
Formal Verification of Programs in
Molecular Models with Random

Access Memory

MARIO J. PÉREZ-JIMÉNEZ
FERNANDO SANCHO-CAPARRINI

Dpto. Ciencias de la Computación e Inteligencia Artificial
Universidad de Sevilla, E.T.S. Ingeniería Informática

Avda. Reina Mercedes, s/n – 41012 Sevilla, Spain
E-mail: {Mario.Perez,Fernando.Sancho}@cs.us.es

Abstract

Formal verification of molecular programs is a first step to-
wards their automatic processing by means of reasoning sys-
tems (ACL2, PVS, etc). In this paper a systematic method to
establish verifications of these programs within molecular mod-
els with memory, that is, molecular computing models where
some operations modifying the inner structure of molecules ex-
ist, is proposed. The method presented in this work is applied to
relevant problems for the design of molecular programs solving
some well-known numerical NP-complete problems: the Gener-
ating Cover Families problem, the Set Covering problem and the
Minimal Set Cover Selection Problem.

M. J. Pérez-Jiménez et al. (Eds.): Recent Results in Natural Computing, pp. 205–229
c© The Authors c© Fénix Editora

206 Formal Verification of Programs in Molecular Models...

1 Introduction

Since the first result in molecular computing at the end of 1994 [1],
some solutions to several NP-complete problems in this framework
have been offered. In 1995 the first molecular models appeared. They
are universal models, that is, with the same computational power as
Turing Machines. Since then, it appears the possibility of designing
molecular programs having as input the instance of the problem to
solve (until then, molecular computing was limited to solve particu-
lar instances, with no description of molecular operations in general
cases). However, this brings about the necessity of a greater flexibility
in the design of the programs and the necessity of a formal verification
of the fact that those programs effectively solve the problem for which
they were designed.

Usually, the first step to solve a concrete problem in computing
models is to encode the input of the problem into the type of data that
the model deals with (in this case, encoding will be made by means of
tubes containing DNA molecules); next step consists in applying a fi-
nite sequence of basic operations of the model to the input data to get
an output encoding the solution of the problem.

The goal of this paper is the presentation of a methodology to estab-
lish a formal verification of programs in molecular models with mem-
ory. The method is applied to molecular programs solving several well-
known numerical NP-complete problems: the Generating Cover Families
problem, the Set Covering problem, and the Minimal Set Cover problem.

The problems we solve in this work are associated with a finite fam-
ily, F , of subsets of a finite set. And they are the following ones: (1)
generate every ordered pair (F ′, B) such that F ′ is a subfamily of F
and B = ∪F ′; (2) generate all pairwise disjoint subfamilies of F .

The paper is organized as follows: in section 2 a methodology to
establish a formal verification of programs in molecular models with
memory is given. Section 3 summarizes the main characteristics of the
molecular model we use in this work: the Sticker Model. Sections 4
and 5 apply this methodology to two numerical problems. The main
reason why we have chosen the above problems is because there exists
a qualitative difference in the way their formal verification have been
established. On one hand, all the molecules of the input tube are kept

M. J. PÉREZ-JIMÉNEZ, F. SANCHO-CAPARRINI 207

(possibly modified) along the execution of the program; on the other
hand, a filtering process is made, hence some molecules are thrown
away because they do not encode any of the valid solutions to the prob-
lem.

2 A Methodology for Verification of Programs
within Models with Memory

Let P be a program within a molecular model designed to solve a prob-
lem X . Let us suppose that the program P has a main loop FOR or
WHILE (we will say that P is a FOR or WHILE program). To verify
(X,P) we will search formulas, in the variables of the program, that
are invariant of the main loop and such that, at the end of the execu-
tion, can help us to deduce the soundness and completeness of P for
the problem X .

The execution of the program P can be interpreted as the evolution
over time of a certain population. At the beginning of the execution the
population consists of a multiset of molecules forming the input tube
of P . Every molecule represents an element, thus, in the original popu-
lation cloned members can exist. Every step of the main loop takes one
unit of time. Hence, throughout the execution an element of the pop-
ulation can die (that is, it can be thrown away) or it can survive. If the
molecular computing model has random access memory (that is, if the
inner structure of the molecules can be modified) then the molecules
surviving all the steps can be of two kinds: those whose inner structure
has been altered and those that remain with no modifications.

The study of invariant formulas of the main loop needs a detailed
study of every molecule in the input tube. First we proceed to a re-
labelling of the tubes used in the program in order to individualize
them and to distinguish and characterize the relevant tubes along the
execution. Second, a function showing the evolution of every molecule,
σ, in every step, i, of the main loop is defined. This function can be
undefined for some values (σ, i). This will be interpreted as the fact
that the molecule σ does not survive after the execution of i-th step of
the loop.

The methodology we propose to verify (X,P) consists of the fol-
lowing stages:

208 Formal Verification of Programs in Molecular Models...

1. Re-labelling of the tubes of the program P , to individualize them
along the execution.

2. A detailed follow-up of the evolution of every molecule along the
process, using a function that we will name STEP .

3. Searching invariant formulas of the main loop based on the
STEP function properties.

4. Deducing the Soundness (every molecule in the output tube en-
codes a valid solution of the problem) and the Completeness (every
molecule in the input tube encoding a valid solution of the prob-
lem must be in the output tube) of the program based on invariant
formulas after the execution of the program.

3 The Sticker Model

The sticker model was introduced by S. Roweis, E. Winfree et al [6] as
an abstract model of molecular computing based on DNA, with ran-
dom access memory. In this model the information is represented in
a different way from that used in the Adleman-Lipton paradigm. An
(n, k,m)-memory strand, with n ≥ k ·m, consists of a strand of n bases
subdivided into k non-overlapping substrands each of which ism bases
long. A sticker associated with an (n, k,m)-memory strand is m bases
long and complementary to exactly one of the k substrands of the mem-
ory strand. If a sticker is annealed to its matching substrand on a mem-
ory strand, then the particular substrand is said to be on, if not it is
said to be off. An (n, k,m)-memory complex is an (n, k,m)-memory
strand along with its annealed stickers (if any). The (n, k,m)-memory
complexes represent bit strings of {0, 1}k, for this reason, it is usual to
identify them either as binary functions (σ : {1, ..., k} −→ {0, 1}, such
that σ(i) = 1 if and only if the i-th substrand is on), or as subsets of
{1, ..., k} by means of their characteristic functions.

Within the sticker model, a tube is a finite multiset (a collection
where elements can be repeated) of memory complexes. In this paper
we use the following operations of the sticker model over tubes:

M. J. PÉREZ-JIMÉNEZ, F. SANCHO-CAPARRINI 209

• Combine (T1, T2): given two test tubes T1 and T2 this operation
produces a new tube, denoted by T1∪T2, the multiset union of T1

and T2.

• Separate (T, i): given a test tube T and a natural number i, with
1 ≤ i ≤ k, this operation produces two new tubes, +(T, i) =
{{σ ∈ T : σ(i) = 1}} and −(T, i) = {{σ ∈ T : σ(i) = 0}}.

We usually write (T1, T2) ← separate(T, i) to indicate that T1 =
+(T, i) and T2 = −(T, i).

• Set (T, i): given a test tube T and a natural number i, with 1 ≤
i ≤ k, this operation produces a new tube, Set (T, i), where the
ith substrand of each memory complex in T is turned on.

• Read(T): given a test tube T this operation reads the content of
tube T . To achieve that, one memory complex has to be isolated
from T and its annealed stickers determined, or else it has to be
reported that the tube T contains no memory complexes.

Note that, in this model, the operations Separate and Set are the
only ones implementing a massive parallelism. Also, only operation
Set can modify inner structure of the molecules of a tube.

A (k, l)-library, with 1 ≤ l ≤ k, consists of all memory complexes
with k substrands, where the first l substrands are either on or off, in all
possible ways, whereas the last k − l substrands are off.

In the sticker model a program, P , is a finite sequence of molecular
operations that can be written in a simple way by means of robotic
operations (such as loops, conditionals, etc.).

4 The Generating Cover Families Problem

The Generating Cover Families problem is the following: Let A = {1, . . . ,
p}. Let F = {B1, . . . , Bq} be a finite family of subsets of A. Determine all
ordered pairs (F ′, B), where F ′ is a subfamily of F and B =

⋃
F ′.

210 Formal Verification of Programs in Molecular Models...

4.1 Design of a Program in the Sticker Model

To solve this problem we consider as the input tube, T0, a (p + q, q)-
library encoding all possible subfamilies of F .

If ρ is a memory complex with p + q substrands (from now on, we
will say that ρ is a molecule), we will note:{

ρq = (ρ(1), . . . , ρ(q))
ρp = (ρ(q + 1), . . . , ρ(q + p))

We can interpret that molecule ρ encodes an ordered pair, (Fρ, Aρ),
where Fρ is a subfamily of F and Aρ is a subset of A, according to
the following:{

Fρ = {Bk ∈ F : 1 ≤ k ≤ q ∧ ρ(k) = 1}
Aρ = {s ∈ A : 1 ≤ s ≤ p ∧ ρ(q + s) = 1}

Definition 1. Let ρ be a molecule and let t be such that 1 ≤ t ≤ q + p.
We will say that t ∈ ρ (resp. t /∈ ρ) if and only if ρ(t) = 1 (resp. ρ(t) = 0).

If ρ is a molecule, then we have:⋃
Fρ = {xj

k : 1 ≤ k ≤ q ∧ 1 ≤ j ≤ rk ∧ k ∈ ρ}

Definition 2. A molecule ρ is consistent if and only if Aρ =
⋃
Fρ.

A molecular program solving the Generating Cover Families problem
is the following:

Procedure Cover
Input: T0 (where T0 is a (p+ q, q)-library)

for i = 1 to q do
(T+

i , T
−
i)← separate (T0, i)

for j = 1 to ri do

set (T+
i , q + xj

i)
end for
T0 ← combine (T+

i , T
−
i)

end for

Where, for each i (1 ≤ i ≤ q) we denote by ri the cardinality of the set
Bi, and Bi = {x1

i , . . . , x
ri
i }.

The number of molecular operations in this program is of the order
of O(q · p).

M. J. PÉREZ-JIMÉNEZ, F. SANCHO-CAPARRINI 211

4.2 Formal Verification

In order to establish a formal verification of this molecular program we
proceed to a re-labelling of the used tubes:

Procedure Cover
Input: T0 (where T0 is a (p+ q, q)-library)

for i = 1 to q do
(T+

i , T
−
i)← separate (Ti−1, i)

T ∗i,0 ← T+
i

for j = 1 to ri do

T ∗i,j ← set (T ∗i,j−1, q + xj
i)

end for
Ti ← combine (T ∗i,ri

, T−i)
end for

Obviously, this program is equivalent to the above one in the following
sense: both have the same input tubes, T0, and produce output tubes
(T0 and Tq, respectively) with the same content.

We want to note that the semantic of this program is very close to
the semantic of the problem it solves. Hence, the problems that ap-
pear when trying to establish its formal verification are mainly due to
the use of molecular operations that modify the inner structure of the
molecules (i.e. set operation), making it harder the analysis of their
track along the execution.

Next, we define a function, namely STEP , that captures the evolu-
tion of each molecule after the execution of a step of the main loop.

Definition 3. Let i be such that 1 ≤ i ≤ q. Let ρ ∈ Ti−1. We define
STEP (ρ, i) as follows:

STEP (ρ, i) =
{
ρ , if i /∈ ρ
ρ ∪ (q +Bi) , if i ∈ ρ

Where q +Bi = {q + xj
i : 1 ≤ j ≤ ri}.

Note that if τ = STEP (ρ, i) then ρq = τq and ρ ⊆ τ . Moreover, the
function STEP is a total function; that is, it is defined over all possible
input data.

212 Formal Verification of Programs in Molecular Models...

Lemma 1. ∀ i (1 ≤ i ≤ q → ∀ ρ ∈ Ti−1 (STEP (ρ, i) ∈ Ti))

Proof. Let i be such that 1 ≤ i ≤ q, and let ρ ∈ Ti−1.

• If i /∈ ρ, then ρ ∈ −(Ti−1, i) = T−i ⊆ Ti, and since STEP (ρ, i) = ρ,
we deduce that STEP (ρ, i) ∈ Ti.

• If i ∈ ρ, we define recursively ρ(j), for each 0 ≤ j ≤ ri as follows:

– ρ(0) = ρ.

– ρ(j+1) = ρ(j) ∪ {q + xj+1
i }.

Let us see that ∀ j (0 ≤ j ≤ ri → ρ(j) ∈ T ∗i,j). By induction on j.

– The case j = 0 is trivial because ρ(0) = ρ ∈ +(Ti−1, i) =
T+

i = T ∗i,0.

– Let j < ri such that ρ(j) ∈ T ∗i,j . From definition of ρ(j+1) we
deduce that ρ(j+1) ∈ set(T ∗i,j , q + xj+1

i) = T ∗i,j+1.

Since ρ(ri) = STEP (ρ, i), we obtain that STEP (ρ, i) ∈ T ∗i,ri
⊆ Ti.

Definition 4. Let σ ∈ T0. We define recursively σi, with 0 ≤ i ≤ q, as
follows:

σi =
{
σ , if i = 0
STEP (σi−1, i) , if 1 ≤ i ≤ q

From Lemma 1 it follows that σi ∈ Ti, for each 0 ≤ i ≤ q.

Lemma 2. For each i, j such that 1 ≤ i ≤ q and 1 ≤ j ≤ ri we have
∀ τ ∈ T ∗i,j ∃ ρ ∈ T

+
i (τ = ρ ∪ (q +Bj

i)), where Bj
i = {x1

i , . . . , x
j
i}.

Proof. For a given i, the proof can be deduced by induction on j follow-
ing the semantic structure of the program.

Corollary 1. Let i be such that 1 ≤ i ≤ q. Then for every molecule τ ∈ T ∗i,ri

there exists a molecule ρ ∈ Ti−1 verifying i ∈ ρ and STEP (ρ, i) = τ .

Proof. Let i be such that 1 ≤ i ≤ q. Let τ ∈ T ∗i,ri
. From Lemma 2

(with j = ri) we deduce that there exists ρ ∈ T+
i = +(Ti−1, i) such that

τ = ρ ∪ (q +Bj
i). Then, ρ ∈ Ti−1 and i ∈ ρ. Hence, STEP (ρ, i) = τ .

M. J. PÉREZ-JIMÉNEZ, F. SANCHO-CAPARRINI 213

4.3 Soundness of the Program

We have to prove that every molecule in the output tube, Tq, encodes
a valid solution of the problem. That is, if τ ∈ Tq, then τq encodes a
subfamily, Fτ , of F and τp encodes a subset, Aτ , of A, such that Aτ =⋃
Fτ . In other words, we have to prove that every molecule, τ , in the

output tube, Tq, is consistent.
To prove the soundness of the program we consider the following

formula θ(i)

∀ τ ∈ Ti [∀ k (1 ≤ k ≤ i ∧ k ∈ τ → (q +Bk) ⊆ τ) ∧
∧∀ s (1 ≤ s ≤ p ∧ (q + s) ∈ τ → ∃ k ∈ τ (1 ≤ k ≤ i ∧ s ∈ Bk))]

That is, the formula θ(i) (with i > 0) means that after the execution of
the i-th step of main loop, all molecules, τ , verifying Aτ =

⋃
{Br ∈ Fτ :

1 ≤ r ≤ i} are in the tube Ti. For the case i = 0 we suppose that B0 = ∅.

Theorem 1. The formula θ(i) is an invariant of the main loop. That is,
∀ i (0 ≤ i ≤ q → θ(i))

Proof. By induction on i. The case i = 0 is trivial. Let i < q be such that
the formula θ(i) is true. Let τ ∈ Ti+1 = T ∗i+1,ri+1

∪ T−i+1.

• If τ ∈ T−i+1, then τ ∈ Ti ∧ i + 1 /∈ τ . In this case we have τ ∈ Ti

and i+1 /∈ τ . As τ ∈ Ti, from the induction hypothesis we obtain
that

(a) ∀ k (1 ≤ k ≤ i ∧ k ∈ τ → (q +Bk) ⊆ τ)
(b) ∀ s (1 ≤ s ≤ p ∧ (q+ s) ∈ τ → ∃ k ∈ τ (1 ≤ k ≤ i ∧ s ∈ Bk))]

Having in mind that i+ 1 /∈ τ we have

(a’) ∀ k (1 ≤ k ≤ i+ 1 ∧ k ∈ τ → (q +Bk) ⊆ τ)

From (b) we directly obtain

(b’) ∀ s (1 ≤ s ≤ p ∧ (q + s) ∈ τ → ∃ k ∈ τ (1 ≤ k ≤ i+ 1 ∧ s ∈
Bk))]

So, the formula θ(i+ 1) is true.

• If τ ∈ T ∗i+1,ri+1
, from Corollary 1 we deduce that there exists ρ ∈ Ti

such that ρ ∈ Ti verifying i+ 1 ∈ ρ and STEP (ρ, i+ 1) = τ . Then
τ = ρ ∪ (q +Bi+1).

214 Formal Verification of Programs in Molecular Models...

– Let k be such that 1 ≤ k ≤ i+ 1, and k ∈ τ .

∗ If 1 ≤ k ≤ i, then having in mind that k ∈ ρ, from
induction hypothesis we obtain that q + Bk ⊆ ρ. So,
(q +Bk) ⊆ τ .
∗ If k = i + 1, from τ = ρ ∪ (q + Bi+1) we deduce that

(q +Bk) ⊆ τ .

– Let s be such that 1 ≤ s ≤ p and (q + s) ∈ τ .

∗ If q + s ∈ ρ, by induction hypothesis there exists k ∈ ρ
such that 1 ≤ k ≤ i and s ∈ Bk. But 1 ≤ k ≤ i ≤
p ∧ k ∈ ρ → k ∈ τ . Hence, there exists k ∈ τ such that
1 ≤ k ≤ i+ 1 and s ∈ Bk.

∗ If q + s /∈ ρ, from τ = ρ ∪ (q + Bi+1) we obtain that
s ∈ Bi+1.

Therefore, the formula θ(i+ 1) is true.

Corollary 2. (Soundness) Every molecule, τ , in the output tube, Tq, is a
consistent molecule. That is, Aτ =

⋃
Fτ .

Proof. As formula θ(q) is true, for every molecule τ ∈ Tq we obtain that:

(1) ∀ k (1 ≤ k ≤ q ∧ k ∈ τ → (q +Bk) ⊆ τ)

(2) ∀ s (1 ≤ s ≤ p ∧ (q + s) ∈ τ → ∃ k ∈ τ (1 ≤ k ≤ q ∧ s ∈ Bk))

Let us see that
⋃
Fτ = Aτ . For that, let s ∈

⋃
Fτ . Then 1 ≤ s ≤ p and

∃ k ∈ τ (1 ≤ k ≤ q ∧ s ∈ Bk). From (1) it can be obtained (q +Bk) ⊆ τ .
Hence (q + s) ∈ τ and s ∈ Aτ . Reciprocally, let s ∈ Aτ . Then 1 ≤ s ≤
p ∧ (q + s) ∈ τ . From (2) we can deduce that there exists k ∈ τ such
that 1 ≤ k ≤ q and s ∈ Bk. Hence s ∈

⋃
Fτ . Therefore,

⋃
Fτ = Aτ .

4.4 Completeness of the Program

The completeness of the molecular program designed to solve this pro-
blem can be expressed as follows: for every subfamily,F ′, ofF there ex-
ists a molecule in the output tube encoding the ordered pair (F ′,

⋃
F ′).

That is, to establish the completeness of the program we must show
that every molecule, σ, in the input tube, T0, is modified along the exe-
cution to give a consistent molecule, σq, in the output tube, Tq.

M. J. PÉREZ-JIMÉNEZ, F. SANCHO-CAPARRINI 215

To prove completeness of the program we consider the following
formula δ(i)

∀σ ∈ T0 [∀ k (1 ≤ k ≤ i ∧ k ∈ σi → (q +Bk) ⊆ σi) ∧
∧∀ s (1 ≤ s ≤ p ∧ (q + s) ∈ σi → ∃ k ∈ σi (1 ≤ k ≤ i ∧ s ∈ Bk))]

That is, the formula δ(i) (with i > 0) means that every molecule in the
initial tube, T0, encodes a subfamily F ′i of Fi = {B1, . . . , Bi} verifying
the following: the union

⋃
F ′i of the sets belonging to F ′i is contained in

the subset ofAwhose characteristic function is (σi(q+1), . . . , σi(q+p)).

Theorem 2. The formula δ(i) is an invariant of the main loop. That is,
∀ i (1 ≤ i ≤ q → δ(i))

Proof. Let i be such that 1 ≤ i ≤ q. Let σ ∈ T0. From Lemma 1 it can be
deduced that σi ∈ Ti. Since θ(i) is true, we have

(1) ∀ k (1 ≤ k ≤ i ∧ k ∈ σi → (q +Bk) ⊆ σi)

(2) ∀ s (1 ≤ s ≤ p ∧ (q + s) ∈ σi → ∃ k ∈ σi (1 ≤ k ≤ i ∧ s ∈ Bk))

Hence, the formula δ(i) is true.

Corollary 3. (Completeness) Every molecule, σ, in the input tube, is a con-
sistent molecule, σq, in Tq, at the end of the execution.

Proof. Let σ ∈ T0. Since formula δ(q) is true, it verifies:
(1) ∀ k (1 ≤ k ≤ q ∧ k ∈ σq → (q +Bk) ⊆ σq)
(2) ∀ s (1 ≤ s ≤ p ∧ (q + s) ∈ σq → ∃ k ∈ σq (1 ≤ k ≤ q ∧ s ∈ Bk))
As in corollary 2, and using the molecule σq instead of τ , we obtain

that
⋃
Fσq = Aσq . That is, the molecule σq is consistent.

5 The Set Covering Problem

The Set Covering problem is the following: Given a finite setA = {1, ..., p}
and a finite family F = {B1, ..., Bq} of subsets of A, determine all subfamilies
of F covering A.

216 Formal Verification of Programs in Molecular Models...

A molecular program in the sticker model solving the Set Covering
problem is the following one:

Procedure Set_Covering
Input: T0 (where T0 is a (p+ q, q)-library)

T0 ← Cover (T0)
for s = 1 to p do

T0 ← +(T0, q + s)
end for

The number of molecular operations spent by the procedure Set_
Covering is of the order of O(q · p).

In order to establish a formal verification of this molecular program
we proceed to a re-labelling of the used tubes:

Procedure Cover_Selection
Input: T0 (where T0 is a (p+ q, q)-library)

T0 ← Cover (T0)
for s = 1 to p do

Ts ← +(Ts−1, q + s)
end for

Obviously, this program is equivalent to the above one in the following
sense: both have the same input tubes, T0, and produce output tubes
(T0 and Tp, respectively) with the same content.

5.1 Soundness of the Program

We have to prove that every molecule in the output tube encodes a
cover of A. For that, we consider the following formula:

θ(s) ≡ ∀ τ ∈ Ts ((q +As) ⊆ τ)

where As = {1, . . . , s}, and q +As = {q + j : 1 ≤ j ≤ s}.
That is, the formula θ(s) means that every molecule, τ , of Ts verifies

thatAs ⊆ Aτ (whereAτ is the subset ofA associated with τ , in a similar
way than we made for the Generating Cover Families problem).

M. J. PÉREZ-JIMÉNEZ, F. SANCHO-CAPARRINI 217

Theorem 3. The formula θ(s) is an invariant of the main loop. That is,
∀ s (1 ≤ s ≤ p→ θ(s))

Proof. By induction on s. Let τ ∈ T1 = +(T0, q + 1). Then (q + 1) ∈ τ .
So, (q +A1) ⊆ τ .

Let s < p be such that s ≥ 1 and the result is true for s. Let τ ∈
Ts+1 = +(Ts, q+s+1). Then τ ∈ Ts and (q+s+1) ∈ τ . As τ ∈ Ts, from
induction hypothesis we have (q+As) ⊆ τ . Hence, (q+As+1) ⊆ τ .

Corollary 4. (Soundness) Every molecule, τ , in the output tube, Tp, encodes
a cover of A. That is, for every molecule τ ∈ Tp we have (q +A) ⊆ τ .

Proof. It suffices to note that the formula θ(p) is true and Ap = A.

5.2 Completeness of the Program

Next, we have to prove that every molecule in the initial tube en-
coding a cover of A belongs to the output tube. For that, we consider
the following formula:

δ(s) ≡ ∀σ ∈ T0 ((q +A) ⊆ σ → σ ∈ Ts)

That is, the formula δ(s) means that every molecule in T0 encoding
a cover of A belongs to the tube Ts.

Theorem 4. The formula δ(s) is an invariant of the main loop. That is,
∀ s (1 ≤ s ≤ p→ δ(s))

Proof. By induction on s. Let σ ∈ T0 be such that (q + A) ⊆ σ. Then
σ ∈ T0 ∧ (q + 1) ∈ σ. So, σ ∈ +(T0, q + 1) = T1.

Let s < p be such that s ≥ 1 and the result is true for s. Let σ ∈ T0 be
such that (q+A) ⊆ σ. From induction hypothesis we have σ ∈ Ts. Since
1 ≤ s+1 ≤ p we obtain that (q+ s+1) ∈ σ. Hence, σ ∈ +(Ts, q+ s+1).
That is, σ ∈ Ts+1.

Corollary 5. Every molecule in the initial tube encoding a cover of A belongs
to the output tube. That is, ∀σ ∈ T0 ((q +A) ⊆ σ → σ ∈ Tp).

218 Formal Verification of Programs in Molecular Models...

6 The Minimal Set Cover Selection Problem

The selection problem associated with the Minimal Set Cover consists,
basically, in sorting, according to their cardinality, a family of covers of
a given finite set. The introduction of sticker model by S. Roweis et al
([6]) is illustrated by presenting in this model a solution to the minimal
set cover problem ([2]). Molecular solution given in [6] is founded in a
subroutine that solves the above selection problem. We study a rooted
graph structure that arise through the execution of the subroutine, and
then we apply the above structured method to establish its formal ver-
ification.

The Minimal Set Cover Selection problem is the following: Given a finite
set A = {1, ..., p} and a finite family F = {B1, ..., Bq} of subsets of A,
determine a subfamily of F covering A, and with minimal cardinality.

For that, first we sort the collection of all subfamilies of F cover-
ing A, according to their cardinality and next we will select a minimal
subfamily.

A molecular program in the sticker model solving the Minimal Set
Cover Selection problem is the following one:

Input: T0 (encoding all sub-families of F
covering A)

For i← 0 to q − 1 do
Ti+1 ← ∅
For j ← i to 0 do

T+
j ← +(Tj , i+ 1) ; T−j ← −(Tj , i+ 1)
Tj+1 ← combine(T+

j , Tj+1)
Tj ← T−j

if T1 is nonempty Read T1

else read T2

else read T3
...
else read Tq

The number of molecular operations in this program is quadratic in
the size of the family F .

M. J. PÉREZ-JIMÉNEZ, F. SANCHO-CAPARRINI 219

As in the previous problem, for each i such that 1 ≤ i ≤ q we will
denote by ri the cardinality of the set Bi, and Bi = {x1

i , . . . , x
ri
i }.

Note that the input tube is not a library (as usual in the sticker
model), since this program is in fact a subroutine. Moreover, this
program does not enclose operations modifying inner structure of the
strands (set , turn on, or clear , turn off). So, this subroutine can also
be described in any molecular computation model without memory
and based in filtering procedure.

Furthermore, if σ ∈ T0, then (σ(1), . . . , σ(q)) encodes in a natural
way a subfamily F ′ ⊆ F as follows: ∀ i (1 ≤ i ≤ q → (Bi ∈ F ′ ↔
σ(i) = 1)). Also, ∀ j (q + 1 ≤ j ≤ q + p → σ(j) = 1). We define
|σ| =

∑
1≤i≤q

σ(i).

According to this, the input tube used in this subroutine can be un-
loaded in the following way: we can use a restriction endonuclease
enzyme so that when encoding the memory strands of initial test tube
(that is, a (p + q, q)-library), an appropriate recognition site associated
with the restriction enzyme is placed between q-th and (q + 1)-th re-
gions. In this way, just before running this subroutine, we activate the
restriction endonuclease enzyme to make all memory strands split in
the specific recognition site. After that, we select all molecules contain-
ing the first q regions (for example, using magnetic beads). Therefore
we make that the input tube of this subroutine (noted here as T0, too)
contains all q regions length molecules encoding subfamilies of F cov-
ering A.

6.1 Formal Verification of the Subroutine

According to the exposed methodology, in order to establish the formal
verification of the designed subroutine, we begin with a re-labelling
procedure of tubes that have been used along the execution.

220 Formal Verification of Programs in Molecular Models...

Input: T0

T−1,0 ← T0; T−1,1 ← ∅; T0,1 ← T0; T ∗0,1 ← ∅
For i← 0 to q − 1 do

Ti,i+2 ← ∅
For j ← i to 0 do

T+
i,j ← +(Ti−1,j , i+ 1)
Ti,j+1 ← combine(T+

i,j , T
∗
i,j+1)

T ∗i,j ← −(Ti−1,j , i+ 1)
Ti,0 ← T ∗i,0

if Tq−1,1 is nonempty Read Tq−1,1

else Read Tq−1,2

else Read Tq−1,3
...
else Read Tq−1,q

Obviously, this program is equivalent to the above one in the following
sense: both have the same input tubes, T0, and produce output tubes
(T0, . . . , Tq, and Tq−1,0, . . . , Tq−1,q respectively) such that the contents of
the tubes Ti and Tq−1,i (for i = 0, . . . , q) are the same.

This program produces i + 1 tubes (Ti,i+1, . . . , Ti,0) after the execu-
tion of the i-th step of the main loop, as Figure 1 illustrates.

T

T T

T T T

T T TT

T T T T T

0

0,0 0,1

1,0 1,1 1,2

2,0 2,1 2,2 2,3

3,0 3,1 3,2 3,3 3,4

Combine

Combine Combine

CombineCombineCombine

-

+++

+

+

- +

+

+

+

+

-

-

-

-

-

- --

i=1

i=3

i=2

i=0 Separate

Separate

Separate

Separate

1

2

3

4

Figure 1. Labelled merge-binary tree.

That is, the execution of this program can be described as a rooted di-
rected graph with depth q that we will call as labelled merge-binary tree
with depth q, and that can be defined as follows:

M. J. PÉREZ-JIMÉNEZ, F. SANCHO-CAPARRINI 221

Definition 5. A grid with depth h, Gh = (Vh, Eh), is the following di-
rected graph:{

Vh = {(i, j) : 0 ≤ i ≤ h ∧ 0 ≤ j ≤ i}
Eh = {((i, j), (i+ 1, j)), ((i, j), (i+ 1, j + 1)) : 0 ≤ i < h ∧ 0 ≤ j ≤ i}

Definition 6. A labelled merge-binary tree with depth h is a tuple

(Gh, L, {Fi : 0 ≤ i ≤ h− 1}, B, T0, l)

where:

• Gh is a grid with depth h.

• L is a nonempty set (its elements will be called labels).

• For each i (with 0 ≤ i ≤ h − 1) Fi is a function from L to L × L
(we will note Fi = (F−i , F

+
i)).

• B is a binary function from L× L to L.

• T0 belongs to L (that is, T0 is a label).

• l is a function from Vh to L, called the labelling function, defined
by recursion (using T0, Fi and B), as follows:

l(0, 0) = T0

l(i+ 1, 0) = F−i (l(i, 0))
l(i+ 1, i+ 1) = F+

i (l(i, i))
l(i+ 1, j) = B(F−i (l(i, j − 1)), F+

i (l(i, j)))

with 0 ≤ i < h and 1 ≤ j ≤ i.

In the execution of the designed molecular program a labelled mer-
ge-binary tree with depth q is obtained, where:

(a) The labels are the tubes.

(b) For each i (with 0 ≤ i ≤ q−1) we have Fi(T) = separate(T, i+1).
So,

F−i (T) = −(T, i+ 1) and F+
i (T) = +(T, i+ 1)

222 Formal Verification of Programs in Molecular Models...

(c) The binary function, B, is the combine molecular operation (ca-
lled merge too).

(d) T0 is the input test–tube of the subroutine.

This combinatorics structure allows us to design a subroutine solving a
more general sorting problem, where the semantic of the subroutine is
very close to the semantic of the problem ([3]).

To establish the formal verification of the subroutine, in connection
with the Minimal Set Cover Selection problem, we have to prove specifi-
cally that:

• Every molecule, σ, in the output tube, Tq−1,r (with 1 ≤ r ≤ q),
verifies |σ| = r (Soundness).

• Every molecule, σ, in the input tube, T0, such that |σ| = r (with
1 ≤ r ≤ q), is in the output tube Tq−1,r (Completeness).

The execution of the subroutine can be seen as an evolution of a popula-
tion of elements. Initially, the population is determined by the multiset
of molecules in the input tube, T0. Every molecule is an individual,
and repeated ones can exist at the same time (so cloned members can
be alive simultaneously in this population).

Every step of the main loop can be interpreted as a time unit. After
a lapse, the population is transformed into another one, but, in this
case, there is no death or mutation in elements, since this subroutine is,
basically, a filtering procedure.

We consider the following formulas:

ψ(i, 0) ≡ ∀σ (σ ∈ Ti,0 ↔ σ ∈ T0 ∧ ∀k (1 ≤ k ≤ i+ 1→ k /∈ σ))
ψ(i, j + 1) ≡ ∀σ(σ ∈ Ti,j+1 ↔ (σ ∈ Ti−1,j ∧ i+ 1 ∈ σ) ∨

∨ (σ ∈ Ti−1,j+1 ∧ i+ 1 /∈ σ))
θ(i) ≡ ∀j (0 ≤ j ≤ i+ 1→ ψ(i, j))

Theorem 5. The formula θ(i) is an invariant of the main loop. That is,
∀ i (0 ≤ i ≤ q − 1→ θ(i)).

Proof. By induction on i.

• The result is true for i = 0.

The formula ψ(0, 0) is true because

M. J. PÉREZ-JIMÉNEZ, F. SANCHO-CAPARRINI 223

σ ∈ T0,0 ⇐⇒ σ ∈ T ∗0,0 = −(T−1,0, 1) = −(T0, 1)⇐⇒
σ ∈ T0 ∧ 1 /∈ σ ⇐⇒ σ ∈ T0 ∧ ∀ k (1 ≤ k ≤ 0 + 1→ k /∈ σ).

The formula ψ(0, 1) is true because

σ ∈ T0,1 ⇐⇒ σ ∈ T+
0,0 ∪ T ∗0,1 = T+

0,0 = +(T−1,0, 1) ⇐⇒ σ ∈
T−1,0 ∧ 1 ∈ σ ⇐⇒ (σ ∈ T−1,0 ∧ 1 ∈ σ)∨ (σ ∈ T−1,1 ∧ 1 /∈ σ).

• Let i < q − 1 such that the formula θ(i) is true. Let us see that the
formula θ(i+ 1) is true; that is, ∀ j (0 ≤ j ≤ i+ 2→ ψ(i+ 1, j).

– For j = 0 we have the following:
σ ∈ Ti+1,0 ⇐⇒ σ ∈ T ∗i+1,0 ⇐⇒ σ ∈ −(Ti,0, i + 2) ⇐⇒ σ ∈
Ti,0 ∧ i + 2 /∈ σ ⇐⇒ σ ∈ T0 ∧ ∀ k (1 ≤ k ≤ i + 1 → k /∈
σ) ∧ i+ 2 /∈ σ ⇐⇒ σ ∈ T0 ∧ ∀ k (1 ≤ k ≤ i+ 2→ k /∈ σ).

– Let j ≤ i+ 2 such that j > 0 and let us see that ψ(i+ 1, j) is
true. Indeed:
σ ∈ Ti+1,j ⇐⇒ σ ∈ T+

i+1,j−1 ∪ T ∗i+1,j ⇐⇒ σ ∈ +(Ti,j−1) ∪
−(Ti,j , i+2)⇐⇒ (σ ∈ Ti,j−1 ∧ i+2 ∈ σ)∨(σ ∈ Ti,j ∧ i+2 /∈ σ).

Next, we describe the trace of every molecule in the input tube
along the execution of the subroutine. For this, if σ ∈ T0 is given, we
will write σ = (i1, . . . , ir) to note that 1 ≤ i1 < · · · < ir ≤ q and

∀ j (1 ≤ j ≤ r → σ(ij) = 1) ∧ ∀ t ∀ j (1 ≤ t ≤ q ∧ ij 6= t→ σ(t) = 0)

That is, the molecule σ = (i1, . . . , ir) ∈ T0 encodes in a natural way the
subfamily F ′ = {Bi1 , . . . , Bir} of F .

Proposition 1. Let σ = (i1, . . . , ir) ∈ T0, where 1 ≤ i1 < i2 < · · · < ir ≤
q. Then

(1) ∀j (1 ≤ j ≤ r → σ ∈ Tij−1,j).

(2) ∀t (1 ≤ t ≤ q − ir → σ ∈ Tir+t−1,r).

(3) σ ∈ Tq−1,r.

224 Formal Verification of Programs in Molecular Models...

Proof.

1. By induction on j.

• First, we consider the case j = 1.

– If i1 = 1 then Ti1−1,1 = T0,1 = T0. So, σ ∈ Ti1−1,1.
– If i1 > 1 then we prove that ∀ s (1 ≤ s < i1 → σ ∈
Ts−1,0). Indeed:
∗ Let s be such that 1 ≤ s < i1. Then, σ ∈ T0 ∧ ∀ k (1 ≤
k ≤ s − 1 + 1 → k /∈ σ). As s − 1 ≥ 0 the formula
ψ(s− 1, 0) is true, so we deduce that σ ∈ Ts−1,0.

From 1 ≤ i1 − 1 < i1 we obtain that σ ∈ T(i1−1)−1,0. As
i1 ∈ σ we have σ ∈ +(Ti1−2,0, i1). Then σ ∈ Ti1−2,0, i1 ∈
σ, and the formula ψ(i1−1, 1) is true. Hence, σ ∈ Ti1−1,1.

• Let j be such that 1 ≤ j < r. Let us suppose that σ ∈ Tij−1,j .
We have to prove that σ ∈ Tij+1−1,j+1.

– If ij+1 − 1 = ij (that is, ij+1 = ij + 1), from induction
hypothesis we have σ ∈ Tij−1,j and ij+1 ∈ σ. That is,
σ ∈ Tij−1,j and ij +1 ∈ σ. As formula ψ(ij+1−1, j+1) ≡
ψ(ij , j + 1) is true, we deduce that σ ∈ Tij+1−1,j+1.

– If ij+1− 1 > ij we prove that ∀ t (1 ≤ t ≤ ij+1− ij − 1→
σ ∈ Tij+t−1,j), by induction on t.
∗ We have σ ∈ Tij−1,j and ij + 1 /∈ σ. As formula
ψ(ij , j) is true (and j > 0) we obtain that σ ∈ Tij ,j .
That is, σ ∈ Tij+1−1,j . So, the result is true for t = 1.

∗ Let t be such that t < ij+1− ij−1 and let us suppose
the result holds for t. Then, σ ∈ Tij+t−1,j . As ij <
ij + t + 1 < ij+1, we have ij + t + 1 /∈ σ. Having in
mind that the formulaψ(ij+t, j) is true, we conclude
that σ ∈ Tij+t,j . That is, σ ∈ Tij+(t+1)−1,j .

Now, let us see that σ ∈ Tij+1−1,j+1. Applying the above
relation for t = ij+1 − ij − 1, σ ∈ Tij+(ij+1−ij−1)−1,j =
Tij+1−2,j . As ij+1 ∈ σ and the formula ψ(ij+1 − 1, j + 1)
is true we deduce that σ ∈ Tij+1−1,j+1.

2. By induction on t.

M. J. PÉREZ-JIMÉNEZ, F. SANCHO-CAPARRINI 225

• For t = 1 we have that 1 ≤ q− ir, that is, ir + 1 ≤ q. From (1)
we obtain that σ ∈ Tir−1,r. But ir +1 /∈ σ. As formula ψ(ir, r)
is true we conclude that σ ∈ Tir,r. That is, σ ∈ Tir+1−1,r.

• Let t be such that 1 ≤ t < q − ir, and let us suppose that
σ ∈ Tir+t−1,r. As ir < ir + t + 1 ≤ q we have ir + t + 1 /∈
σ. Taking into account that the formula ψ(ir + t, r) is true
(because ir + t ≤ q − 1), we conclude that σ ∈ Tir+t,r. That
is, σ ∈ Tir+(t+1)−1,r.

3. Applying the result obtained in (2), considering t = q − ir, we
deduce that σ ∈ Tir+(q−ir)−1,r = Tq−1,r.

Next we will prove that the generated tubes after i-th step of the
main loop, {Ti,0, Ti,1, . . . , Ti,i+1}, form a partition of the initial test tube,
T0. This confirms that the subroutine runs a filtering procedure where
no strand dies along the execution.

Proposition 2. ∀i (0 ≤ i ≤ q − 1→ T0 =
⋃

0≤j≤i+1 Ti,j).

Proof. Let us first prove that ∀ i (0 ≤ i ≤ q − 1 → T0 ⊆
⋃

0≤j≤i+1 Ti,j).
By induction on i.

• Let σ ∈ T0. Then (σ ∈ T0 ∧ 1 ∈ σ) ∨ (σ ∈ T0 ∧ 1 /∈ σ). So,

(σ ∈ T0 ∧ 1 ∈ σ) =⇒ (σ ∈ T−1,0 ∧ 1 ∈ σ) =⇒ σ ∈ T0,1

(σ ∈ T0 ∧ 1 /∈ σ) =⇒ σ ∈ T0,0

Hence σ ∈ T0,1 ∪ T0,0 ⊆
⋃

0≤j≤1 T0,j .

• Let i < q − 1 be such that T0 ⊆
⋃

0≤j≤i+1 Ti,j . Let σ ∈ T0. From
induction hypothesis, there exists j such that 0 ≤ j ≤ i + 1 and
σ ∈ Ti,j . Then (σ ∈ Ti,j ∧ i+ 2 ∈ σ) ∨ (σ ∈ Ti,j ∧ i+ 2 /∈ σ).

– Let us suppose that σ ∈ Ti,j and i+ 2 ∈ σ.
As formula ψ(i+1, j+1) is true we deduce that σ ∈ Ti+1,j+1

⊆
⋃

0≤s≤i+2 Ti+1,s.

– Let us suppose that σ ∈ Ti,j and i+ 2 /∈ σ

226 Formal Verification of Programs in Molecular Models...

∗ If j = 0 then σ ∈ Ti,0 and i+ 2 /∈ σ. But σ ∈ Ti,0 =⇒ σ ∈
T0 ∧ ∀ k (1 ≤ k ≤ i+ 1→ k /∈ σ). So, σ ∈ T0 ∧ ∀ k (1 ≤
k ≤ i + 2 → k /∈ σ). As formula ψ(i + 1, 0) is true, we
deduce that σ ∈ Ti+1,0 ⊆

⋃
0≤s≤i+2 Ti+1,s.

∗ If j > 0, taking into account that σ ∈ Ti,j ∧ i + 2 /∈ σ
and the formula ψ(i+ 1, j) is true, we conclude that σ ∈
Ti+1,j . That is, σ ∈

⋃
0≤s≤i+2 Ti+1,s.

Now, let us see that ∀ i (0 ≤ i ≤ q− 1→
⋃

0≤j≤i+1 Ti,j ⊆ T0). For that, it
is enough to prove that ∀ i∀ j (0 ≤ i ≤ q−1 ∧ 0 ≤ j ≤ i+1→ Ti,j ⊆ T0).
By induction on i.

• The result holds for i = 0. Indeed:

T0,0 = T ∗0,0 = −(T−1,0, 1) = −(T0, 1) ⊆ T0

T0,1 = T+
0,0 ∪ T ∗0,1 = T+

0,0 = +(T−1,0, 1) = +(T0, 1) ⊆ T0

• Let i < q − 1 be such that ∀ j (0 ≤ j ≤ i + 1 → Ti,j ⊆ T0). Let us
see that ∀ j (0 ≤ j ≤ i+ 2→ Ti+1,j ⊆ T0).

– If j = 0 then Ti+1,0 = T ∗i+1,0 = −(Ti,0, i+2) = −(Ti,0, i+2)
h.i.
⊆

T0.

– If j > 0 (and j ≤ i + 2) then we have: Ti+1,j = T ∗i+1,j−1 ∪
T ∗i+1,j = +(Ti,j−1, i+ 2)∪−(Ti,j , i+ 2) ⊆ Ti,j−1 ∪Ti,j . Taking
into account that

j ≤ i+ 1 =⇒ Ti,j−1 ∪ Ti,j ⊆ T0

j = i+ 2 =⇒ Ti,j−1 ∪ Ti,j = Ti,i+1 ∪ Ti,i+2 = Ti,i+1 ⊆ T0

we conclude that Ti+1,j ⊆ T0.

Proposition 3. ∀i (0 ≤ i ≤ q − 1 → ∀r ∀s (0 ≤ r < s ≤ i + 1 →
Ti,r ∩ Ti,s = ∅)).

Proof. By induction on i.

• The result holds for i = 0 because

T0,0 ∩ T0,1 = T ∗0,0 ∩ T0,1 = −(T−1,0, 1) ∩+(T−1,0, 1) = ∅.

M. J. PÉREZ-JIMÉNEZ, F. SANCHO-CAPARRINI 227

• Let i < q − 1 be such that ∀ r ∀ s (0 ≤ r < s ≤ i + 1 → Ti,r ∩
Ti,s = ∅). Let r, s be such that 0 ≤ r < s ≤ i + 2. Let us see that
Ti+1,r ∩ Ti+1,s = ∅.

– Let us suppose that s = i+ 2.
If there exists τ ∈ Ti+1,r ∩ Ti+1,i+2 then

τ ∈ Ti+1,i+2 =⇒ (τ ∈ Ti,i+1 ∧ i+ 2 ∈ τ)∨
(τ ∈ Ti,i+2 ∧ i+ 2 /∈ τ)

=⇒ (τ ∈ Ti,i+1 ∧ i+ 2 ∈ τ)

But τ ∈ Ti+1,0 =⇒ τ ∈ T0 ∧ ∀ k (1 ≤ k ≤ i+ 2→ k /∈ τ), and
i + 2 ∈ τ . So, r > 0. Then, τ ∈ Ti+1,r =⇒ τ ∈ Ti,r−1. Hence,
Ti,i+1 ∩ Ti,r−1 6= ∅. This contradicts our assumption.

– Let us suppose that r = 0 and 1 ≤ s ≤ i+ 1.
If there exists τ ∈ Ti+1,0 ∩ Ti+1,s then

τ ∈ Ti+1,0 =⇒ τ ∈ T0 ∧ ∀ k (1 ≤ k ≤ i+ 2→ k /∈ τ)
=⇒ τ ∈ Ti,0 ∧ ∀ k (1 ≤ k ≤ i+ 2→ k /∈ τ)

τ ∈ Ti+1,s =⇒ (τ ∈ Ti,s−1 ∧ ≤ i+ 2 ∈ τ)∨
(τ ∈ Ti,s ∧ i+ 2 /∈ τ)

So, τ ∈ Ti,0 ∩ Ti,s. This contradicts the induction hypotesis
(because 0 < s ≤ i+ 1).

– Let us suppose that r > 0 and 1 ≤ s ≤ i+ 1.
If there exists τ ∈ Ti+1,r ∩ Ti+1,s then

τ ∈ Ti+1,r =⇒ (τ ∈ Ti,r−1 ∧ i+ 2 ∈ τ)∨
(τ ∈ Ti,r ∧ i+ 2 /∈ τ)

τ ∈ Ti+1,s =⇒ (τ ∈ Ti,s−1 ∧ i+ 2 ∈ τ)∨
(τ ∈ Ti,s ∧ i+ 2 /∈ τ)

If i + 2 ∈ τ then Ti,r−1 ∩ Ti,s−1 6= ∅, which contradicts the
induction hypothesis.
If i+2 /∈ τ then Ti,r∩Ti,s 6= ∅, which contradicts the induction
hypothesis.

228 Formal Verification of Programs in Molecular Models...

Corollary 6. Tq−1,0 = ∅.

Proof. Let us suppose that Tq−1,0 6= ∅. Then there exists σ = (i1, . . . , ir)
∈ Tq−1,0, with r > 0. From Proposition 1.(3) we have σ ∈ Tq−1,r. So,
Tq−1,0 ∩ Tq−1,r 6= ∅, which contradicts Proposition 3.

Finally, we establish the soundness and the completeness of the de-
signed subroutine that solves the Minimal Set Cover Selection problem.

Theorem 6. (Soundness) Every strand, σ, in the final test–tube, Tq−1,r

(with 1 ≤ r ≤ q), verifies that its length is r. That is, ∀r (1 ≤ r ≤ q → ∀σ ∈
Tq−1,r(|σ| = r)).

Proof. Let r be such that 1 ≤ r ≤ q. Let σ ∈ Tq−1,r. From Proposition
2 we obtain that σ ∈ T0. From Proposition 1.(3), we have σ ∈ Tq−1,|σ|.
From Proposition 3 we conclude that |σ| = r.

Theorem 7. (Completeness) Every strand, σ, in the initial test–tube,
T0, with length r is in the output tube, Tq−1,r. That is, ∀σ ∈ T0 (|σ| = r →
σ ∈ Tq−1,r). Moreover, ∀σ ∈ T0 ∃!r (1 ≤ r ≤ q ∧ σ ∈ Tq−1,r).

Proof. Let σ ∈ T0 such that |σ| = r. From Proposition 1.(3) we can
deduce that σ ∈ Tq−1,r. In the other hand, from Proposition 3 (with
i = q − 1) there exists j such that 0 ≤ j ≤ i + 1 and σ ∈ Tq−1,j . From
Corollary 1 we obtain j > 0, and from Proposition 3 we conclude that j
is unique.

7 Conclusions

A methodology to establish the formal verification of FOR orWHILE
programs within molecular computing models with random access me-
mory has been presented. The search of invariant formulas of the main
loop needs a detailed study of the evolution of every molecule along the
execution of the program. A function called STEP has been introduced
to capture the evolution of the molecules after one step of the main
loop.

These solutions are applied to solve some numerical NP-complete
problems: the Generating Cover Families problem, the Set Covering prob-
lem and the Minimal Set Cover Selection Problem. The problems we

M. J. PÉREZ-JIMÉNEZ, F. SANCHO-CAPARRINI 229

have chosen in this paper present some interesting and different char-
acteristics with respect to the STEP function.

We think that the study of the formal verification of molecular pro-
grams is a necessary step for their automatic processing by means of
reasoning systems (we are currently working on ACL2 and PVS).

Acknowledgement

The support for this research through the project TIC2002-04220-C03-
01 of the Ministerio de Ciencia y Tecnología of Spain, cofinanced by
FEDER funds, is gratefully acknowledged.

References

[1] Adleman, L. Molecular Computation of Solutions to Combinato-
rial Problems, Science, 268 (1994), 1021–1024.

[2] Garey, M. R.; Johnson, D. S. Computers and intractability, W. H.
Freeman and Company, New York, 1979.

[3] Pérez-Jiménez, M. J.; Sancho-Caparrini, F. Solving Knapsack Prob-
lems in a Sticker Based Model, in Jonoska, N.; Seeman, N. (eds.),
DNA Computing, LNCS 2340 (2002), 161–171.

[4] Hoare, C. A. R. An axiomatic basis for computer programming,
Communications of the ACM, 12 (1969), 576–583.

[5] Pérez-Jiménez, M. J.; Sancho-Caparrini, F. Minimal Set Cover
Problem: On a DNA solution of selection stage, in Martín-Vide,
C.; Păun, Gh. (eds.), Pre-Proceedings of Workshop on Membrane Com-
puting, RGML Report 17/01 (2001), 251–258.

[6] Roweis, S.; Winfree, E.; Burgoyne, R.; Chelyapov, N.; Goodman,
M.; Rothemund, P.; Adleman, L. A Sticker–Based Model for DNA
Computation, Journal of Computational Biology, 5, 4 (1998), 615–629.

