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The lack of faulty condition data reduces the feasibility of supervised learning for fault detection or
fault severity discrimination in new manufacturing technologies. To deal with this issue, one-class
learning arises for building binary discriminative models using only healthy condition data. However,
these models have not been extrapolated to severity discrimination. This paper proposes to extend
OCSVM, which is typically used for fault detection, to 3D printer fault severity discrimination. First, a
set of features is extracted from a set of normal signals. An optimized OCSVM model is obtained by
tuning the kernel and model hyperparameters. The resulting models are evaluated for fault detection
and fault severity discrimination using a proposed performance evaluation approach. Experimental
comparisons for belt-based faults in 3D printers show that the distance to the hyperplane has the
information to discriminate the severity level, and its use is feasible. The proposed hyperparameter
optimization technique improves the OCSVM for fault detection and severity discrimination compared
to some other methods.
. Introduction

Fault detection and severity assessment are two fundamen-
al tasks of system health management. In this context, fault
anomaly) detection is the determination of whether a system is
n normal working condition or some component contains a fault.
nomaly detection has been extensively studied in such fields as
bnormal activity recognition [1], communication networks [2],
alicious file detection [3], fault detection in power transmission

ines and distribution systems [4], and industrial condition mon-
toring [5]. In the last field, although model-based approaches
ave been proposed [6], the current trend is to use data-driven
echniques for reasons of flexibility and accuracy [7].

In data-driven approaches, a detection model is built using
ata collected from the monitored system. Informative features
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are extracted from raw signals. A classifier is then created us-
ing supervised, semi-supervised [8], unsupervised, or one-class
learning [9]. Although supervised learning is superior to one-
class learning in diverse applications [10,11], it only applies when
labeled data in both normal and abnormal conditions can be
obtained from the system, and it is usually expensive. Semi-
supervised and unsupervised learning typically require fewer la-
beled examples [12], but still need data in every system condition.
Evolving approaches [13] address the issue of data availability in
the training stage by recognizing new patterns in the testing stage
and including them in the base of knowledge. These approaches
require retraining of classification models after identifying a new
cluster, which could be computationally expensive. One-class
learning only uses data in normal condition to build the classifier,
showing clear advantages in the absence of abnormal data and
requiring less computation.

The popular OCSVM [14] is a one-class learning model that
has shown versatility and success in combination with feature
extraction techniques for different applications [15,16]. It aims
to build a decision hyperplane in a projected space of the input
features. The hyperplane has samples in normal condition on
one side, and abnormal ones on the other. The hyperplane is

optimized using only data in normal condition.

https://doi.org/10.1016/j.isatra.2020.10.036
http://www.elsevier.com/locate/isatrans
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Nomenclature

Symbols

∥x∥1 L1 norm of x
∥x∥2 L2 norm of x
α, β Lagrange multipliers
· Inner product
γ Kernel hyperparameter
Rd Space of input examples
Rn Feature space
RT Signal space of length T
∇ Gradient operator
ν OCSVM hyperparameter
⊘ Element-wise division
ρ Offset of hyperplane
⊤ Transpose operator
ξi Slack variable of ith training example
w Vector normal to hyperplane

Abbreviations

1DCNN One-dimensional convolutional neural
network

1DDNN One-dimensional deconvolutional neu-
ral network

ase Average severity error
BiGAN Bidirectional generative adversarial

network
FNR False-negative rate, rate of normal con-

dition examples classified as faulty
condition examples

FPR False-positive rate, rate of faulty con-
dition examples classified as normal
condition examples

HVAC Heating, ventilation, and
air-conditioning system

OCSVM One-class support vector machine
RBF Radial basis function

OCSVM has the advantage that few hyperparameters (typically
wo for OCSVM with an RBF kernel) are required from the user.
n industrial condition monitoring, grid searching combined with
ross-validation is most often used for hyperparameter optimiza-
ion. It has been successfully applied to supervised learning [17,
8], but cannot be used with one-class learning, considering the
navailability of faulty data. For example, grid searching has
een used to optimize OCSVM hyperparameters in bearing fault
etection [19,20] and HVAC anomaly detection [21], but such
pplications require a validation set with abnormal data, which
iolates the restriction of one-class learning.
OCSVM hyperparameter configuration is most often accom-

lished by setting them to specific values or by rule of thumb.
uch approaches have been applied to fault detection of com-
lex industrial processes [22,23], bearing fault detection [24],
imulated dynamical system anomaly detection [25], and HVAC
ystem fault detection [26,27]. However, they suffer from lack
f evidence that the hyperparameters are optimally configured,
ence better performance could be possible. Considering the lack
f anomalous data in OCSVM applications, heuristics-based hy-
erparameter optimization methods have been proposed. Specif-
cally, [28] proposed the searching of γ by optimizing the ratio
etween the variance and a metric of the kernel matrix. [29]
2

presented a method for optimizing ν and γ by a trade-off be-
tween the number of support vectors and the maximization of the
objective function. [30] introduced an heuristic based on a metric
over the Gaussian space for optimizing γ . The previous works
have shown a high performance in synthetic and applications
different to severity discrimination, and their evaluation was
performed only for RBF kernels. Therefore, other heuristics or the
generalization of the above methods to other kernels are open
study field.

Fault severity discrimination is a more advanced task that
requires the classification of a severity condition for a detected
fault. It has been studied from a supervised learning perspective
in applications of a wind turbine gearbox [31], helical gear-
box [32,33], and bearings [34]. As before, data availability for all
severity levels is assumed, but is infeasible in practice.

From the above, we identify three issues. (i) Information about
the fault severity that one-class models can contain has not been
exploited. Specifically, information from the distance from a sam-
ple to the hyperplane in OCSVM could be used as a severity level
discriminator for a set of features also learned using a one-class
training set. (ii) OCSVM hyperparameter optimization has not
been addressed beyond fault detection. Supervised approaches
based on grid search are useless without an evaluation set (faulty
data) because an evaluation metric for the one-class classifier
without this set has not yet been defined. (iii) Unsupervised
optimization approaches have been restricted to the RBF kernel
in applications different to fault severity discrimination.

This work introduces hyperparameter optimization
approaches for γ and ν of OCSVM-based models in the context of
3D printer fault detection and fault severity discrimination. Our
main contributions are summarized as follows: (i) a previously
reported unsupervised optimization method for the RBF kernel
hyperparameter is formally generalized and applied to other
kernels. (ii) an unsupervised method is introduced to optimize
the OCSVM hyperparameter; and (iii) a methodology to eval-
uate OCSVMs created with different kernels and optimization
approaches in the context of fault severity discrimination is
provided.

The rest of the paper is organized as follows. Section 2 intro-
uces the formulation of OCSVM. Section 3 presents the proposed
CSVM hyperparameter optimization, and the methodology is
etailed in Section 4. In Section 5, the 3D printer test bed and
xperimental setup for comparisons are introduced. Results are
hown in Section 6. We relate some conclusions in Section 7.

. Preliminaries

An OCSVM description as the core of a fault detection model is
resented, with details on its optimization, the kernel trick, and
ome popular kernels.

.1. OCSVM

One-class support vector machines were first proposed [14]
o address the one-class learning task using a similar frame-
ork to support vector machines [35] in binary classification.
he fundamental idea is to build a hyperplane that optimally
eparates the available one-class dataset from the origin in a
igh-dimensional feature space. In this context, the optimum
efers to the hyperplane that maximizes its margin (distance) to
he origin, while keeping most of the one-class examples. In this
ay, a new example can be classified as positive (belonging to the
vailable class) if it is over the hyperplane (far from the origin),
nd negative otherwise.
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Formally, let x ∈ Rd be an example to classify, and let φ :
d

→ Rn be a nonlinear mapping function from the input to the
eature space. A decision function to classify x is defined by

(x) = sgn(w · φ(x) − ρ), (1)

here sgn(z) is the sign function, which returns 1 when z ≥

, and −1 otherwise, and w and ρ are the parameters of the
yperplane in Rn, where w · y − ρ = 0.
Let {xi}mi=1 be a one-class training set. Then the optimal hyper-

lane parameters are found by solving the following optimization
roblem:

min
,ρ,ξ

1
2
∥w∥

2
+

1
νm

m∑
i=1

ξi − ρ

s.t. w · φ(xi) ≥ ρ − ξi, i = 1, . . . ,m
ξi ≥ 0,

(2)

where the slack variables ξ = [ξ1, . . . , ξm] allow for the presence
of anomalous examples in the training set, and ν limits the
fraction of training examples classified as anomalous.

The method of Lagrange multipliers can be used to solve
(2), enabling the transformation of the problem to the primal
problem:

min
w,ρ,ξ

max
α,β

L(w, ρ, ξ, α, β)

s.t. αi ≥ 0, i = 1, . . . ,m
βi ≥ 0, i = 1, . . . ,m,

(3)

where α = {α1, . . . , αm} and β = {β1, . . . , βm} are Lagrange
multipliers, and L(·) is the Lagrangian, defined as

L =
1
2
∥w∥

2
+

1
νm

m∑
i=1

ξi−ρ−

m∑
i=1

αi[w·φ(xi)+ξi−ρ]−

m∑
i=1

βiξi. (4)

Instead of solving (3), it is computationally convenient to
eformulate the problem in its dual version,

ax
α,β

min
w,ρ,ξ

L(w, ρ, ξ, α, β)

.t. αi ≥ 0, i = 1, . . . ,m
βi ≥ 0, i = 1, . . . ,m,

(5)

hich has the same solution if the Karush–Kuhn–Tucker (KKT)
onditions are met for the Lagrangian [36], which is the case with
4).

Application of the KKT conditions, ∇w,ξ,ρL = 0, to (5) results
n the following equations:

wL = w −

m∑
i=1

αiφ(ξi) = 0 H⇒ w =

m∑
i=1

αiφ(ξi) (6)

∇ξ L =
1

νm
− α − β = 0 H⇒ β =

1
νm

− α (7)

∇ρL = −1 +

m∑
i=1

αi = 0 H⇒

m∑
i=1

αi = 1. (8)

Combining the constraints in (5) with (7) results in the restriction
for α:

0 ≤ αi ≤
1

νm
. (9)

Let L∗ be the min L from the substitution of (6), (7), and (8) in
4),

∗
= −

1
2

m∑ m∑
αiαjφ(xi)⊤φ(xj), (10)
i=1 j=1

3

and combine that with (8) and (9), so the dual optimization
problem becomes

max
α

L∗(α)

s.t. 0 ≤ αi ≤
1

νm
, i = 1, . . . ,m

m∑
i=1

αi= 1,

(11)

which is simpler than the primal optimization problem.

2.2. Kernel trick and decision function

Let φ(xi) · φ(xj) = φ(xi)⊤φ(xj) be the inner product in the
eature space of the projected xi and xj. The kernel trick defines
kernel function k(xi, xj) = φ(xi) · φ(xj) to avoid an explicit
rojection to the feature space. Considering k(·, ·) in (11), the dual
ersion is

in
α

1
2

m∑
i=1

m∑
j=1

αiαjk(xi, xj)

.t. 0 ≤ αi ≤
1

νm
, i = 1, . . . ,m

m∑
i=1

αi= 1,

(12)

here φ(·) is not required, and an algorithm [14] exists to solve
he problem.

The decision function in (1) can be reformulated to be inde-
endent from w and φ(·) by replacing (6) and applying the kernel
rick to obtain

(x) = sgn(
m∑
i=1

αik(xi, x) − ρ), (13)

here the elements xi with αi > 0 are called support vectors. It
s easy to check that the hyperplane passes through the support
ectors, or equivalently,

=

∑
αi ̸=0

αik(xi, xs), ∀xs. (14)

.3. Kernels

A function can be used as a kernel only if it is positive-definite.
mong the most used functions that fulfill this condition we can
ind:

linear: k(xi, xj) = xi · xj (15)

cosine: k(xi, xj) =
xi · xj

∥xi∥ ∥xj∥
(16)

RBF: k(xi, xj) = e−γ ∥xi−xj∥2 (17)

Laplacian: k(xi, xj) = e−γ ∥xi−xj∥1 (18)

dditive χ2
: k(xi, xj) = −

∑
(xi − xj)2 ⊘ (xi + xj) (19)

χ2
: k(xi, xj) = e−γ

∑
(xi−xj)2⊘(xi+xj), (20)

here γ is the kernel hyperparameter. The use of additive χ2 and
2 kernels is subject to xi ≥ 0 and xj ≥ 0.
Hyperparameters ν and γ should be determined based on the

ataset properties before building the OCSVM model, although
e usually rely on rule of thumb.
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3. Hyperparameter optimization

In the optimization of γ and ν, we extend the approach of
FN (distances from training samples to their farthest neighbors
nd distances to their nearest neighbors) [37], which was initially
roposed only for RBF kernels, for γ optimization in other kernels.
histogram-based approach is introduced to optimize ν.

.1. γ optimization

BF kernel
The DFN method [37] considers the optimal γ value that

aximizes the difference between the farthest element average
istance and the nearest element average distance of the dataset
rojected by φ, i.e., the objective function is defined as

(γ ) =
1
m

m∑
i=1

max
j

∥φ(xi)− φ(xj)∥2
−

1
m

m∑
i=1

min
j̸=i

∥φ(xi)− φ(xj)∥2.

(21)

hus g(γ ) for the RBF kernel is:

RBF (γ ) =
2
m

m∑
i=1

e−γ minj̸=i ∥xi−xj∥2 − e−γ maxj ∥xi−xj∥2 . (22)

Expansion for Laplacian and χ2 kernels
In (21), ∥φ(xi) − φ(xj)∥2

= k(xi, xi) + k(xj, xj) − 2k(xi, xj) from
the expansion of the L2 norm and the kernel trick. Also, for
Laplacian and χ2 kernels, we have k(xi, xi) = k(xj, xj) = 1, hence
∥φ(xi) − φ(xj)∥2

= 2 − 2k(xi, xj). Replacing the previous term in
(21) and solving gives

g(γ ) =
2
m

m∑
i=1

max
j̸=i

k(xi, xj) −
2
m

m∑
i=1

min
j

k(xi, xj). (23)

Finally, the g(γ ) function for each γ -dependent kernel is ob-
ained by replacing (18) and (20) for Laplacian and χ2 kernels,
espectively, i.e.,

(γ ) =
2
m

m∑
i=1

e−γNear(xi) −
2
m

m∑
i=1

e−γ Far(xi), (24)

where:

Near(xi) = min
j̸=i

∥xi − xj∥1, for Laplacian (25)

Far(xi) = max
j

∥xi − xj∥1, for Laplacian

Near(xi) = min
j̸=i

∑
(xi − xj)2 ⊘ (xi + xj), for χ2 (26)

Far(xi) = max
j

∑
(xi − xj)2 ⊘ (xi + xj), for χ2.

3.2. ν optimization

By definition, the hyperparameter ν represents the percentage
of training elements considered out of the class, and it is com-
monly set to a small value, assuming a few outliers in the one-
class set. The positive–negative distance approach [38] estimates
this hyperparameter by iteratively incrementing it and choosing
the value that maximizes the average in- to out-class distance.
While this approach makes no assumptions about the data, it fails
to estimate ν when in- and out-class are not separable.

Without loss of generality, we propose an approach to esti-
mate ν without assuming there are few out-class samples in the
dataset. Consider that for a specific ν, the percentage of support
vector candidates of the OCSVMmodel is 1−ν, where both correct
4

and incorrect in-class examples are present. Because out-class
examples tend to be grouped, the incorrect in-class examples
are closest to the resulting hyperplane, and consequently, several
become support vectors. Thus, although the correct out-class
examples are successfully classified, they appear in the feature
space through sampling the less probable values for the same in-
class data distribution, i.e., they are in the tail of the in-class data
distribution.

However, proper configuration of ν minimizes the number
of out-class examples as support vectors. Then the correct out-
class examples have a different distribution and are not in the
distribution tail. Based on this observation, the optimization of ν
s summarized in Alg. 1.
ata: Dataset (D), kernel (k), inc , γ (if applicable)
esult: Optimal ν

= inc;
hile ν < 1 do
Create an OCSVM model for D with ν, γ , and k;
Hin = Histogram of in-class hyperplane distances;
Hout = Histogram of out-class hyperplane distances;
if Hout is not tail of Hin then

break;
else

ν = ν + inc;
end

end
Return: ν

Algorithm 1: ν estimation.
In Alg. 1, inc is the increment of ν for each iteration (usually,

inc = 0.05), and γ is considered only if the kernel requires it. The
‘‘is not tail of’’ comparison verifies the continuity between the Hin
and Hout histograms. For simplicity, this verification is performed
by comparing the last bin of Hout , H last

out , with the first one of Hin,
first
in . The rule that Hout is not the tail of Hin if H last

out > H first
in works

for us, but more complex heuristics can also be evaluated.

4. Methodology

OCSVM-based models are learned using only datasets from
normal condition, and this is one of the most often used frame-
works for fault detection. In this case, the binary decision function
introduced in (13) allows us to determine whether a new exam-
ple belongs to normal condition (+1) or faulty condition (−1).
However, the information given by the position of the example
in the feature space could also be exploited as a fault severity
discriminator. It is useful to study the relationship between the
perpendicular distance from an example to the hyperplane under
different fault severity levels, and how different configurations of
the OCSVM hyperparameters (optimized vs. not optimized) and
kernels determine the model performance beyond fault detection.

We introduce a methodology to compare OCSVM models in
the context of fault detection and severity discrimination (see
Fig. 1). The methodology can be summarized in the following
steps.

1. Signal acquisition: We suppose that we can sample repre-
sentatives (time-series) from a space S of signals produced
by a machine. These signals can be sampled from both
known and unknown severity conditions.

2. BiGAN-based modeling: An unsupervised BiGAN-based
feature extractor model [39] is built using only signals in
normal condition in the training stage. In the testing stage,
this model is used to extract features of signals in other
severity conditions.

3. Min–max normalization: The normalization parameters
are computed from normal signals and applied to normal-
ize training and testing datasets.
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Fig. 1. Methodology for OCSVM-based fault severity discrimination and model
performance evaluation.

4. OCSVM-based modeling: For each hyperparameter config-
uration and kernel, an OCSVM model is built from normal
signals. The resulting model is used to determine the dis-
tance of each new signal to the hyperplane in the feature
space.

5. Histograms and performance comparison: The unavail-
ability of samples from different severity levels in the train-
ing dataset does not allow to evaluate the model with the
classical classification metrics. Therefore, a novel evalua-
tion approach is proposed, i.e., by using samples of each
severity condition from step 1, the overlapping area in the
histogram of hyperplane distances is computed for each
model. Each histogram estimates the probability distribu-
tion of the distance given a severity condition. Then the
overlapping area represents the probability of confusing a
pair of severity conditions. Therefore, the best models for
fault severity discrimination have the smallest overlapping
areas.

4.1. Signal acquisition

Let C = {ci}Ki=1 be labels for the set of K severity levels. For
very c ∈ C , let sc ∈ RT be one time-series representative of the

machinery dynamics under condition c , with T sufficiently large.
he goal is to build two sets, Dtrain and Dtest, to respectively train

and test the models:

• Dtrain = {sc1,i}
m
i=1 is a set of m normal condition (c1) signals,

which are easily obtained from most types of machinery.
This set will be used for BiGAN-based model building (step
2), and a transformed version will be used for the remaining
training stages (steps 3 and 4).

• Dtest = {sci,j}
K ,M
i=1,j=1 is a set of M signals for every severity

level, including c1. It will be used to test only the models
created from Dtrain. Note that this set, with data from differ-
ent severity conditions, is unknown in the training phase,
and will be used only to evaluate the models.
5

4.2. BiGAN-based modeling

Let X ⊆ Rd be a feature space where the different time-series
of S can be represented. We aim to build an encoder function,
nc : S → X , that maps each element in S into a feature vector
∈ X .
One commonly used approach is to fix Enc by computing

statistical condition indicators from different domains of sc such
as time, frequency, or time–frequency. Among the most common
statistical indicators are RMS, standard deviation, kurtosis, and
Shannon entropy [40]. The resulting vectors in each domain are
concatenated to obtain a unique feature vector. The requirement
of significant knowledge about the most informative statistical
condition indicators regarding the severity level in the machinery
is the main drawback of the previous approach, which makes it
inapplicable to less-studied machinery such as 3D printers.

Another approach is supervised deep learning of the Enc func-
tion. A signal set containing examples from every severity level
is used to estimate an Enc function that can separate instances
within each severity level. Although this is the optimal approach,
it cannot be used because of the signal acquisition constraints in
machinery.

With this in mind, we propose to use a BiGAN to build Enc
using only Dtrain [39]. This approach combines two 1DCNNs called
Encoder (Enc) and Discriminator (Dis), and a 1DDNN called Gen-
erator (Gen). Generator is optimized to compete with Discrimi-
nator and try to fool it, i.e., Gen generates a synthetic signal that
Dis may incorrectly recognize as real.

Formally,

Dis(s, x) =

{
1, if s ∈ Dtrain and x = Enc(s)
0, otherwise.

(27)

Practically speaking, the previous models are parameterized
by the θEnc, θGen, and θDis weight sets, which respectively de-
fine Enc, Gen, and Dis. The optimal parameter sets are sub-
ject to the solution of the following minimax optimization by
gradient-based training algorithm:

θ̂Dis, θ̂Gen, θ̂Enc = argmin
θGen,θEnc

argmax
θDis

L(θDis, θGen, θEnc), (28)

using the next loss function,

L =

∑
B

log Dis(s, Enc(s))|s∼Dtrain +

∑
B

log (1 − Dis(G(x), x))|x∼PX ,

(29)

where B ≪ m is the mini-batch size, and we take B samples from
Dtrain in the first summation, and B samples from PX (a random
noise distribution in X ) in the second summation.

Hence the optimal models are obtained. However, only Enc is
necessary to realize the initial aim of this step.

Finally, we obtain the datasets

D̃train = Enc(Dtrain) (30)

D̃test = Enc(Dtest) (31)

for subsequent steps. As we have provided an order in the original
datasets, we define D̃i,j

train = (Enc(si))j as the jth feature of the ith
element.

4.3. Min–max normalization

The sets D̃train and D̃test ((30) and (31), respectively) are subject
to unknown distributions based on the severity level of the orig-
inal raw signals. Therefore, the scale range of extracted features

is also unknown.
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The scale of features plays a key role in the performance of
arious machine learning models, such as SVM [41]. Its appli-
ation avoids the idea that features with a larger scale range
re necessarily more important. Another advantage is to avoid
umerical instability due to high values in the calculus.
With this in mind, we normalize D̃train and D̃test by a min–max

approach, which conserves the data probability distribution and
only rescales the features, specifically by linearly rescaling to the
range [0, 1]. Let x̃j = D̃:,j

train be the jth feature of the examples in
the training dataset. The normalization parameters are computed
as

x̃jmin = min(x̃j) (32)

x̃jmax = max(x̃j), (33)

where the min and max functions respectively compute the min-
imum and maximum of the input vector. These parameters are
used to rescale the features in D̃train and D̃test according to the
following equations:

D̄:,j
train =

D̃:,j
train − x̃jmin

x̃jmax − x̃jmin

(34)

D̄:,j
test =

D̃:,j
test − x̃jmin

x̃jmax − x̃jmin

, (35)

here D̄train and D̄test are the normalized datasets for respectively
raining and testing the model.

As the normalization parameters are obtained only for D̃train,
ts range is guaranteed. However, the test dataset could have
ome features outside [0, 1] that affect its use in OCSVM with
additive χ2 and χ2 kernels, as previously stated. Then, for con-
figurations with these kernels, elements from each dataset are
squared after normalization, i.e., D̄train and D̄test are replaced by
¯ 2
train and D̄2

test, respectively.

.4. OCSVM-based modeling

An OCSVM model is built for each evaluated kernel and hyper-
arameter configuration. We must decide whether they should
e optimized or configured with default values. For γ -dependent
ernels, we have four options (depending on whether γ and ν

ake default values or are optimized), while only default values
f ν and optimized ν are available for γ -independent models.
When required, γ optimization is performed by the DFN

ethod, which was extended to other kernels in Section 3.1.
hen ν can be optimized by Alg. 1. Finally, OCSVM is obtained by
olving the optimization problem (12) [14]. The procedure used
o build each OCSVM model is summarized in Alg. 2.
ata: D̄train, kernel, optimize γ ?, optimize ν?
esult: OCSVM model
f does kernel require γ ? then

if optimize γ ? then
Optimize γ (Sec: 3.1);

else
Assign default value to γ ;

end
nd
f optimize ν? then

Optimize ν (Alg: 1);
else

Assign default value to ν;
nd
uild OCSVM model;
eturn: OCSVM model;

Algorithm 2: OCSVM model building procedure.
6

After obtaining α and ρ by respectively solving (12) and (14),
e can apply OCSVM to new examples, and fault detection can
e performed using (13).
For fault severity discrimination, we propose that the perpen-

dicular distances from a set of examples to the OCSVM hyper-
plane can discriminate between their fault severity levels. This
distance is defined as

dh(x) =

∑
αi ̸=0

αik(xi, x) − ρ, (36)

where x is the position of the example for which is desired to
calculate the distance from the hyperplane. Contrary to search
severity patterns in a limited set of features obtained by BiGAN-
based modeling, we characterize patterns with a single metric
(L2 norm) in a new, possibly infinite feature space, such as those
obtained using RBF , Laplacian, or χ2 kernels.

4.5. Histograms and performance evaluation

To evaluate the fault severity discrimination performance of
different model configurations, for each example in D̄test, we
obtain the distances to the hyperplane, i.e., if xci,j is the jth feature
vector under the ith severity level in D̄test, then the multiset
distance is built from

(DH)ci,j = dh(xci,j), ∀xci,j ∈ D̄test. (37)

et h ∈ R be a severity-dependent random variable defining
the distance to the hyperplane (positive over the hyperplane,
negative under it). Let p(h|c = ci), 1 ≤ i ≤ K , be the hyperplane
distance distribution family conditioned in fault severity. We
propose the severity pairwise error spe as the mixed area between
the distributions of h under the ci and cj severity levels, i.e.,

spei,j =

∫
∞

−∞

min(p(h|ci), p(h|cj)) dh, i ̸= j. (38)

The p(h|c) distributions are analytically unknown, but an es-
timated severity pairwise error, ˆspe, can be proposed as follows.
With a stratified set of examples per severity level, the multiset
DH can be represented by a matrix of dimension K ×

M
K , where

rows and columns respectively represent severity levels and eval-
uated test examples. Furthermore, since each example x in the
dataset is a transformation applied to a randomly sampled time
series s, the ith row of DH is the result of sampling the p(h|c = ci)
distribution.

Consequently, the estimated severity pairwise error can be
defined by

ˆspei,j =

{∑Bins
bin=1 min(Histci (hbin),Histcj (hbin)), if i ̸= j

0, otherwise ,
(39)

here Histci (hbin) is the bin-th value of the computed histogram
f the ith row of DH , and the estimated severity pairwise error is
K×K triangular matrix whose (i, j) element shows the common
rea of two histograms representing a pair of fault severity levels.
In the same way, the estimated error per severity level (slei),

epresenting the performance of the model at each severity level,
nd average severity error (ase), as an overall performance metric,
re respectively computed as

lei =
1

K − 1

∑
j̸=i

spei,j (40)

ase =
1
K

K∑
i=1

slei. (41)
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Fig. 2. 3D printer experimental setup.

. Experiments

The testbed for fault severity discrimination in 3D printers and
he experiments to compare OCSVM models are detailed.

.1. Testbed

Data acquisition was performed on a 3D printer test platform
eveloped for this work (Fig. 2). It was composed of an SLD-
L600-6 3D printer with a belt-driven mechanism in a delta
inematic configuration, with three stepper motors moving the
elts to control its three degrees of freedom, and a joint bearing
n the terminal points of each arm to obtain free rotational
ovement.
Magnetic field signals were selected as the information source

or the severity discrimination task. They were acquired by a WIT
EMS BWT901 sensor with 14− bit resolution, sensitivity of 0.6
T, and sampling frequency of 100 samples/s.
The selected fault case was synchronous belt degradation.

his type of fault appears due to an extended working period.
t consists of the belt stretching due to looseness in the rigidity
f the belt material. Thus additional vibrations begin to occur
hen the machine experiences high-velocity changes in areas
ith sharp corners. This fault reduces the quality of the final
roduct. To identify the severity level of this fault is relevant
o estimate the degradation of product quality and determine
hether it is acceptable. To simulate degradation, the effective
ension of one synchronous belt was decreased by 0 mm (optimal
ension), 1 mm, 2 mm, and 3 mm, corresponding to severity levels
1, c2, c3, and c4, respectively.
For these severity levels, three magnetic field signals were

cquired for 324 s (32400 samples at 100 samples/s). Each rep-
esented 20 circular patterns of 75 mm radius traveled by the
rinter head. Fig. 3 shows an extract of the signals for the four
everity levels where distinguishable patterns cannot be observed
or classification of different conditions.

.2. Experimental setup

The number of signals originally captured rendered us unable
o tune the OCSVM parameters due to the curse of dimensionality.
7

To address this issue, the signals were divided into sub-signals
of 1620 samples, each containing one circular pattern. Therefore,
with a sliding window of 10 samples, three groups of 3078
sub-signals were obtained.

A three-fold cross-validation strategy was configured with
these groups to minimize the risk of bias in the results. The
comparison method was repeatedly applied with the training and
testing sets Dtrain and Dtest respectively containing two and one
of the previous groups. As stated before, only signals in normal
condition were added to Dtrain.

Let T and l be the input signal length and referred layer,
respectively, in the 1DCNNs [42]. Then the number of layers (NL)
and number of output channels in the lth layer (Kl) were set
according to the equations

NL = ⌊log2 T⌋ (42)

Kl = 2l, ∀ l = 1, . . . ,NL − 1, (43)

resulting in 10 layer networks. As required for adversarial train-
ing, one output was set for Dis. In the same way, 100 outputs
were assigned to the Enc model, i.e., d = 100.

The 1DDNN architecture (Gen model) also has 10 layers to
represent the inverse function on Enc. For Gen, the number of
output channels of each l-layer (KGl) was

KGl = 2NL−l, ∀ l = 1, . . . ,NL. (44)

The experiments were to compare OCSVM models with opti-
mized and default hyperparameters, as well as various kernels.
For the experiments with default values, γ = 1/d = 0.01,
and ν = 0.1, considering a fixed 10% of anomaly samples in
the training set [43]. The γ optimization was performed by the
DFN method extended in this work. The positive–negative dis-
tance approach and our proposal were compared regarding the ν

optimization.

6. Results and analysis

To analyze the characteristics of the input data for OCSVM
models, Fig. 4 presents 2D projections of the BiGAN-based fea-
ture set with t-SNE and PCA techniques. It shows similar data
distributions in both projections: two adjacent groups for c2, two
adjacent groups for c3, and one group for c1 adjacent to one c3
group, although a difference is noticeable between the closeness
of c4 with c1 shown in PCA compared with t-SNE. The closeness
of c3 and c4 to c1 highlights the complexity of the detection
task with OCSVM models. In addition, multiple groups within
the same severity condition, such as from c2 and c3, represent
a multivariable multimodal distribution, which greatly increases
the difficulty of severity discrimination by assigning different
mean distances to the same severity condition. In Fig. 4(b), it is
appreciated that BiGAN-based feature extraction does not guar-
antee a separating distance between the groups according to the
fault severity degree. Thus, the consequence is a non-monotonic
dh function regarding to the severity degree, as is shown in Figs. 5
and 6.

The comparisons between kernels, and of methods to optimize
γ and ν, are shown in Tables 1, 2, 3, and 4, where the column
‘‘optimize ν’’ shows the method used to optimize ν, and can take
three values:

1. distances: optimization using positive–negative distance
method;

2. histograms: optimization using the proposal shown in Sec-
tion 3.2;

3. none: a default value of ν = 0.1.



Fig. 3. Magnetic signals of healthy condition and fault in belts.

Fig. 4. 2D projections of 100-dimensional 3D printer dataset. Examples in c1 , c2 , c3 , and c4 severity conditions are drawn respectively in violet, red, green, and blue.
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Table 1
Performance of the models for fault detection and fault severity discrimination 
sing nonparametric kernels (independent of γ ).
Kernel Optimize ν ν FNR (%) FPR (%) ase (%)

Additive χ2 Distances 0.95 87.20 0.00 0.56
Additive χ2 Histograms 0.15 0.36 6.39 0.75
Additive χ2 None 0.10 0.06 21.96 0.83
Cosine Distances 0.95 87.98 0.00 0.50
Cosine Histograms 0.20 0.71 2.86 0.69
Cosine None 0.10 0.13 27.30 0.86
Linear Distances 0.95 94.61 0.24 28.10
Linear Histograms 0.40 27.31 35.12 29.71
Linear None 0.10 3.41 42.65 32.35

The column ‘‘optimize γ ’’ indicates whether γ is optimized by the
extended DFN method shown in Section 3.1. The FNR and FPR
columns list the false negative (type II error) and false positive
(type I error) rates, respectively, as evaluation metrics in the fault
detection task performed by the OCSVM model. FPR is the ratio
between the number of faulty samples classified as normal ones
and the total number of faulty samples, and FNR is the ratio
between the number of normal samples classified as faulty ones
and the total number of normal samples. Finally, the proposed
average severity error, ase, is presented as a performance metric
of the OCSVM model in the severity discrimination task.

6.1. Nonparametric kernels

Table 1 presents the fault detection (FNR and FPR) and fault
severity discrimination (ase) performance for the nonparametric
kernels. FNR ranks additive χ2, cosine, and linear kernel with a
default value of ν in the first, second, and third place, respectively.
This ranking corresponds to the lower value for ν. Using FPR
esults in the same ranking order but using the positive–negative
istance optimization method obtains the higher ν value. How-
ver, the counterpart (FPR or FNR) was substantially increased in
oth cases without reaching an equilibrium.
From these results, we confirm that these models are useless

or the detection task. In addition, the models obtained with the
istogram-based optimized ν improve both the FPR and FNR. This
ffect is noticeable for cosine and additive χ2 kernels, with better
erformance for the first.
Fig. 5 compares the distance distributions for different sever-

ty conditions using nonparametric kernels with the proposed
istogram-based method. The overlapping of c1 with distances
ower than 0 produces an increment of FNR, and c2-c4 distances
igger than 0 produce an increment of FPR.

.2. Parametric kernels

Models using the RBF kernel are compared in Table 2. As with
onparametric kernels, FNR is reduced with the lower fixed ν, and
PR is reduced using the positive–negative method. Both metrics
ecrease (i.e., performance improves) when the histogram-based
ethod is applied. In addition, the optimization of γ produces a
light increase in FNR (slightly worse detection performance) and
consistent decrease of FPR (big performance improvement). In

his sense, a large difference is appreciated between the fixed γ

0.01) and the optimal γ (0.292793). Something similar can be
bserved for fixed ν and optimal ν.
The optimization of γ also improves a model’s performance

n the severity discrimination task, i.e., a reduced ase can be
bserved for each of the ν optimization methods. Summarizing
he results in detection and severity discrimination, the evident
inner is the model with optimized γ and ν optimized with the
istogram-based method.
 i

9

Fig. 5. Distance distribution of the best nonparametric kernels for each severity
condition.

Similar results are shown for the Laplacian and χ2 kernels in
ables 3 and 4, respectively. The general results in detection and
everity discrimination using χ2 are slightly worse than those
ith RBF. The poorest performance is obtained with Laplacian
omparing the parametric kernels. However, this highlights the
mprovement obtained with γ optimization, showing that the
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Table 2
Performance of the models for fault detection and fault severity discrimination 
sing RBF kernel.
Optimize γ γ Optimize ν ν FNR (%) FPR (%) ase (%)

No 0.010000 Distances 0.95 87.46 0.00 0.54
Yes 0.292793 Distances 0.95 87.43 0.00 0.51
No 0.010000 Histograms 0.15 0.36 6.25 0.65
Yes 0.292793 Histograms 0.25 1.27 0.03 0.55
No 0.010000 None 0.10 0.06 21.45 0.70
Yes 0.292793 None 0.10 0.10 18.14 0.62

Table 3
Performance of the models for fault detection and fault severity discrimination
using Laplacian kernel.
Optimize γ γ Optimize ν ν FNR (%) FPR (%) ase (%)

No 0.010000 Distances 0.95 87.63 0.00 0.58
Yes 0.069891 Distances 0.95 87.46 0.00 0.58
No 0.010000 Histograms 0.25 1.40 0.17 0.68
Yes 0.069891 Histograms 0.25 1.40 0.12 0.65
No 0.010000 None 0.10 0.06 25.00 0.82
Yes 0.069891 None 0.10 0.10 23.18 0.76

Table 4
Performance of the models for fault detection and fault severity discrimination
using χ2 kernel.
Optimize γ γ Optimize ν ν FNR (%) FPR (%) ase (%)

No 0.010000 Distances 0.95 87.24 0.00 0.57
Yes 0.168679 Distances 0.95 87.33 0.00 0.57
No 0.010000 Histograms 0.15 0.36 6.28 0.75
Yes 0.168679 Histograms 0.25 1.36 0.03 0.66
No 0.010000 None 0.10 0.06 21.71 0.82
Yes 0.168679 None 0.10 0.06 18.74 0.75

DFN method is successfully extended to other parametric kernels
different to RBF.

With χ2, a dependence between γ and ν is evident using
istogram-based optimization. The optimal ν is 0.15 without
ptimized γ , and 0.25 with optimized γ . This difference in ν has
considerable impact on detection performance, especially in the
PR value.
Fig. 6 shows hyperplane distance distributions as an indicator

f goodness in the severity discrimination task. Contrary to what
as shown in Fig. 5 for the nonparametric kernels, samples from
ormal condition are projected away from other severity levels in
he kernel space, and their distance to the hyperplane is positively
ncreased. As a result, RBF and χ2 have the best performance
ue to their mean distance from normal condition to the other
everity levels, larger than with the Laplacian kernel.

. Conclusions

We have proposed OCSVM as a distance-based metric for fault
etection and fault severity discrimination, and we have tested it
or 3D printers. A set of features was extracted from normal con-
ition signals using a GAN-based approach. An optimized OCSVM
odel was obtained by tuning the kernel and OCSVM hyperpa-

ameters with the proposed extended DFN and histogram-based
ethods, respectively. The resulting models were evaluated for

ault detection, which is typical for OCSVM, and an evaluation in
he context of fault severity discrimination was performed as a
ovel application.
According to the experimental results, γ optimization im-

roves not only the fault detection performance by decreasing the
PR, but fault severity discrimination. Furthermore, this improve-
ent was obtained for all parametric kernels, hence it can be
oncluded that the DFN method has been successfully extended
o other kernels. In the same sense, the correct ν configuration
10
Fig. 6. Distance distribution of the best parametric kernels for each severity
condition.

was important to fault detection performance. In effect, the pro-
posed histogram-based optimization approach has allowed us
to obtain optimal ν values for parametric and nonparametric
kernels, which decreases both FNR and FPR without sacrificing
severity discrimination performance.
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Machine learning approaches try to reveal the underlying
nowledge in the data, and the best case is the availability of
ll the expected operation conditions. This is not a practical and
eal scenario, and approaches improving this dependence is a
ontinuous challenge. Our approach is developed by considering
hat data from only normal state under some operational condi-
ions is available, and the data distribution is representative of
uch normal case related to the case study. The sensitivity of our
pproach regarding the use of other test signals different from the
ircular path, and different operating conditions, will be analyzed
n further works.

We expect that this extension of DFN, along with the
istogram-based method, will enhance the practical application
f OCSVM for fault detection and severity discrimination tasks in
ifferent contexts.
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