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a b s t r a c t

Collecting data from mechanical systems in abnormal conditions is expensive and time
consuming. Consequently, fault detection approaches based on classical supervised learn-
ing working with both normal and abnormal data are not applicable in some condition-
based maintenance tasks. To address this problem, this paper proposes Fusing
Convolutional Generative Adversarial Encoders (fCGAE) method to create fault detection
models from only normal data. Firstly, to obtain an adequate deep feature space, encoder
models based on 1D convolutional neural networks are created. Then, these encoders are
optimized in an unsupervised way through Bidirectional Generative Adversarial
Networks. Finally, the multi-channel features collected from the system are merged with
One-Class Support Vector Machine. fCGAE is applied to fault detection in 3D printers,
where experimental results in two fault detection cases show excellent generalization
capabilities and better performance compared to peer methods.
1. Introduction

3D printing has been attracting much attention as an innovation technology in the industry [1], as well as in medical [2],
food [3], and other areas [4]. This is due to the accuracy level achieved by this technology [5], which improves the quality of
the obtained products. Of course, the quality that a 3D printer offers depends mainly on the transmission elements that con-
stitute it [6].

Despite the fact that the quality of the components of a 3D printer is the best or not, these elements suffer from wear and
tear due to continuous use in the printing process, as in any other machinery [7]. Additionally, the union of the components
can be compromised by the loosening of the fastening elements such as nuts, bolts, and join bearings. Those wear and/or
loosening cause unintended movements in the printer head along with unwanted vibrations of the machine [8], resulting
into loss of print quality, an accelerated deterioration of other components of the printer [9], and possible risk of damage
ongqing
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to the machine or operator safety. Hence, it is critical to estimate the condition of the machine in order to make necessary
adjustments or replace defective parts.

Several efforts have focused on fault detection and diagnosis for 3D printers. For example, in [10] a method to combine
different sources of information was proposed for estimating the printing quality. The estimation of the machine condition
itself was not performed, but only informed if an error occurred during the printing process. In [11], an approach based on
the filtering of acoustic emission signal and the Kurtogram extraction of a photoelectric signal was considered for the fault
diagnosis in additive manufacturing. In that work, features are extracted considering machinery expert knowledge. With the
same application, in [12] fault diagnosis was proposed by using Support Vector Machines (SVM) with signals obtained from
an attitude sensor. In [13,14] the 3D printer condition is estimated by Echo State Networks (ESN), while [15] introduced a
method improving an extreme learning machine through a modified swarm optimizer, and [16] presented the feature rein-
forcement for improving the 3D printer condition classification with a success rate in the normal condition of 93.6%. In addi-
tion, the comparison results reported 66.7%, 67.5%, 90.1%, 32.0% and 21.3% with SAE+Softmax, ESN, SAE+ESN, SAE+SVM, and
SVM, respectively, highlighting the difficulty to correctly detect a fault even with powerful pattern recognition algorithms
and supervised learning approachs. [17] introduced a method for unsupervisedly optimizing the reservoir of an ESN and
applied it to this problem. And [18] used a sparse autoencoder network (SAE) for fault diagnosis of a delta 3D printer.

Authors from [19] presented transfer SVM for fault diagnosis of 3D printers in light of the lack of data on fault conditions
by transferring learning from other domains with more available data, achieving a classification accuracy of 83.79%. [20]
introduced the sensor fusion by error merging of SAE to dynamically assess the condition of a 3D printer. These last two
works are the only ones that address the problem of lack of data for training classification/regression models for 3D printers
with promising results.

More works on fault diagnosis and fault detection have been reported for other machines. Approaches based on stochastic
resonance for detection and diagnosis of machinery failures were presented in [21–23]. Techniques for fault diagnosis based
on signal analysis were detailed in [24], with emphasis on the extraction of periodic impulses in [25] and analysis in the
time–frequency domain in [26]. In addition, a considerable amount of works using artificial intelligence techniques have also
been reported. For example, [27,28] compared several approaches based on fuzzy logic for bearing diagnostics, and [29] pre-
sented automatic feature extraction by convolutional auto-encoder to deal with feature engineering in helical gears. A more
exhaustive review can be found in [30].

All these works do not consider the difficulty of obtaining abnormal data of the machinery to create a classification model
through supervised learning, but some other works have also been reported addressing this problem. For example, in [31] an
Echo State Network was combined with a Variational Auto-Encoder for the learning of a detection model only from normal
condition data of a helical gearbox. [32] presented Generative Adversarial Networks (GAN) as a model able to capture the
data manifold in normal condition using its discriminator model. In [33] Categorical Adversarial Auto-Encoder model was
presented for data clustering where condition was unknown. [34,35] used One-Class SVM (OCSVM) model for the detection
of bearing failures, and [36] introduced an improved SVM for aircraft engine fault detection with imbalanced data.

However, it remains a challenging task to detect failures in new domains with only data from normal condition, where
expert knowledge is not available to apply feature engineering-based approaches to determine machinery condition, and
where the sources of information are diverse. This paper proposes a way to solve this challenge through fusing Convolutional
Generative Adversarial Encoders (fCGAE) applied to fault detection in delta 3D printers. Main contributions of this work
include: (i) a Convolutional Generative Adversarial Encoder (CGAE) model that integrates 1D Convolutional Neural Networks
(1DCNN) with Bidirectional Generative Adversarial Neural Networks (BiGAN), in order to map raw signals to an informative
feature space for fault detection; and (ii) a proposal for the fusion of deep features extracted in a non-supervised CGAE from
multi-channel signals, and the creation of a discriminant function from them. The results obtained in fault detection in 3D
printers show a better performance of fCGAE compared to approaches reported in the literature using classical feature engi-
neering and state of the art Deep Learning.

The paper is organized as follows. Section 2 presents the details of the proposal. Experiments for the validation of the
method are presented in Section 4. The results and comparisons obtained in each fault diagnosis study case are described
in Section 5. Finally, Section 6 presents some conclusions and future work.
2. Methodology

2.1. Signal augmentation

The operating condition of a 3D printer can be inferred through measurements of sensors collecting information of dif-
ferent variables. In this research, both 3-axis velocity sensors and 3-axis angle sensors are considered:
sðtÞ ¼ fsiðtÞg6i¼1 ð1Þ
where s1; s2; s3; s4; s5; s6 denote, respectively, the x; y and z velocity and x; y and z-related angle signals.
By using the window slicing technique for data augmentation in time-series datasets [37], and choosing appropriate val-

ues for the length of the slices (sl) and the time-steps before the next slicing (ss), we can extract K short signals from every
original one, obtaining a larger set of smaller signals (that can overlap):



s# fs½k ssþ1;k ssþ1þsl �gK�1
k¼0 ð2Þ
2.2. CGAE-based learning of the condition features

In recent years, a large number of proposals based on deep learning have been reported for feature extraction and rep-
resentation learning tasks. Their application fields are as diverse as the different architectures proposed for each specific task.
In general, however, their power lies in some hierarchical feature extraction process through the stacking of specialized com-
putational layers for pattern recognition and classification.

Although the idea of representing learning through a feature space transformation was conceived previously to Deep
Learning and several models from the traditional machine learning use this technique (for example, SVM model and MLP
model), one of the credits of Deep Learning is to focus attention on this mechanism as a means of improving models only
limited by the available computational resources. In the context of fault diagnosis applications, the efforts are focused on
learning the transformation providing the better representation of input signals. For the i-th sensor, we can write this trans-
formation as:
xi ¼ EncðsiðtÞ;/Þ ð3Þ

where Encð�;/Þ represents the learned transformation parameterized by /, also called encoder, and xi is the obtained repre-
sentation for siðtÞ.

With a good representation, building a condition monitoring model can be reduced to approximate the unknown condi-

tional probability distribution of a failure condition y given the representation xi; PðY jXiÞ, and then the resulting failure is
selected through a h-parameterized model with the following criteria:
y ¼ argmaxyPðyjxi; hÞ ð4Þ
If we denote by Di the training data set composed by tuples ðsi; yÞ from all the 3D printer conditions to be identified in the i-th
sensor, the maximum likelihood estimation (MLE) approach can be used for finding h. Combining this with Eq. (3), we can
write:
h ¼ argmaxh

Y
ðsi ;yÞ2Di

PðyjEncðsi;/Þ; hÞ ð5Þ
Several proposals have been introduced for tuning /, as autoencoders or Boltzmann machines. In all cases, the encoder is
unsupervisedly pre-trained (without using ym) and then it is fine-tuned for the specific classification task through the MLE
criterion.

However, this approach cannot be applied for fault detection in real applications because the size of Di for some of the
different conditions of the printer is minimal, or even non-existing, during the building phase of the model. Usually, only
a large number of examples from normal condition are available in a real situation.

With this in mind, we present a CGAE model for representing a useful transformation for the fault detection of 3D
printers, which is learned only from signals in normal (healthy) condition. It consists of two 1DCNN and one 1D
Transpose-Convolutional Neural Network (1DTCNN), both able to deal directly with input time-series with a reduced
number of parameters, which decrease the risk of overfitting. 1DCNN is a model composed of a set of convolutional layers,
where for a layer l there is an input in the form of a multichannel time-series, ~silðtÞ 2 RT�Nc , to which a set of 1D convolution

filters, hi
lðtÞ � RW;Nc ;No , is applied to produce an output multichannel time-series, oi

lðtÞ 2 RTo�No , as follows:
oi;nol ðtÞ ¼
XNc

nc¼1

~si;ncl ðtÞ � hi;nc ;no
l ðtÞ þ bi;no

l ; 8no ¼ 1; . . . ;No ð6Þ
where ~si;11 ðtÞ ¼ ~siðtÞ, and T; To;Nc;No and W stands for the length of input signal, length of output signal, number of input
channels, number of required output channels after the convolution operation, and length of 1D convolution filters, respec-

tively, bi;no
l is a bias term applied to adjust an extra displacement in case to be required, and � is the convolution operator

with the intrinsic parameters padding and stride that maintains the input length and downsamples the input signal [38].
All these parameters depend on l and can be different in each layer.

The input ~silðtÞ is obtained from the application of batch normalization (BN) [39] to silðtÞ, as follows:
�silðtÞ ¼
silðtÞ � lffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ �

p ð7Þ
~silðtÞ ¼ g�silðtÞ þ b ð8Þ
where l and r2 stands for the mean and variance of the signal batch in training time, respectively (or an estimation of these
values in testing time), and g and b are the scaling and shifting parameters, which are estimated in training time. � is a
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constant close to zero, which is added to avoid the indetermination when r2 ! 0. BN is applied to the inputs of each con-
volutional layer except the last one to avoid adding extra variance to the output of 1DCNN.

After that, a nonlinear element-wise function f ð�Þ is applied to the output of Eq. (6):
~si;nclþ1ðtÞ ¼ f ½oi;nol ðtÞ� ð9Þ

where we must take into account that the No output channels from l-th layer are the Nc input channels for ðlþ 1Þ-th layer,
and To can be computed from padding and stride parameters as:
To ¼
T�W
stride þ 1; if padding ¼ valid

T
stride ; if padding ¼ same

(
ð10Þ
where padding ¼ same states for adding samples to the input signal for keeping To ¼ T (only when stride ¼ 1), and
padding ¼ valid states when no sample is added and the output length is mandatorily decremented. By controlling the stride
parameter, the downsampling of the signal is modified in each layer. This process results in features with a high abstraction
level and less time-dependency when more convolutional layers are stacked.

On the other hand, 1DTCNN model performs the inverse process of 1DCNN. It uses the transpose-convolutional layer to
up-sampling the input features until they are transformed into time-series. Let H 2 RTo�To be the orthonormal transformation
matrix built with a h filter such that:
~z ¼ H~s ð11Þ

where ~z is an input channel to a transpose-convolutional layer, and it is truth that ~z ¼ h � ~s. Then, due to the orthonormality
of H, the transpose convolution is simply defined as:
~s ¼ H> ~z ð12Þ

Therefore, the transpose-convolution operation over a set of input features ~zil 2 RT;Nc and output of the l-th transpose-
convolutional layer can be defined as:
oi;nol ðtÞ ¼
XNc

nc¼1

ðHi;nc ;no
l Þ> ~zi;ncl þ bi;no

l ð13Þ

~zi;nclþ1ðtÞ ¼ g½oi;nol ðtÞ� ð14Þ
~zi;11 ¼ ~zi ð15Þ
Again, ~zi;ncl is the result of batch normalization over zi;ncl , and a nonlinear function, gð�Þ, is applied to oi
l 2 RTo ;No to obtain the

output. As before, the output of the l-th layer is the input for the next one.
As mentioned above, the purpose of using 1DTCNN layers in our fault detection context is to transform from a feature

space to the sensor time-series space. Then, typically To > T and it can be computed according to the same parameters, pad-
ding and stride as follows:
To ¼
ðT � 1ÞstrideþW; if padding ¼ valid

T stride; if padding ¼ same

�
ð16Þ
The training process of the CGAE model is based on BiGAN as proposed in [40]. It is a 1DCNN built for approximating an
optimum vector code zi � PEnc given si � PR signal input, i.e xi ¼ EncðsiÞ. Our hypothesis states that if the model is trained only
with normal condition examples (with PR probability distribution), then the resulting codes for signals with similar distri-
bution will occupy a closer place in the feature space than signals measured in a failure condition of the 3D printer.

Additionally to Enc, BiGAN is composed by two more models interacting with each other: a generator model (Gen), and a
discriminator model (Dis). Gen is a 1DTCNN which receives zi � Pz, an input sampled from a known distribution, and trans-
forms it into a signal si � PGen. Dis is a 1DCNN which takes input tuples ðsi; ziÞ and returns its result according to the next
function:
Dðsi; ziÞ ¼ 1; ifsi � PR and zi � PEnc

0; ifsi � PGen and zi � Pz

(
ð17Þ
Gen must be improved in order to fool Dis. Dis improves avoiding to be fooled by Gen and, at the same time, correctly
detects the inputs from PR. If hDis; hGen; hEnc are the parameters of Dis;Gen and Enc, respectively, the cross-entropy loss for
its optimization can be determined as:
LðhDis; hGen; hEncÞ ¼
XB
j¼1

logPDisðyjjsij; zijÞ ð18Þ



where yjjsij; zij is a known example in the data batch (with size B) with yj ¼ 1 if sij � PR and zij � PEnc , and yj ¼ 0 otherwise. PDis

distribution can be described as a Bernoulli distribution, and consequently from Eq. (18) we obtain:
LðhDis; hGen; hEncÞ ¼
XB
j¼1

logð½Disðsij; zijÞ�
yj ½1� Disðsij; zijÞ�

1�yj Þ ð19Þ

¼
XB
j¼1

log½Disðsij; zijÞ�
yj þ

XB
j¼1

log½1� Disðsij; zijÞ�
1�yj ð20Þ

¼
XB
j¼1

yjlogDisðsij; zijÞ þ
XB
j¼1

ð1� yjÞlog½1� Disðsij; zijÞ� ð21Þ
Summarizing as expectations:
LðhDis; hGen; hEncÞ ¼ Esi�PR logDisðsi; EncðsiÞÞ þ Ezi�Pz log½1� DisðGenðziÞ; ziÞ� ð22Þ

Therefore, the improvement of the models can be established as the next minimax optimization problem:
hDis; hGen; hEnc ¼ argminhGen ;hEnc
argmaxhDis

LðhDis; hGen; hEncÞ ð23Þ

The optimization (training stage) of Eq. (23) can be performed through the algorithm described in [41] for GAN-based

models. The application of this procedure to each Di signal set (from i-th sensor) results in one Enci model capturing the
behavior of each i-th sensor under normal condition of the machine.

2.3. Deep encoded features fusion through SVM

Taking only the encoder into account, the optimization of Eq. (23) returns a set of improved deep convolutional networks
able to map signals to feature spaces. The next step is to combine those spaces of independent features for each sensor into
one that is enriched by the group of sensors. This task will be performed by concatenating the outputs of each Enci model,
i.e.:
X ¼ ½Enc1ð�Þ; Enc2ð�Þ; Enc3ð�Þ; Enc4ð�Þ; Enc5ð�Þ; Enc6ð�Þ� ð24Þ
where Encið�Þ is a 1DCNN specialized in the i-th sensor and X is the enriched feature space.
For the creation of a decision function, firstly the samples from Di are projected into X to build the set:
D ¼
[
j

EnciðsijðtÞÞ
h i6

i¼1
ð25Þ
Now, a binary decision function that separates the region of the input space containing instances with the distribution of the
examples from D can be created as an alternative solution to the problem posed in Eq. (4). To this end, we propose the use of
a SVM-based approach. According to [42], f SVM can be defined as:
f SVMðxÞ ¼ sgn
X
j

ajkðxj; xÞ � q

!
ð26Þ
where sgn takes values f�1;0;1g , aj is the Lagrange multiplier associated with the support vector xj (aj > 0) taken from the
set D, and q is the offset factor of the decision hyperplane in a projection space determined by RBF-kernel:
kðx; yÞ ¼ e�cjjx�yjj2 ð27Þ

where c is the length scale parameter determining the influence radius in the enriched feature space of the support vectors.

The set of coefficients a of Eq. (26) can be computed using the method developed in [43] by solving the next optimization
problem:
a ¼ argmin
a

1
2

X
j

X
j0
ajaj0kðxj; xj0 Þ; s:t:0 6 aj 6

1
mjDj ;

X
j

aj ¼ 1 ð28Þ
where m is the upper bound of abnormal examples in D. And then q can be estimated by:
q ¼
X
j0
ajkðxj0 ; xjÞ ð29Þ
where xj is any support vector associated with non-upper/lower bound Lagrange multiplier. Finally, m and c are hyperparam-
eters of the model that will be estimated according to the methods detailed in Section 3.2 or 3.3.



2.4. Overview of the proposed fCGAE approach for 3D printer fault detection

After obtaining the structure of fCGAE (Fig. 1 shows a summary of the process), it is necessary to train the model.

Enc1; . . . ; Enc6 and f SVM can be trained separately, but the outputs from each Enci model must be combined into f SVM for data
fusion training. The application of fCGAE for fault detection of 3D printers can be summarized as follows:

� Step 1. Collect s1ðtÞ; . . . ; s6ðtÞ from 3-axis velocity sensors and 3-axis angle sensors under normal condition in the 3D prin-
ter (one given task).

� Step 2. Compute augmented signal sets D1; . . . ;D6 using Eq. (2).

� Step 3. Build Enc1; . . . ; Enc6;Gen1; . . . ;Gen6 and Dis1; . . . ;Dis6 according to Eqs. (6), (9) (for Enc and Dis), and Eqs. (13), (14)
(for Gen), and take as inputs s1ðtÞ; . . . ; s6ðtÞ;Gen1ðz1Þ; . . . ;Gen6ðz6Þ and ðs1; z1Þ; . . . ; ðs6; z6Þ, respectively.

� Step 4. From the outputs of Enc1; . . . ; Enc6, build f SVM for data fusion using the input given by Eq. (24).
� Step 5. Train Enc1; . . . ; Enc6 models separately by optimizing Eq. (22), and complete fCGAE training by feeding the results
to f SVM for its optimization.

� Step 6. Apply trained fCGAE for fault detection by entering new velocity and angle signals into it to obtain the machine
condition.

3. Hyperparameters search

Two groups of hyperparameters need to be identified: those from the networks architecture, and those from OCSVM
model. For the first group, we propose an heuristic-based approach for minimizing the amount of information lost between
layers. For the second group, we evaluate two approaches; (i) cross-validated random search, and (ii) unsupervised search
methods. Details are presented in the next paragraphs.

3.1. Networks architecture

The number of layers (L), number of output channels in every layer (fNl
og), kernel lengths (fWlg), stride and padding define

the architecture of Enc;Dis, and Gen networks. Their configuration follows a principle of minimum information lost between
the network layers: given a raw signal of length T and configuring stride ¼ 2 as the minimum downsampling for having
translation invariance in each layer, L can be computed for the three networks as:
L ¼ blog2 Tc ð30Þ

As the selected stride decreases the signal length to the half, Nl

o compensates this information loss, i.e., for Enc and Dis:
Fig. 1. Structure of fCGAE model for fault detection in a 3D printer.



fNl
o ¼ 2lgL�1

l¼1 ð31Þ

and for Gen:
fNl
o ¼ 2L�lgLl¼2 ð32Þ
Setting Enc and Gen inverse architectures, NL
o of Enc and N1

o of Gen are both the same as the dimension of the desired fea-

ture space. Furthermore, NL
o ¼ 1 for Dis, as requires an adversarial-based approach.

If Tl
in is the input signal length of the lth layer in Enc and Dis, then padding ¼ same if Tl

in is even and l < L, and
padding ¼ valid otherwise.

If Wmax is the maximum kernel length, then the Wl values for Enc and Dis must verify:

� if padding ¼ same and Wmax can be applied at least 2 times in Tl
in, then Wl ¼ Wmax.

� if padding ¼ valid, then Wl ¼ Wmax � 1. It produces an even input for the next layer.
� In the last layer, WL ¼ TL

in for computing the last features using the entire input.

Wl value of Gen is equal to WL � lþ 1 value of Enc, and the same inverse configuration must be applied for the padding
parameter.

3.2. Cross-validated random search

Contrarily to grid search [44], Cross-Validated Random Search method (CVRS) evaluates only N candidates sampled from
the hyperparameter search space. This method highly reduces the computational cost of the search process with almost sim-
ilar results compared with the grid search in Deep Learning applications [45]. CVRS can optimize m and c parameters of our
approach and also hyperparameters of other machine learning-based proposals. However, it is necessary to point out that
CVRS assumes a calibration set available in the training stage with abnormal examples to evaluate the detection model.

CVRS requires a metric to evaluate the hyperparameter set quality. We choose the balanced accuracy since it considers
the unbalance that could have the evaluation set in each iteration of the CVRS. Let tp; tn; fp and fn be the true positives, true
negatives, false positives, and false negatives, respectively; the balanced accuracy for a binary classifier as f SVMð�Þ is defined
by:
balanced accuracy ¼
tp

tpþfn þ tn
tnþfp

2
ð33Þ
Then, the CVRS procedure adapted for the one-class learning problem is:

1. Select N candidate sets of the search space according to the probability distribution of the hyperparameters.
2. Split the training and calibration sets into K partitions.
3. For n ¼ 1 to N:

(a) Configure the model with the n-th hyperparameter set.
(b) For k ¼ 1 to K:

i. Train the model with the other K � 1 partitions (all but the k-th partition) of the training set.
ii. Evaluate the model in the k-th partition of the training and calibration sets.
(c) Compute the average balanced accuracy over the K previous results for the n-th hyperparameter set.
Choose the hyperparameter set with the highest average balanced accuracy.
4.
5. Train a model with the entire training set and chosen hyperparameters.
6. Evaluate the model in the test set.

3.3. Unsupervised search methods

As it was stated before, CVRS requires a calibration set that could be difficult to have in the training stage. This restriction
could be lightened if the cross-validation process uses a fixed calibration set for every iteration; in this case, the calibration
set size is smaller than the training set (for K ¼ 10, the calibration set size is 1=10 of the training set).

In this work, we also tackle the worst case where a calibration set is not available for the hyperparameters search. This
issue is addressed with the approaches proposed by Xiao et al. [46] and Ratsch et al. [47] for tuning c and m with only the
one-class examples in the training set. That is, if fxigm1 be a one-class training set with m examples, then c can be optimized
maximizing the next objective function:



f ðcÞ ¼ 2
m

Xm
i¼1

e
�cmin

j–i
jjxi�xj jj2 � 2

m

Xm
i¼1

e
�cmax

j
jjxi�xj jj2 ð34Þ
The f ðcÞ function can be maximized with any optimization numerical method of scalar functions. In this work, we used
Brent’s method [48].

The m parameter optimization follows an interactive procedure to maximize the projected distance between the examples
classified as þ1 and �1 by f SVM . Let inc ¼ 1

Nnu
the m increment of each iteration splitting the interval in Nnu homogeneous steps,

then the procedure is as follow:

1. For m ¼ inc to 1� inc, in steps of Inc.:
(a) Train OCSVM with the optimized c.
(b) Compute the average distance to the hyperplane of the examples with f SVM ¼ þ1.
(c) Compute the average distance to the hyperplane of the examples with f SVM ¼ �1.
(d) Compute the total distance of the two groups by adding the previous distances.

2. Choose m that maximizes the total distance.

4. Experiments

In this section a 3D printer experimental setup is built to collect 3-axis velocity and 3-axis angle measurements and to
test the proposed fCGAE technique to fault detection. Comparison with peer approaches are also introduced at the end of the
section.
4.1. Delta 3D printer test bed

We tested the performance of this model on the experimental platform for 3D printers developed by our group. The 3D
printer (SLD-BL600-6, brand SHILEIDI) to be diagnosed has a delta kinematic configuration with 3 degrees of freedom (Fig. 2).
A bipolar step motor each join, which provides movement to a synchronous belt-driven transmission mechanism for the arm
displacement. Each arm is composed of two metal rods coupled at their ends by universal join bearings.

A low-cost attitude sensor BWT901 type MEMS (brand WIT), installed at the base of the delta configuration, collects the
3-axis velocity and angle signals. This device includes an analog-to-digital conversion system with a sensitivity in the veloc-
ity measurement offered by the sensor manufacturer of 0:05 deg =s and 0:01 deg for the angular measurement. The sampling
frequency was set at 100 Hz with time synchronization for both types of measurements. Digital samples were collected with
a USB interface.

The signals were obtained under detailed conditions for every case study and captured in the computer while the base of
the printer performs a circular movement of 75 mm radius with 20 repetitions in a total time of 324 s. The whole process
was repeated 3 times with a uniformly distributed random starting time between 1 and 60 s after finishing the previous sig-
nal acquisition. Therefore, we obtained 3 multidimensional time series (3 dimensions for velocity and 3 for angle) with a
duration of 32400 samples each.

Later, for the practical application and evaluation of our test in a realistic scenario, it has to be performed at a trial stage
where the machine makes one circular movement providing data to the model. This trial stage could be included before and/
or after the printing working to avoid disturbances during the device operation. A trial-before allows detecting faults that
could affect the printing quality. While a trial-after allows detecting faults resulting from a printing process. However, other
trial stages could also be implemented in the middle of extensive printing workings, if possible. The real-time monitoring of
the 3D printers under a variable operation condition is out of the scope of this work.
4.1.1. Case study 1: Join bearings
A 3D printer fault causes generally a loss in the final product quality. However, the acceptable production tolerances,

which are related with the fault severity, depends on the specific application in which the product will be used. In this work,
we empirically determined the severity by increasing the fault and inspecting signs of deterioration in the surface, corners
and edges of the product. The previous procedure stops when the first signs of quality change appear. Therefore, the resulting
failures can be considered as early-stage faults.

The first case study is about join bearing fault detection caused by loosening in the fastening screws, commonly caused by
prolonged use of the machine. Products resulting from 3D printers with this failure present surface disturbances as shown in
Fig. 3.

Faults can occur in any of the rods associated with an arm, as well as in any of its ends. In this way, 12 faults (2 rods � 2
ends � 3 arms) of this type could be configured (plus the normal condition, named P) according to their location as shown in
Table 1. Each failure was artificially created by loosening of 0.7 mm in the screw (2 turns).



Fig. 2. Test bed of the 3D printer.
4.1.2. Case study 2: Belts
The second case study is fault detection in synchronous belts. This type of failure is also due to long periods of use of the

machine, causing an additional stretch in the material of the belts. It produces additional oscillations when high acceleration
braking is required, which results in a final product of low quality detail.

To obtain a dataset under this type of failure, 1.5 mm of belt was loosened from its optimal clamping position as shown in
Fig. 4. Three fault conditions were obtained, one for each synchronization belt, named as M;N and O for arm 1, 2 and 3,
respectively. As in the previous case, the normal condition of the machine is also available.
4.2. Experimental setup for comparisons

From the three multidimensional time series with length 32400 obtained under normal condition of the printer, two of
them were used for training and one for testing. Then, the process described in SubSection 2.1 was applied to increase the
size of the datasets with sl ¼ 1620 (32400/20) to obtain time series corresponding to a complete circle, and ss ¼ 10. From
this, a training dataset with 6158 examples and a test dataset with 3079 examples are obtained under normal condition
of the machine. Similarly, two signals of each fault condition were used to create the calibration set and one for the test
set after applying them the same procedure.
4.2.1. Feature extraction
The models to be compared to our approach have difficulties in dealing with common representations of signals in

domains such as time, frequency and/or time–frequency, therefore, as it was proposed in the methodology presented in
[49], the crest factor, shape factor, absolute average amplitude, square root amplitude, kurtosis, variance, clearance factor,
impulse indicator, and skewness factor were instead used as condition indicators for each of the 6 available signals in every
example represented in the three domains.

There are 32 sub-signals obtained through the wavelet packet decomposition procedure until level 5 for the time–fre-
quency representation, and nine condition indicators were obtained from each of these sub-signals. This results in a features
vector of length 9 for time, same for frequency and, finally, another of length 288 for time–frequency domain, resulting in a
vector of length 306 for each signal. Then, six vectors (one for each channel of the sensor) were fused into one with 1836
features to build a general representation of each available sample in the dataset.



Fig. 3. Example of fault in a join bearing.

Table 1
Simulated faulty conditions on join bearings.

Fault code Arm End Rod

A 1 Base Left
B 1 Base Right
C 1 Rail Left
D 1 Rail Right
E 2 Base Left
F 2 Base Right
G 2 Rail Left
H 2 Rail Right
I 3 Base Left
J 3 Base Right
K 3 Rail Left
L 3 Rail Right

Fig. 4. Example of fault in a synchronization belt.
4.2.2. Compared approaches
As in our proposal, all the compared approaches use a model for the learning of condition features followed by a detection

function. The hyperparameters of both elements were selected using the CVRS described in Section 3.2 with 128 candidates



and 10 folds. This configuration highly decreases the variance in similar applications of hyperparameter search in Deep
Learning-based models [45].

The compared methods can be grouped according to condition features learning in: Traditional Machine Learning, Deep
Learning. and Adversarial (our proposal) approaches. More details about the methods and their specific hyperparameters are
provided below.

In addition to OCSVM, also the isolation Forest method (iForest) [50] has been evaluated as an alternative for the decision
function for all the approaches. Table 2 summarizes the probability distribution sampled for each hyperparameter candi-
dates of OCSVM and iForest in the CVRS.

Traditional Machine Learning
The first two comparison approaches were the robust OCSVM [51], and the anomaly isolation using iForest [52]. For both

models, the inputs were the condition indicators previously presented. For OCSVM, a decision function is constructed
according to Eq. (26) from the modeling of the normal behavior profile of the machine.

On the other hand, iForest seeks to isolate an example under fault conditions under the hypothesis that it requires fewer
nodes in a set of random trees to be isolated than compared to those required by the examples in normal conditions. Like
OCSVM, the random trees are created only with examples from normal condition.

Deep Learning
The next comparative approach is based on Auto-Encoders. This method has recently been evaluated for anomaly detec-

tion tasks [53]. Its architecture consists of two connected neural networks, an encoder and a decoder. The decoder input is the
encoder output, commonly called code. This two networks are optimized together to minimize the error between the deco-
der output and the encoder input. Then, the encoder is optimized to map its input to an optimal code from which its input
can be regenerated with the decoder (inverse function). Under this premise, the encoder is able to capture the data distri-
bution in the code space.

From this idea, a fault detection model can be created with the following steps:

1. Optimize an autoencoder with the condition indicators of the training dataset.
2. Discard the decoder and map the training dataset with the optimized encoder.
3. Create a decision function based on OCSVM or iForest.
4. Evaluate the condition indicators-based new examples by mapping them to the code space with the encoder and evaluate

the decision function to assess the 3D printer condition.

By following these steps and using two most popular techniques for optimizing autoencoder (denoising Auto-Encoder
[54], dAE, and sparse Auto-Encoder [55], sAE), four encoder models were created: dAE + OCSVM (dAESVM), sAE + OCSVM
(sAESVM), dAE + iForest (dAEForest) and sAE + iForest (sAEForest). In addition to the detection function hyperparameters,
CVRS also tunes the hyperparameters of these autoencoder-based models listed in Table 3 with their probability distribu-
tions. Adam algorithm [56] optimized these models with a base learning rate and the number of epochs of 0.0002 and
1000, respectively. Adam is popular for training Deep Learning models due to adaptively compute an individual learning rate
for each hyperparameter in the model, providing greater robustness in its selection.

Adversarial approach
To evaluate the incidence of multisensory fusion, three more models were created from our proposal: fusing only the

velocity signals (fCGAE1), fusing only the angle signals (fCGAE2), and fusing both velocity and angle signals (fCGAE3). Addi-
tionally, the incidence of replacing the SVM-based deep features fusion with anomaly isolation based on iForest was also
evaluated, obtaining three more models (named as fCGAE1F, fCGAE2F and fCGAE3F). In addition to the previous models
whose decision function hyperparameters are tuned by CVRS, we also evaluate the worse situation where a calibration
set is not available. For this, we consider fCGAE3u as fCGAE3 but replacing CVRS by the unsupervised methods for tuning
c and m from Section 3.3.

In all cases, 1DCNN and 1DTCNN architectures were configured with the procedure of Section 3.1 that resulted in the
architectures described in Tables 4–6 for Enc;Gen and Dis models, respectively.

The activation function of each layer is the leaky ReLU [57]. However, last layers for Enc;Gen and Dis models used linear
activation functions. The input of Encwas a raw signal with shape 1620� 1. Assuming a feature space of 100 dimensions, the
input for Gen and output of Enc is a vector with shape 1� 100. For the input of Dis, firstly the output of Enc was projected
with a fully connected neural layer to a shape of 1620� 1, and then it was joined to the input raw signal of the Gen output as
it corresponded. The result was an input with shape 1620� 2 for the Dis model.

Adam optimization algorithm [56] was set, as before, for training the models with a learning rate and number of epochs of
0.0002 and 1000, respectively. For these cases, the batch size was set to the maximum allowed value in the GPU GEFORCE
GTX 1080 used for training the models (10 layers for Gen; Enc and Dis) as suggested in [58], i.e., 128 examples.



Table 2
Probability distributions of OCSVM and iForest hyperparameters.

Detection function Hyperparameter distribution min value max value type

OCSVM c loguniform 0.001 0.5 continuous
m loguniform 0.001 0.5 continuous

iForest contamination loguniform 0.001 0.5 continuous
features(%) uniform 1 100 continuous
estimators uniform 1 500 discrete

Table 3
Probability distributions of AE hyperparameters.

Hyperparameter distribution min value max value type values

layers loguniform 1 10 discrete increments of 1
neurons uniform 10 2000 discrete increments of 10
corruption level (dAE) loguniform 0.0 1.0 continuous –
sparse regularization (sAE) uniform 0.0 1.0 continuous –
activation function uniform – – discrete ReLU; LeakyReLU; tanh; sigmoid
batch size uniform – – discrete 32, 64, 128, 256
normalization uniform – – discrete standard, [0,1], [-1,1]

Table 4
Architecture of 1DCNN for Enc model.

No. kernel length/stride output channels output shape padding Normalized?

1 4/2 2 810� 2 same yes
2 4/2 4 405� 4 same yes
3 3/2 8 202� 8 valid yes
4 4/2 16 101� 16 same yes
5 3/2 32 50� 32 valid yes
6 4/2 64 25� 64 same yes
7 3/2 128 12� 128 valid yes
8 4/2 256 6� 256 same yes
9 4/2 512 3� 512 same yes
10 3/2 100 1� 100 valid no

Table 5
Architecture of 1DTCNN for Gen model.

No. kernel length/stride output channels output shape padding Normalized?

1 3/2 512 3� 512 valid yes
2 4/2 256 6� 256 same yes
3 4/2 128 12� 128 same yes
4 3/2 64 25� 64 valid yes
5 4/2 32 50� 32 same yes
6 3/2 16 101� 16 valid yes
7 4/2 8 202� 8 same yes
8 3/2 4 405� 4 valid yes
9 4/2 2 810� 2 same yes
10 4/2 1 1620� 1 same no
5. Results and discussion

5.1. Hyperparameters

Figs. 5 and 6 highlight the best hyperparameter configuration in the landscapes of the search spaces for the join bearing
and belt study cases, respectively. These 3D landscapes can be created uniquely for models depending on two hyperparam-
eters (c and m in our models), and they were generated by the 128 hyperparameter candidates sampled for the CVRS.
Although the search range is [0.001, 0.5] for both hyperparameters, we restrict the area in the figures to only show the most
interesting part, where most of the changes around the optimum can be appreciated. The landscapes illustrate a non-linear
search space mostly depending on c, meanwhile near the optimum values can be obtained for an extended m range.



Table 6
Architecture of 1DCNN for Dis model.

No. kernel length/stride output channels output shape padding Normalized?

1 4/2 2 810� 2 same yes
2 4/2 4 405� 4 same yes
3 3/2 8 202� 8 valid yes
4 4/2 16 101� 16 same yes
5 3/2 32 50� 32 valid yes
6 4/2 64 25� 64 same yes
7 3/2 128 12� 128 valid yes
8 4/2 256 6� 256 same yes
9 4/2 512 3� 512 same yes
10 3/2 1 1� 1 valid no

Fig. 5. Landscape of the search space in join bearing study case.
Concretely, the highest accuracy values are obtained with a small c, suggesting a simple decision boundary (possibly linear
or near-linear). Contrarily, the balanced accuracy of the fCGAE1 landscape remains in a low value independent on m and c.

Table 7 shows the architectures of the Deep Learning-based models found by the CVRS. Although the number of layers
can be extended to 10, in most cases the selected number is lower than 4, thus reducing the model complexity and avoiding
data overfitting in the learning process. ½0;1� normalization was the winner in all the cases, something congruent with the
domain of the leaky ReLU activation function.

Tables 8 and 9 summarize the hyperparameter search results through the CVRS with OCSVM and iForest decision func-
tion, respectively. Accuracy and margin columns together represent a confidence interval at 95% of confidence level over the
mean of the balanced accuracies obtained in the cross-validation. The results show that the optimal values of m are close to
zero, which reinforces our fundamental knowledge that the training examples belong to the normal condition, and there are
no examples that were initially misclassified. This suggests the healthy/faulty data points are highly separable in the feature
space.

Also, Table 8 presents hyperparameter configuration for fCGAE3u obtained with the unsupervised methods. Contrarily to
the other approaches, fCGAE3u has the same m and c for both study cases since the unsupervised search methods only
depend on the training set with normal condition signals.

With iForest decision function, dAEForest and sAEForest have a low mean balanced accuracy for both study cases. These
models also have high contamination evidencing a correlation between these two values. Then, we can conclude that the



Fig. 6. Landscape of the search space in belt study case.

Table 7
Model architectures selected by CVRS of deep learning-based approaches.

Bearing Belt

Hyperparameter dAESVM sAESVM dAEForest sAEForest dAESVM sAESVM dAEForest sAEForest

layers 4 3 5 4 3 2 3 3
neurons [1290,

870,550, 300]
[1610,

570,380]
[1030, 770,
620520, 400]

[1500,
1390,990, 800]

[1250,
1100,920]

[1590,
1450]

[1680,
1540,1120]

[1350,
1260,1200]

corruption level
(dAE)

0.01 – 0.011 – 0.01 – 0.012 –

sparse
regularization

(sAE)

– 0.12 – 0.11 – 0.11 – 0.1

activation function leaky ReLU leaky ReLU leaky ReLU leaky ReLU leaky ReLU leaky
ReLU

leaky ReLU leaky ReLU

batch size 128 256 128 256 128 256 128 256
normalization [0, 1] [0, 1] [0, 1] [0, 1] [0, 1] [0, 1] [0, 1] [0, 1]
networks of these models are not as good as those from the other models to extract features of the normal condition or the
input features. The same is observed for fCGAE1F, but only in the belt study case. It suggests that velocity signals have less
information about faults in belt.

5.2. Performance for case study 1

Comparative results of the success rate (detection rate) for the SVM-based models are presented in Table 10. The best
normal condition detection rate of the models derived from our approach is obtained with fCGAE2 with a value of 97.99%
compared to 93.44% and 96.98% obtained with fCGAE1 and fCGAE3, respectively. However, the worst detection rate with
fCGAE1 is 77.59% in condition H, and 52.22% for fCGAE2 in condition C, while fCGAE3 has a perfect failure detection rate.
This shows that fusing velocity and angle signals contributes to the detection of other types of faults that are not easily
reflected by using only one type of signal. Clearly, this fusion has greater advantages at the cost of a minimal decrease in
the detection rate of P. fCGAE3u obtains the performance closest to fCGAE3 with a detection rate of 90.16% for P condition
and perfect failure detection. It is important to point out that the hyperparameters of this model were unsupervisedly



Table 8
Hyperparameter search results for models with a OCSVM decision function.

Case of study model c m accuracy(%) margin(%)

Bearing fCGAE1 0.0042 0.0038 93.77 1.88
fCGAE2 0.0013 0.0018 96.20 2.56
fCGAE3 0.0010 0.0090 98.42 1.88
fCGAE3u 0.0024 0.0110 – –
OCSVM 0.0010 0.0044 90.20 3.03
dAESVM 0.0052 0.0101 82.64 2.15
sAESVM 0.0058 0.0297 82.15 1.96

Belt fCGAE1 0.0039 0.0016 50.44 2.02
fCGAE2 0.0025 0.0039 96.70 3.24
fCGAE3 0.0020 0.0111 91.86 3.70
fCGAE3u 0.0024 0.0110 – –
OCSVM 0.0010 0.0017 90.09 2.89
dAESVM 0.0060 0.0085 81.56 4.77
sAESVM 0.0058 0.0832 81.46 4.27

Table 9
Hyperparameter search results for models with a iForest decision function.

Case of study model contamination features(%) estimators accuracy(%) margin(%)

Bearing fCGAE1F 0.0924 38.72 183 90.85 2.67
fCGAE2F 0.0109 22.93 194 95.20 1.71
fCGAE3F 0.0046 44.03 186 98.68 1.23
iForest 0.0175 8.26 196 96.88 0.90
dAEForest 0.2327 79.49 161 73.14 6.26
sAEForest 0.2280 66.17 129 72.33 6.28

Belt fCGAE1F 0.3014 8.58 3 50.53 5.00
fCGAE2F 0.0522 58.23 177 94.94 4.64
fCGAE3F 0.0605 36.79 121 87.92 2.28
iForest 0.0460 8.85 171 94.88 2.89
dAEForest 0.1799 54.25 197 74.89 7.74
sAEForest 0.1615 17.25 187 73.32 4.06

Table 10
Success rate of SVM-based models applied to join bearing faults.

Condition fCGAE1 fCGAE2 fCGAE3 fCGAE3u OCSVM dAESVM sAESVM

P 93.44 97.99 96.98 90.16 75.61 84.38 81.84
A 100.0 100.0 100.0 100.0 100.0 98.77 98.73
B 94.06 100.0 100.0 100.0 100.0 73.30 72.04
C 100.0 52.22 100.0 100.0 100.0 80.16 85.25
D 99.90 100.0 100.0 100.0 100.0 97.43 95.13
E 100.0 100.0 100.0 100.0 100.0 80.32 77.85
F 96.82 100.0 100.0 100.0 100.0 61.64 83.79
G 87.40 100.0 100.0 100.0 100.0 80.22 76.19
H 77.59 100.0 100.0 100.0 100.0 96.04 96.59
I 80.74 100.0 100.0 100.0 100.0 94.02 96.62
J 95.97 100.0 100.0 100.0 100.0 85.90 95.78
K 86.68 100.0 100.0 100.0 100.0 68.33 73.34
L 94.38 100.0 100.0 100.0 100.0 54.47 59.60
calibrated without a calibration set with signals in failure conditions, showing that it is applicable under restricted data
availability. OCSVM presents almost 25% of false alarms increasing the maintenance cost in a real situation. On the other
hand, dAESVM and sAESVMmodels have some failure detection rates close to 50% with acceptable performance in the detec-
tion of P condition. This implies that almost half of the examples of faulty conditions have been classified as healthy (normal)
condition, which is not acceptable in a fault detection system.

Table 11 shows the detection rate for iForest-based models. As before, the advantages of fusing multi-channel signals are
appreciated in the fCGAE3F model. In this model also the detection rate of P increases at the expense of its decrease in C and I
to 91.43% and 68.30%, respectively. Likewise, a general decrease in the failure detection rates is appreciated for the fCGAE1F
and fCGAE2F models. This highlights the advantages of using SVM versus iForest for fault detection in 3D printers.

The above becomes even more evident when analyzing the results obtained with the iForest model. Although the detec-
tion rate has been increased for P, the failure detection rates have been in general decreased up to reach unacceptable values



Table 11
Success rate of iForest-based models applied to joint bearing faults.

Condition fCGAE1F fCGAE2F fCGAE3F iForest dAEForest sAEForest

P 87.40 98.80 99.58 94.84 72.39 73.69
A 100.0 100.0 100.0 100.0 98.67 96.07
B 94.80 100.0 100.0 100.0 73.47 57.29
C 99.97 6.72 91.43 100.0 80.77 62.68
D 99.32 100.0 100.0 100.0 95.78 87.33
E 100.0 100.0 100.0 59.89 78.17 60.41
F 96.30 100.0 99.06 100.0 51.19 64.05
G 87.11 100.0 100.0 84.77 82.10 68.40
H 78.17 100.0 100.0 100.0 94.74 82.59
I 78.89 86.72 68.30 97.43 90.16 82.04
J 92.17 100.0 100.0 98.57 90.58 72.23
K 86.29 100.0 100.0 90.81 67.26 53.07
L 93.57 100.0 100.0 99.61 57.65 43.46
such as 59:89% in the E condition. This indicates that SVM can generate better discrimination functions in complex repre-
sentation spaces.

5.3. Performance for case study 2

Tables 12 and 13 show the detection rate for models based on SVM and iForest, respectively, for case study 2. Again, the
best results are obtained by combining the two types of signals (six channels), independently whether SVM or iForest is used.
The disadvantage of using only velocity signals (fCGAE1 and fCGAE1F) becomes more evident, where the performance
decreases for the detection of all the faults of the case study. These results present even worse performance than autoen-
coder based models, that used features extracted from both velocity and angle signals.

As previously, fCGAE3u has an excellent performance considering the data restrictions it was created with. It is in third
position in the best performances, surpassing all iForest-based models and only behind of fCGAE3 and fCGAE2.

To sum up, overall performance for the two study cases gives advantage to fCGAE3. Therefore, greater generalization
capacity is appreciated for models that use SVM. Results from dAEForest and sAEForest in conjunction with dAESVM and
sAESVM for both cases show that the obtained feature space is not informative enough to detect some faults for 3D printer.
fCGAE3u gives a useful alternative in the worse data restriction scenario.
6. Conclusions

This work has proposed a newmethod for the construction of a fault detection model for 3D printers from the fusion of 3-
axis velocity and angle signals obtained exclusively from normal condition. After the signal acquisition phase, a procedure
for increasing the number of examples was applied over the healthy training dataset. With this augmented data, the con-
struction of six 1DCNN encoder models was carried out with a BiGAN-based approach, and their outputs were fused into
an OCSVM model optimized to create a normal condition profile with the available data. The resulting model was able to
correctly discriminate new examples as healthy or faulty condition.

The proposed approach has been evaluated on two cases in 3D printers: fault detection of 12 different join bearings, and
fault detection in 3 synchronous bands. Additionally, the method was compared with multiple methods reported in litera-
ture for anomaly detection, and also with the resulting models without fusing different type signals. The results allow us to
conclude the following points:

� 1DCNN type encoders created with a GAN-based approach allow to build a deep feature space from raw signals without
any pre-processing that is informative enough for the fault detection task, surpassing feature engineering-based
approaches and autoencoders.

� The feature space created by the encoders can be used by models that characterize the normal condition (SVM) as well as
by models that characterize the anomaly (iForest), with acceptable results in both cases.

� The fusion of multi-channel signals gives the resulting model a better generalization capacity for the detection of various
faults, compared to that obtained from models of a single type of signals.

� A detection model with excellent performance can be created without a calibration dataset using the proposed heuristic
for the network architectures together unsupervised approaches for tuning hyperparameters.

As future work, the exploration of the feature space is proposed for the identification of the type of failure and the possible
assessment of its severity. Also, although this work is devoted to including an additional trial stage for detecting faults, which
is feasible in most of the 3D printing applications, the extension of the proposed method to real-time 3D printer monitoring
is an interesting topic to be explored in the future. This extension process should consider the intrinsic complexity added by
non-stationary time series measured in a 3D printer working under variable operating conditions.



Table 12
Success rate of SVM-based models applied to belt faults.

Condition fCGAE1 fCGAE2 fCGAE3 fCGAE3u OCSVM dAESVM sAESVM

P 94.02 95.81 92.82 90.16 75.38 80.55 78.56
M 14.16 100.0 100.0 100.0 100.0 79.05 80.68
N 1.20 92.30 100.0 100.0 100.0 87.04 88.37
O 2.34 100.0 100.0 100.0 100.0 100.0 100.0

Table 13
Success rate of iForest-based models applied to belt faults.

Condition fCGAE1F fCGAE2F fCGAE3F iForest dAEForest sAEForest

P 70.09 90.19 90.09 89.90 79.96 82.14
M 31.83 100.0 100.0 95.88 69.99 70.87
N 22.15 95.41 99.97 100.0 80.09 75.35
O 22.09 100.0 100.0 100.0 100.0 100.0
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