data set for baseline methods and using centrality-
weighted samplings. As we can observe, the highest improvement is produced between 200k
and 600k samples for the Cora data set. In addition, we confirm really similar behavior
for Betweenness Centrality and Load Centrality, for Degree and PageRank and for baseline
and Closeness Centrality.
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Figure 2: Micro-F1 for Cora label classification problem using baselines and centrality
weighted sampling models.

Metric DeepWalk LINE node2vec NBNE

BC 0.4525 0.4222 0.4556 0.4240
Load 0.4536 0.4215 0.4542 0.4249
Deg 0.4468 0.3977 0.4483 0.4001
PR 0.4448 0.3911 0.4398 0.3929
Clos 0.4234 0.3815 0.4280 0.3863
Base 0.4019 0.3653 0.4061 0.3616

Table 3: Micro-F1 for node classification in Citeseer data set.

6.2 Citeseer

Experiments with Citeseer data set reveal similar insights. Again, the use of centrality
measures when sampling nodes to participate as positive examples in the different graph
embedding methods presented in Section 3 leads to a representative speedup in the conver-
gence to an optimal embedding for node classification.

The results for Citeseer are listed in Table 3. node2vec and DeepWalk significantly
outperforms all presented models on Citeseer classification problem. In this case, node2vec
has highest improvement with BC but DeepWalk with Load. node2vec and DeepWalk take
advantage of PageRank on CiteSeer data set. The centrality ranking remains so similar
than in the Cora case.

Figure 3 present the relation bwetween Micro-F1 metric and the number of examples
used to obtain the embedding of the different base models and their centrality weighted
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Figure 3: Micro-F1 for Citeseer label classification problem using different centrality mea-
sures when sampling and baseline models.

versions for Citeseer data set. As we can observe, the highest improvement is produced again
between 200k and 600k samples. We confirm almost the same behavior for Betweenness and
Load Centrality in all methods. For node2vec model, Load Centrality performs a little bit
better for a big number of examples (close to one million). In this case, Closeness Centrality
performs better than on Cora, performing better than PageRank version at the very initial
phase (under 500k examples).

7. Related Works

Usually, formalizations of graphs include only positive relation instances, leaving the door
open for a variety of methods for selecting negative examples. In (Kotnis & Nastase, 2017)
the authors present an empirical study on the impact of Negative Sampling on the learned
embeddings, assessed through the task of link prediction. They focus in compare well known
methods for Negative Sampling (random generation and corrupting positive examples) and
propose two new embedding based sampling methods.

In the work titled Robust negative sampling for network embedding the authors provide
theoretical arguments that reveal how Negative Sampling can fail to properly estimate the
Skip-Gram objective, and why it is not a suitable candidate for the network embedding
problem (Armandpour, Ding, Huang, & Hu, 2019). They show that Negative Sampling
can learn undesirable embeddings, as the result of the Popular Neighbor Problem. This
deviation of Negative Sampling from that ideal behavior is mainly caused by allowing a
node to choose its neighbor as a negative sample. This problem is more severe when high-
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degree nodes are present. They present a new method that alleviates this problem by using
a new negative sampling scheme and penalization of the embeddings.

In (Wang, Zhang, Feng, & Chen, 2014) the authors present an optimization of Negative
Sampling in the case of embeddings working with relational databases (Bordes, Usunier,
Garcia-Duran, Weston, & Yakhnenko, 2013; Wang et al., 2014). They tend to give more
chance to replacing the head entity of a relation if it is one-to-many and more chance to
replacing the tail entity if the relation is many-to-one. In this way, the chance of generating
false negative labels is reduced.

As we shown, some work regarding to the methods selecting negative samples in Skip-
Gram graph embedding techniques have been presented. Only LINE model introduces a
parameter in the objective function to guide positive examples selection. But LINE authors
did not make any analysis of the influence of this parameter in the efficiency of the method
and did not present any advantage of this approach. Our work fills this gap presenting a
detailed study of such influence not only over LINE but over other similar graph embedding
techniques.

8. Conclusions

The use of probability distributions in the selection of positive examples when using graph
embedding methods based on Skip-Gram allows to obtain a higher performance in node
classification tasks. Both the methods based on random paths and those that construct
the positive examples only from the vicinity of the nodes have demonstrated a significant
improvement in efficiency by using distributions related to centrality measures in the nodes
of the graph. From our knowledge, this work represents the first analysis of this Skip-
Gram modification on graphs. Experiments on real data illustrate the effectiveness of our
approach on challenging label classification tasks. Our results show that we can create fast
and scalable meaningful representations for large graphs making use of centrality measures
when selecting positive examples. Our method significantly outperforms other methods
designed for the same purpose.

Starting from the premise that the centrality of a node in a network is a sign that this
node is more informative when performing an embedding, in this work we have presented
an analysis concerning some of the most popular measures of centrality. The results show
a significant improvement in all methods under study. Specifically, centralities not based
on random paths such as Betweenness Centrality have demonstrated their usefulness to
accelerate embedding proceses. In addition, the results show a clear ranking in the central-
ities according to their goodness. Experiments with a bigger number of examples and with
other centrality measures, datasets and methods are still pending. Experiments regard-
ing other rekational learning tasks as link prediction should be also considered. Another
worth to mention future line of research consists on applying centrality-based distributions
to negative examples.

One of the most interesting conclusions that can be drawn from this study is derived
from the fact that Betweenness and Load centralities are the most successful measures in the
presented context. From our point of view, this is because the information that these two
measures provide is different from the information contained in the random paths and in the
first and second order proximities in which models under study are based. Both centralities
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contain information on minimum paths not explicitly explored by methods under analysis
and we believe that this fact is key to understand the improvement presented.
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