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a b s t r a c t

Principal Components are usually hard to interpret. Sparseness is considered as one way
to improve interpretability, and thus a trade-off between variance explained by the com-
ponents and sparseness is frequently sought. In this note we address the problem of si-
multaneous maximization of variance explained and sparseness, and a heuristic method
is proposed. It is shown that recent proposals in the literature may yield dominated so-
lutions, in the sense that other components, found with our procedure, may exist which
explain more variance and at the same time are sparser.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

Principal Components Analysis (PCA) is a classical dimension reduction technique in multivariate data analysis, intro-
duced by Pearson [13]. The goal of PCA is to find a set of orthonormal vectors minimizing the sum of squares of distances
between a set of points and their projections on the vector space spanned by such orthonormal vectors. In other words, in
PCA k orthonormal vectors c1, . . . , ck are sought by solving the following optimization problem:

min
c1,...,ck: orthonormal

1
n

n
h=1

uh − π{c1,...,ck}(uh)
2
2 , (1)

where {u1, . . . , un} ∈ Rp is the set of points, and π{c1,...,ck} denotes the projection onto the linear space L({c1, . . . , ck})
spanned by the vectors c1, . . . , ck, k ≤ p. The optimal solutions, c1, . . . , ck, are called the Principal Components (PCs). In
thisworkwe suppose that khas been fixed in advance using anymethod, such as e.g. the Scree Plot, PC rank trace, andKaiser’s
rule, Izenman [6].

The so-obtained PCs enjoy important properties, such as the fact that the projection of the points u1, . . . , un have un-
correlated components, see [8]. Moreover, the optimal solution of Problem (1) admits an interpretation in terms of the
variance explained by the projections. However, the most important problem of PCA is the lack of interpretability of the
results, e.g. [15,16], in part due to the fact that PCs have most components at nonzero value, i.e., most original variables
are related with each PC. For this reason, several authors have advocated the use of simpler components (i.e., orthonormal
vectors with a few nonzero entries), at the expense of losing variance explained or other properties, such as uncorrelation
of the projections. Sparseness is usually considered to be a tool to make interpretation of the components easier.
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A first proposal, following the idea of making PCs sparser, and thus potentially more interpretable, is to build compo-
nents from PCs, but setting to zero all coefficients which, in absolute value, are below a threshold. However, this intuitively
appealing idea may be misleading, see [3]. Other related criteria are presented in [9], called SCoTLASS, Zou et al. [18] or
d’Aspremont et al. [5]. Since interpretability is a subjective criterion, these papers, as we also do, assume that sparseness
can be seen as potential interpretability, and thusmaximizing sparseness will make it likely to understand and interpret the
output of the procedure.

Qi et al. [14] proposed another methodology in which the trade off between sparseness and explanation of the variance
is obtained by introducing a new norm, ∥ · ∥(λ), which depends on a parameter λ ∈ [0, 1]. The extreme values of ∥ · ∥(λ)

correspond to the ℓ2 distance (associated with error minimization) and the ℓ1 distance (associated with sparseness, as in
the lasso, Tibshirani [17]). Sparse PCs are calculated sequentially by imposing either orthonormality or uncorrelation of the
components. Their approach can be summarized as follows.

Let us introduce the following norm in Rp, ∥ · ∥(λ), λ ∈ [0, 1] defined as

∥c∥(λ) =

(1 − λ)∥c∥2

2 + λ∥c∥2
1

1/2
, c ∈ Rp

where ∥ · ∥2 denotes the ℓ2-norm and ∥ · ∥1 denotes the ℓ1-norm.
The first sparse PC is obtained by solving the optimization problem

max
c⊤

1 · V · c1
∥c1∥2

(λ1)

s.t. {∥c1∥2 = 1,

where V is the p × p covariance (or correlation) matrix and λ1 ∈ [0, 1] is a parameter which must be fixed and trades off
somehow variance explained and sparseness.

Higher order sparse PCs are obtained as the solution of two alternative problems, depending whether orthogonality or
uncorrelation on the PCs is imposed.

Firstly, if orthogonality is sought and cj, j = 1, . . . , k − 1, are known, the k-th PC is obtained by solving

max
c⊤

k · V · ck
∥ck∥2

(λk)

s.t.

∥ck∥2 = 1
c⊤

j · ck = 0 ∀j = 1, . . . , k − 1.

On the other hand, if uncorrelation of the components is required, the problem considered is

max
c⊤

k · V · ck
∥ck∥2

(λk)

s.t.

∥ck∥2 = 1
c⊤

j · V · ck = 0 ∀j = 1, . . . , k − 1.

An algorithm with good theoretical properties is studied, as well as numerical illustrations using the classical Pitprops
data set, see [7], and a large artificial data set are shown. However, as we show below, solutions obtainedwith this approach
may be dominated, in the sense that other components may exist being sparser and, at the same time, explaining a higher
percentage of variance.

The paper is organized in four more sections. In Section 2 we formulate a sparse version of problem (1) as a biobjective
Mixed Integer Nonlinear Problem (MINLP). The reader is referred to Burer and Letchford [2] for an updated review onMixed
Integer Nonlinear Programming. Problem resolution is described in Section 3. Numerical results are included in Section 4.
Finally, Section 5 includes some conclusions and extensions.

2. Problem statement

We address the problem under consideration by formulating an optimization problem, for which a heuristic method is
proposed. This approach is similar to the methodology proposed in [4]. In such work, a new procedure for achieving sparse-
ness in PCs is proposed by writing an optimization problem in which, on top of deciding the loadings (which are continuous
variables), one has to decide which ones are allowed to take nonzero values. This is done by introducing some binary vari-
ables which allow the user to control how sparse PCs are. The so-obtained nonlinear optimization problemwith continuous
and binary variables is heuristically solved via a Variable Neighborhood Search, Mladenović and Hansen [11].

In this paper, we extend that idea to a more challenging problem, in which both the sparseness of the PCs and variance
explained are simultaneously optimized. This leads to a biobjective problem, which is solved heuristically with a Pairwise
Exchange Method, Nahar et al. [12]. Problem resolution will be dealt in Section 3.
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Let us introduce the formulation of the biobjective problem of optimizing both sparseness and variance explained. To do
that, let us denote by cil the l-th coordinate of the ith PC, i = 1, . . . , k, l = 1, . . . , p. We define

zil =


1 if cil ≠ 0
0 else.

Notice that, thanks to the definition of zil, one has that
p

l=1

zil = #nonzero loadings in the ith PC,

and thus,
k

i=1

p
l=1

zil = #overall nonzero loadings.

Thus, the problem can be written as follows:

min
c1,...,ck,z1,...,zk


1
n

n
h=1

uh − π{c1,...,ck}(uh)
2
2 ,

k
i=1

p
l=1

zil



s.t.

c1, . . . , ck orthonormal (or uncorrelated)
|cil| ≤ zil ∀i = 1, . . . , k l = 1, . . . , p
zil ∈ {0, 1} ∀i = 1, . . . , k l = 1, . . . , p.

(2)

The second constraint forces cil to take zero value if the corresponding zil is equal to zero. However, if zil is equal to one, this
constraint is redundant because every cil is already less than or equal to one, since we are imposing ∥ci∥2 = 1, i = 1, . . . , k.

Problem (2) can be reformulated as a parametric problem, parameterized by an integer α, in which the error between
points and their projections is minimized among those vector spaces whose basis have overall at most α nonzero compo-
nents. Thus, (2) can be written as follows:

min
c1,...,ck

1
n

n
h=1

uh − π{c1,...,ck}(uh)
2

s.t.



c1, . . . , ck orthonormal (or uncorrelated)
|cil| ≤ zil ∀i = 1, . . . , k l = 1, . . . , p
k

i=1

p
l=1

zil ≤ α

zil ∈ {0, 1} ∀i = 1, . . . , k l = 1, . . . , p.

(3)

Simple algebraic manipulations give us the following:

Proposition 1. Problem (3) is equivalent to finding c1, . . . , ck solution of

max
c1,...,ck

tr

(C⊤C)−1

· C⊤
· V · C



s.t.



c1, . . . , ck orthonormal (or uncorrelated)
|cil| ≤ zil ∀i = 1, . . . , k l = 1, . . . , p
k

i=1

p
l=1

zil ≤ α

zil ∈ {0, 1} ∀i = 1, . . . , k l = 1, . . . , p

(4)

where C = (c1| . . . |ck) and tr represents the trace of a matrix.

Normalizing the objective function of (4) we obtain the expression

tr

(C⊤C)−1

· C⊤
· V · C


tr{V }

· 100,

which will be called thereafter percentage of explained variance.
Problem (4) is a nonconvex mixed integer program, and thus unlikely to be solved by exact methods, even for problems

of moderate size, see [2]. For this reason, instead of attempting to find an optimal solution to (4) we suggest a heuristic
procedure, which is much less time demanding than exact methods. The heuristic is described in Section 3.
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3. The optimization process

Problem (4) is a hardMINLP, unlikely to be solvable to optimality by standard numerical routines, see e.g. [2] for a survey
on Mixed Integer Nonlinear Programming. Instead we propose to solve it heuristically, firstly fixing an initial solution, as
described in Section 3.1, and then improving it via a Pairwise Exchange Algorithm, as presented in Section 3.2. We stress
that our approximation is heuristic, and thus a suboptimal solution to Problem (4) may be obtained. Nevertheless, as shown
in our numerical testing, such heuristic yields competitive results against state-of-the-art methods.

3.1. Fixing an initial solution

In order to build a starting solution to Problem (4), we have to build a pair (z0 = (z01, . . . , z
0
k), c

0
= (c01, . . . , c

0
k)). This is

done in a two-stage process, by first finding a sensible guess for z0, and later finding the best-possible c0 for such z0.
Firstly, binary variables zil, i = 1, . . . , k, l = 1, . . . , p, are fixed by solving a linear program. In order to formulate the

problem, classical principal components c∗
= (c∗

1, . . . , c
∗

k)need to be computed by solving Problem (1). Then,we find zil, i =

1, . . . , k, l = 1, . . . , p, such that the sum of the absolute values of loadings of principal components are maximized by im-
posing constraints which are required in Problem (4). A constraint forcing at least one variable to appear in each principal
component is included in this formulation. So, zil, i = 1, . . . , k, l = 1, . . . , p, are sought so that they satisfy

max
z1,...,zk

k
i=1

p
l=1

|c∗

il |zil

s.t.



p
l=1

zil ≥ 1 ∀i = 1, . . . , k

k
i=1

p
l=1

zil ≤ α

0 ≤ zil ≤ 1 ∀i = 1, . . . , k l = 1, . . . , p

(5)

where c∗

il denotes the l-th coordinate of the ith classical PC, i.e., solution of (1). Problem (5) has a flow problem constraint
structure, see [1], which means that constraint matrix is totally unimodular, and it attains its optimal value at some point
z0 = (z01, . . . , z

0
k) with all coordinates z0il ∈ {0, 1}.

Once the values z0il are fixed, we come back to problem (4) by adding the constraints controlling which coordinates must
be equal to zero. This amounts to solving the nonlinear optimization problem

max
c1,...,ck

tr

C⊤

· V · C


s.t.

c⊤

i · cj = δij ∀i, j = 1, . . . , k
cil = 0 ∀i = 1, . . . , k, l = 1, . . . , p : z0il = 0,

(6)

where

δij =


1 if i = j
0 otherwise,

if orthogonal sparse components are sought, and if, instead, uncorrelated projections are sought, one solves

max
c1,...,ck

tr

(C⊤C)−1

· C⊤
· V · C


s.t.

c⊤

i · V · cj = 0 ∀i, j = 1, . . . , k, i ≠ j
∥ci∥2 = 1 ∀i = 1, . . . , k
cil = 0 ∀i = 1, . . . , k, l = 1, . . . , p : z0il = 0.

(7)

This way, an approximation with at most α coordinates at a nonzero value is found. The solution is likely to be similar
to the one provided by PCA, but without forcing that every coefficient lower than some threshold value sets to zero. In fact,
this approach is proven to be deceived in [3].

3.2. Improving the solution via Pairwise Exchange Algorithm

The solution found by the procedure described in Section 3.1 may not be optimal for Problem (4), but it can be a good
starting point for a search procedure such as Pairwise Exchange Algorithm, Nahar et al. [12]. Other more sophisticated
heuristic approaches, such as Simulated Annealing, see [10], or Variable Neighborhood Search, see [11], might also be used.
However, our numerical experience shows that the simplest approach, namely, the Pairwise Exchange, yields in general
excellent results and is thus the one we suggest and describe below.



E. Carrizosa, V. Guerrero / Journal of Multivariate Analysis 132 (2014) 151–159 155

Fig. 1. Pairwise Exchange Algorithm.

Fig. 2. Pairwise Exchange Algorithm for solving problem (6) (or (7)).

Firstly, let us describe Pairwise Exchange Algorithm for a general problem, Fig. 1, and then it will be customized to our
problem, Fig. 2.

Having a solution of the optimization problem under consideration, Pairwise Exchange Algorithm consists of interchang-
ing the positions of two randomly chosen elements. Such perturbation is accepted only if it improves the objective function
of the problem. A general scheme of the algorithm is presented in Fig. 1.

In order to solve Problems (6) and (7), we customize the Pairwise Exchange Algorithm described above to our particular
problem. In our method, we use a few trial values for the binary variables zil, and once they are fixed, the vectors c1, . . . , ck
are obtained by solving (6) or (7).

In order to build the trial values of z = (z1, . . . , zk), we first construct a starting value z0 = (z01, . . . , z
0
k), obtained by

solving the linear program (5). From such starting value z0, a Pairwise Exchange is implemented. The steps of our procedure
are summarized in Fig. 2.

Observe that the procedure stops when the number of iteration attains its limit Nmax. Such Nmax is fixed in advance by
the user so that (s)he avoids the running times of this combinatorial problemexploit. One should keep inmind that, generally
speaking, the lower the running time allowed, the lower the expected quality of the solution provided by the procedure.

4. Computational experiments

We compare our approach with the one by Qi et al. [14] outlined in Section 1 on two different settings, identified by
their covariance matrix V . The first model tested corresponds to the Pitprops data set, see [7]. The Pitprops data has become
a benchmark data set for testing the performance of sparse PCA methods due to the difficulty of achieving simplicity in
PCs without losing information. 13 variables arose from a study on the strength of pitprops cut from home-grown timber,
measured in 180 observations. Six principal components are calculated. The correlation matrix can be found in R package
elasticnet.
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Fig. 3. Orthonormal PCs shown in [14] against biobjective approach.

The second data set is an artificial set used to test the behavior of both methods on larger dimensions. For this reason we
have generated a p = 200-dimensional covariance matrix V from a data model

X = se + tf + ε ∈ Rp,

with e = (e1, . . . , ep), f = (f1, . . . , fp), ε = (ε1, . . . , εp), s and t given as follows:

• ei =


1 if i < ⌊

p
2

⌋

0 else
i = 1, . . . , p.

• fi = 1, i = 1, . . . , p.
• εi is a random variable with var(εi) = σ 2

= 0.1, i = 1, . . . , p.
• s and t are independent random variables with var(s) = var(t) = 1.

Roughly speaking the random vector X is around the 2-dimensional space generated by the vectors e and f .
Hence, the covariance matrix V obtained has the form

V =


e21 + f 21 + σ 2 e1e2 + f1f2 · · · e1ep + f1fp
e2e1 + f2f1 e22 + f 22 + σ 2

· · · e2ep + f2fp
...

...
. . .

...

epe1 + fpf1 epe2 + fpf2 · · · e2p + f 2p + σ 2

 .

Two principal components are extracted. Observe that, by construction, the (nonsparse) components are close to the
generating vectors e and f above, and thus the total number of zeros is around p +

p
2 .

The Mixed Integer Programming Problem (4) is solved as described in Section 3. The algorithm has been implemented
inMatlab, using the routines linprog to numerically solve the flow problem (5) and routine fmincon to solve nonlinear
problems (6) and (7). The process is repeated until Nmax iterations are performed, where Nmax = 300 for Pitprops and
Nmax = 50 in the high dimensional example.

We compare now our results with those obtained by Qi et al. [14] with their method for the Pitprops data set. In Fig. 3 the
explained variance, obtained heuristically bymeans of our procedure, is shown for different values α of nonzero coordinates
of Problem (6), i.e. Problem (4) under the constraint that the PCs must be orthonormal. In the same way, Fig. 4 shows the
percentages of explained variance in Problem (7) for varying α when uncorrelation is imposed on the PCs, i.e. Problem (4)
under the constraint that the PCs must be uncorrelated.

We also plot the solution(s) proposed by Qi et al. [14], which are marked as stars (‘∗’), and denoted QLZ, and the ones
given by SCoTLASS approach, Jolliffe et al. [9], and denoted by crosses (‘×’), in the case of orthonormal components. All these
solutions are included in the cited papers. Notice that we have found better solutions, which have higher sparseness than
the ones presented in [14] and, at the same time, also better percentage of explained variance.

In order to comparewith Qi et al. [14], we include the PCs obtained by theirmethod, which appear in the cited paperwith
their corresponding parameters, and the ones we obtain for the very same value α of nonzero coordinates, see Tables 1–3.

Since the performance of QLZ algorithm is strongly affected by tuning parameters and results shown in [14] are only
for a few of them, we have computed the principal components for different values of such tuning parameters. We have
chosen vector of parameters λ = (λ1, . . . , λ6) such that λi ∈ {0.2, 0.4, 0.6, 0.8, 1}, i = 1, . . . , 6. Thus, QLZ has been ex-
ecuted with 15625 different values of the tuning parameters under the constraint that components must be orthonormal.
Best solutions found, in terms of explained variance, have been stored. A comparison between the results of the biobjective
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Fig. 4. Uncorrelated PCs shown in [14] against biobjective approach.

Table 1
Orthonormal PCs, α = 22.

Variables Biobjective approach QLZ
PC1 PC2 PC3 PC4 PC5 PC6 PC1 PC2 PC3 PC4 PC5 PC6

Topdiam −0.40 −0.33 0.00 0.00 0.00 0.00 0.47 0.00 −0.16 0.00 0.00 0.00
Length −0.43 −0.37 0.00 0.00 0.14 0.00 0.48 0.00 −0.18 0.00 0.00 0.00
Moist 0.00 0.00 −0.71 0.00 0.00 0.00 0.00 −0.71 −0.01 0.00 0.00 0.00
Testsg 0.00 0.00 −0.71 0.00 0.00 0.00 0.00 −0.71 0.00 0.00 0.00 0.00
Ovensg 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.54 0.00 0.00 −0.74
Ringtop 0.00 −0.02 0.00 −0.70 0.03 0.00 0.13 −0.02 0.47 0.00 0.00 0.00
Ringbut 0.00 −0.20 0.00 −0.49 −0.23 0.00 0.38 0.00 0.25 0.00 0.00 0.00
Bowmax −0.33 −0.16 0.00 0.00 0.00 0.00 0.25 0.00 0.00 0.00 0.00 0.00
Bowdist −0.49 0.00 0.00 0.00 −0.12 0.00 0.38 0.00 0.00 0.00 0.00 0.00
Whorls 0.00 −0.45 0.00 0.00 −0.37 0.00 0.41 0.01 0.00 0.00 0.00 0.00
Clear −0.56 0.61 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00
Knots 0.00 0.00 0.00 −0.37 0.73 0.00 0.00 0.00 0.00 1.00 0.00 0.00
Diaknot 0.00 −0.33 0.00 0.36 0.49 0.00 0.00 0.00 −0.60 0.00 0.00 −0.67

Variance (%) 18.2 16.0 14.6 13.5 13.1 7.7 30.1 14.6 14.6 7.7 7.7 6.1

Cum. Var. (%) 18.2 34.2 48.8 62.3 75.4 83.1 30.1 44.7 59.3 67.1 74.8 80.9

Table 2
Uncorrelated PCs, α = 34.

Variables Biobjective approach QLZ
PC1 PC2 PC3 PC4 PC5 PC6 PC1 PC2 PC3 PC4 PC5 PC6

Topdiam 0.00 −0.40 0.00 0.19 0.00 0.07 0.47 0.00 0.25 0.00 0.00 0.00
Length 0.00 −0.41 0.00 0.19 0.00 0.00 0.48 0.00 0.27 0.00 0.00 −0.27
Moist 0.00 0.00 −0.67 −0.28 −0.13 0.16 0.00 −0.71 0.00 0.09 0.00 0.33
Testsg −0.20 0.15 −0.53 0.00 0.00 0.00 0.00 −0.62 −0.11 0.09 0.00 0.00
Ovensg 0.00 −0.12 0.00 0.06 0.90 0.00 0.00 0.00 −0.58 0.00 −0.56 −0.40
Ringtop −0.52 0.20 0.00 0.11 0.00 0.00 0.13 0.00 −0.45 0.00 0.00 0.00
Ringbut −0.45 0.01 0.00 0.00 0.00 0.00 0.38 0.00 −0.26 0.00 0.00 0.00
Bowmax 0.00 −0.28 0.00 −0.26 0.00 0.00 0.25 0.00 0.00 −0.06 0.00 0.00
Bowdist 0.00 −0.35 0.00 0.00 0.00 0.00 0.38 0.00 0.09 0.00 0.00 0.00
Whorls 0.00 −0.40 0.33 0.00 0.00 0.00 0.41 0.32 0.00 0.00 0.02 0.00
Clear 0.00 0.00 0.00 0.52 0.00 −0.84 0.00 0.00 0.00 −0.98 −0.13 −0.09
Knots 0.00 0.00 0.35 0.71 0.00 0.52 0.00 0.00 0.00 0.00 0.48 −0.78
Diaknot 0.69 −0.49 −0.19 0.00 0.42 0.00 0.00 0.00 0.49 0.16 −0.67 −0.21

Variance (%) 25.5 17.2 11.6 11.5 9.4 8.1 30.1 14.0 14.5 7.6 6.1 5.8

Cum. Var. (%) 25.5 42.7 54.3 65.8 75.2 83.3 30.1 44.1 58.7 66.2 72.3 78.2
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Table 3
Uncorrelated PCs, α = 40.

Variables Biobjective approach QLZ
PC1 PC2 PC3 PC4 PC5 PC6 PC1 PC2 PC3 PC4 PC5 PC6

Topdiam −0.42 0.00 0.00 0.13 0.00 −0.26 −0.47 0.00 0.20 0.00 0.00 0.00
Length −0.43 0.00 0.00 0.16 0.00 −0.24 −0.48 0.00 0.22 0.00 −0.05 0.00
Moist 0.00 −0.60 0.00 −0.15 0.00 0.00 0.00 −0.68 0.00 0.06 0.26 0.00
Testsg 0.00 −0.52 0.00 −0.32 0.00 0.00 0.00 −0.66 −0.07 0.06 0.19 −0.12
Ovensg 0.00 −0.03 0.00 0.26 0.96 0.00 0.00 0.00 −0.75 0.00 0.00 −0.46
Ringtop −0.33 0.31 0.35 −0.40 0.00 0.00 −0.13 0.00 −0.40 0.00 −0.14 0.35
Ringbut −0.35 0.22 0.00 −0.28 0.00 0.00 −0.38 0.00 −0.11 0.00 −0.14 0.30
Bowmax −0.34 0.00 0.00 0.27 0.00 0.27 −0.25 0.14 0.00 −0.09 0.00 −0.68
Bowdist −0.38 0.00 0.00 0.19 0.00 0.00 −0.38 0.00 0.00 0.00 −0.08 0.00
Whorls −0.24 0.00 −0.35 −0.06 0.00 0.00 −0.41 0.16 0.00 0.03 0.00 0.00
Clear −0.30 0.00 0.76 0.42 0.00 0.40 0.00 0.00 0.00 −0.98 −0.04 −0.09
Knots 0.00 0.47 0.40 −0.15 0.00 −0.58 0.00 −0.23 0.00 0.00 −0.92 −0.32
Diaknot 0.00 0.00 −0.08 0.47 0.28 −0.55 0.00 0.00 0.42 0.16 0.00 0.00

Variance (%) 27.9 14.3 12.2 10.8 10.6 10.2 30.1 15.6 13.2 7.8 6.5 4.6

Cum. Var. (%) 27.9 42.2 54.4 65.2 75.8 86.0 30.1 45.7 58.9 66.6 73.1 77.8

Fig. 5. Comparison between biobjective approach and QLZ in Pitprops.

approach and QLZ is shown in Fig. 5. This figure shows how our biobjective approach is never worse than QLZ algorithm and,
in several cases, a higher percentage of explained variance with the same sparseness is achieved by our procedure. Results
are equivalent in case that uncorrelation is imposed.

We describe now the results obtained for the second data set. To obtain explained variances with two orthogonal com-
ponents for different values α of nonzero coordinates in the biobjective approach, Problem (6) has been solved and a pair-
wise exchange has been performed. On the other hand, QLZ has been executed for tuning parameters generated randomly
as many times as its execution time has been the same than the time employed by our approach to obtain solutions for
α = 2, . . . , 50. In other words, both procedures are running exactly the same time.

Fig. 6 shows the results for this high dimensional problem and bothmethods. Observe that almost in all cases ourmethod
obtains solutions which have higher or equal explained variance with the same sparseness than QLZ. Results are equivalent
in case that uncorrelation is imposed.

5. Conclusions and extensions

A biobjective approach for finding sparse PCs has been proposed. The problem is expressed as solving a series of MINLPs,
which are solved bymeans of a simple exchange heuristic. In order to evaluate the performance of our procedure, a compar-
ison with the methodology described in [14] has been done. Better results, in terms of sparseness and error minimization,
have been achieved with our procedure, which also gives higher freedom in trading off sparseness (by varying α) and vari-
ance explained.
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Fig. 6. Comparison between biobjective approach and QLZ in the artificial data set.

Sparseness is usually considered as the main property to make the interpretation of the components easier. The use-
fulness of the proposed method consists of the possibility of finding sparse components at the same time that explained
variance is being maximized. However, interpretability is a subjective property which is subject to the user criterion, which
is usually related to sparseness due to the belief that if PCs are sparser then they may be easier understandable.

The results obtained in this paper are only of algorithmic nature. Statistical properties of the so-obtained sparse compo-
nents remain unexplored.
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