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Diego CABRERA, Fernando SANCHO, René-Vinicio SÁNCHEZ, Grover ZURITA, Mariela CERRADA, 
Chuan LI, Rafael E. VÁSQUEZ

Fault diagnosis of spur gearbox based on random forest and 
wavelet packet decomposition

Abstract This paper addresses the development of a
random forest classifier for the multi-class fault diagnosis
in spur gearboxes. The vibration signal’s condition
parameters are first extracted by applying the wavelet
packet decomposition with multiple mother wavelets, and
the coefficients’ energy content for terminal nodes is used
as the input feature for the classification problem. Then, a
study through the parameters’ space to find the best values
for the number of trees and the number of random features
is performed. In this way, the best set of mother wavelets
for the application is identified and the best features are
selected through the internal ranking of the random forest
classifier. The results show that the proposed method
reached 98.68% in classification accuracy, and high
efficiency and robustness in the models.

Keywords fault diagnosis, spur gearbox, wavelet packet
decomposition, random forest

1 Introduction

Power transmission mechanisms are fundamental compo-
nents used in several types of machines, and spur
gearboxes are one of the most used types in low and
medium speed applications. As a fundamental tool in
condition-based maintenance, fault diagnosis of power
transmission devices has become an interesting tool in
order to avoid unwanted downtime in industrial processes.
Specialized literature shows that several works have been
developed in dynamic analysis and fault diagnosis for
gearboxes. Walha et al. [1] examined the effect of backlash
in a two-stage gear system using standard methods for
nonlinear systems. Abbes et al. [2] performed the dynamic
analysis of gearboxes by using substructures, considering
the static error as a vibratory excitation. Tian et al. [3]
identified effective and sensitive health indicators in order
to monitor the crack propagation in a one-stage gearbox
using the dynamic model and the discrete wavelet
transform. In order to avoid devastating consequences
following to unexpected failures, several works addressing
detection and diagnosis methods have been developed.
Within such methods, one can mention: Lubricant
monitoring using chemical analysis [4], analysis of motor
current signals using spectral analysis based on the fast
Fourier transform [5], and analysis of vibration signals [6],
among others.
One of the major drawbacks of all the mentioned

methods is that they require the presence of a human expert
to obtain results, which can produce biased conclusions
that rely on the expert’s experience. Therefore, there is a
need to automate the fault detection and diagnosis
processes using more robust methods such as those
coming from data mining and machine learning. Rafiee
et al. [7] and Sanchez et al. [8] showed the use of multi-
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layer perceptron neural networks to recognize fault
conditions in gearboxes. Other methods, like adaptive
neural networks, able to change its topology with the
inclusion of new samples were introduced by Barakat et al.
[9], while Yang et al. [10] introduced the use of clustering
techniques based on self-organized Kohonen neural net-
works.
The problem of techniques based on neural networks

(NN) is that they are highly dependent on the number of
features; therefore, if the problem is highly dimensional, it
is likely that the NN will not converge. Additionally,
falling into local minima is possible due to an iterative-
deterministic search carried out by the training algorithm,
preventing the convergence to the global optimum. New
techniques have been developed in order to overcome such
problems: For instance, support vector machines (SVMs)
to identify the presence or absence of faults [11]; SVMs
sets with multi-classification least squares support vector
machines in fault diagnosis [12]; or Bayesian network [13],
which in comparison with back-propagation neural net-
work and probabilistic neural network have shown better
results both in the error rate and computation time.
Breiman et al. [14] introduced the random forest (RF)

model, based on the grouping of trees for classification and
regression (CART) [15]. The method is based on the use of
a large number of CARTs, called weak learners, which are
trained using the technique of bagging (random sampling
with replacement). Subsequently, the results of classifica-
tion of these trees are weighted to provide a single
response. The split feature in each node of the weak learner
is selected from a random population constructed from the
initial population of features, following the Gini criterion
as a measure of information gain. Both, measurement of
random population of features and size of the forest
(number of weak learners trees), are parameters selected by
the user.
These two parameters change the correlation among the

trees, keeping enough diversity in the forest while avoiding
over-training [16]. The resulting RF model is inherently
multi-class and the decision-making process is done by
counting each tree in the forest. RF offers a performance
metric called out of bag error (oob-error) calculated as the
average of the rate of error in each weak learner, validating
with untrained samples remaining from the bagging
process. From the previous properties, the characteristics
of RF over other methods are summarized into an ability to
perform classification with few training samples and lots of
attributes, a reduction in bias for better generalization and a
reduction in variance, which provides a robust RF
classification model.
This model has already been considered for fault

diagnosis earlier. Han et al. [17] proposed to use it in
fault diagnosis for bearings in electric motors with features
obtained from the standard deviation of wavelet coeffi-
cients. Yang et al. [18] proposed features extraction from
time and frequency domains, and parameters optimization

through the use of genetic algorithms. Karabadji et al. [19]
made a comparative study of different models based on
trees using genetic search, showing that RF is among the
classifiers that provide better performance.
This paper addresses the development of a RF classifier

for the multi-class fault diagnosis in spur gearboxes. The
rest of the paper is structured as follows: Section 2 presents
the background of decision trees and RF model; Section 3
shows the methodology used with RF for faults diagnosis
and the configuration of the experimental system used to
obtain signals of vibration with the extraction and selection
of features for the classification; in Section 4, the results
obtained with the methodology proposed by performing an
analysis of the features selected by the model and the best
parameters are shown; finally, some conclusions and future
work are presented.

2 Decision trees and random forest model

An instance of the problem can be defined as a vector of
features:

v ¼ ðx1, x2,:::, xdÞ 2 Rd,

where each element xi represents a feature of the instance,
and d is the problem’s dimension. Hence, the feature space
has d dimensions. Since d could be very large (even
infinite), which would make the problem unsolvable, it is
necessary to use a function to select a reduced set of “best”
features, fðvÞ ¼ ðxf1

, xf2
,:::, xfd

Þ 2 Rd , where each ele-
ment fi belongs to [1,d].
In a binary tree-based model, each node j has a decision

function, hðv,θjÞ : Rd � P↕ ↓f0,1g, that receives the vector
of features and splits parameters, θj 2 P, associated to the
node j, and decides if the vector goes down right or left in
the tree; P is the space of parameters.

2.1 Training the model

Training a tree-based classifier [15] is similar to building
the tree in a recursive manner. For each node j, a set of split
parameters is selected resolving the optimization problem:

θj ¼ argmax IðSj,θÞ
θ 2 P

, where I is a fitness function, some

gain information criterion, and Sj is a subset of training set
belonging to node j. The tree is built to achieve the
maximum purity in set Sj, and some stop criterion can be
used to finish the construction, for example a defined
depth.
An RF classifier [14] is formed from a group of decision

trees trained with injected randomness following two
processes (see Fig. 1):
1) Bagging. The training set S is sub-sampled with

replacement to build T new subsets in order to train T trees.
2) Randomized node. In each node of each tree the



optimization problem is modified to: θj ¼ argmax IðSj,θÞ
θ 2 Pj

,

where Pj is a randomly selected subset of P, Pj

�
�

�
� << Pj j.

We will use Pj

�
�

�
�, rho and ρ indistinctively.

2.2 Testing the model

After building the group of trees, new samples can be
classified. For that, the sample is classified for every tree,
and from the set of results we obtain a probability
distribution by averaging different results (Fig. 2).

3 Application of random forest for spur
gearbox fault diagnosis

From vibratory signals, a set of features based on wavelet
packet decomposition (WPD) is obtained. RF is then used
in feature ranker mode to select the most important
features; the parameters of the model are optimized with a
greedy algorithm.

3.1 Measurement set up

The measurements were carried out at the Mechanical
Engineering Division (Vibration Laboratory) from the
Salesian Polytechnic University of Cuenca (Ecuador).
Figure 3 shows the measurement set up. The vibration

signatures are obtained from a uni-axial accelerometer.
Seven classes are used to evaluate the classifier: Normal
operation (Class 1), and the following 6 types for failures:
� 10% broken tooth (Class 2);
� Pinion pitting (Class 3);
� Wear of 0.5 mm in the face of the pinion (Class 4);
� Misaligned gear (Class 5);
� 50% broken tooth (Class 6);
� 100% broken tooth (Class 7).

3.2 Extraction of features

Preprocessing raw data in order to obtain the features is
done by using WPD: Firstly, the raw signal is decomposed
using a mother wavelet in approximation signal and detail
signal. After that, approximation and detail signals are
decomposed again. This process continues until a level 6 of
decomposes signals, as shown in Fig. 4(a).
Then, for each signal obtained in level 6, the energy is

calculated building a vector of 64 real values; this process
is repeated using 5 different mother wavelets: Daubechies
7 (db7), symlet 3 (sym3), coiflet 4 (coif4), biorthogonal 6.8
(bior6.8) and reverse biorthogonal 6.8 (rbior6.8). All these
vectors of energy are put together resulting in a features
vector with 320 real values, as shown in Fig. 4(b). The
purpose of using these families of wavelets is to verify that
the diagnostic information specifically supplied by these
wavelets is sufficient to achieve an acceptable ranking in
the classification task.

Fig. 1 Training process for the RF classifier



Fig. 3 Configuration of system for failure’s simulation

Fig. 2 Test process for the RF classifier



3.3 Features selection

The features selection is performed in two stages:
1) In the first stage, the best set of wavelet mother is

selected by incrementally adding each subset of features to
the data, and training a RF model modifying iteratively the
number of trees and the number of random features
selected in each node. The oob-error is used as a
performance measure to choose the best set of wavelets
and the best parameters. Table 1 shows a summary of
results of this process. It is identified that the combination
db7+ sym3+ coif4+ bior6.8 presents the minimum oob-
error with a total of 17 random variables (rho) and 727

planted trees (see Fig. 5 for a comparison of different
parameters’ sets).
2) The second stage uses the ranking assigned by RF to

each feature in order to construct the diagram of
importance. Figure 6 shows the importance of features
diagram before making the selection of features (Fig. 6(a)),
and after the selection where 185 features are selected from
the original set of 256 (Fig. 6(b)). Features ranked lower
than 0.2 are removed.

3.4 Validation process

The database is divided into a 75%‒25% for the training-

Fig. 4 Feature extraction process. (a) WPD; (b) energy extraction and features vector building

Table 1 The best selected wavelets and the best model parameters

Mother wavelets oob-error Feature’s number Tree’s number

db7 0.0590 12 1901

db7+ sym3 0.0419 8 1713

db7+ sym3+ coif4 0.0410 7 1671

db7 + sym3 + coif4 + bior6.8 0.0390 17 727

db7+ sym3+ coif4+ bior6.8+ rbior6.8 0.0438 10 1191



test sets. Table 2 shows the confusion matrix resulting from
the process of validation. The largest error can be found in
pinion pitting fault which shows a big confusion with a
10% broken tooth. It is important to note that in Classes 3
and 4 the classifier makes mistakes with a specific fault,
allowing focus on improving the accuracy without
changing the classifier completely.
The general performance is shown in Table 3. The

accuracy analysis leads to the conclusion that the classifier

has a great success separating different faults. Through
sensibility analysis we can focus specifically on the ability
of the classifier to identify samples belonging to a group. In
our case, F score weights the relationship between
accuracy and sensibility metrics. We have assigned the
same importance to both values, showing a more realistic
metric without bias introduced for percentages of both, true
positives and true negatives.
Another measure of assessment is the area under the

Fig. 5 Curves of training: (a) oob-error for each set of wavelets with variable number of random features; (b) oob-error for the set of the
best wavelets for maximum randomness (1), maximum correlation (256) and perfect randomness (17) with a variable number of trees



Fig. 6 Selection of features: (a) Importance of features without selection; (b) importance of features with selection; (c) curve of further
training to the selection of features



curve (AUC) of each class against each of the remaining
classes, as shown in Table 4, and obtained from the relative
operating characteristic curve. From this measure we
obtain the degree of classification percentage between each
of the classes. Figure 7 shows the separation of data and the
importance of each coordinate after the application of the
multidimensional scaling (MDS) technique to the proxi-
mity matrix.

4 Analysis and results

Figure 5(a) shows that the set of features with the best
group of mother wavelets gets always an error lower than
the other groups of wavelets, regardless of the parameters
of the RF model. Among the possible sets of random
features, it is observed that with a specific set of 17 of them
we get the minimum oob-error regardless of the number of
trees.
The ranking obtained from the importance of features, as

shown in Fig. 6(a), shows that the Feature 33, belonging to
the wavelet db7, influences the model negatively. After
applying the threshold to reduce the number of features

according to their importance, an increment of 0.1% of the
oob-error is observed (from 3.9% to 4%), a value that is
irrelevant for the total classification.
The results shown in Tables 3 and 4 are justified by

observing the eigen-values in Fig. 7(b), which shows a
high degree of importance up to the sixth coordinate of the
scale space; hence, the first 3 dimensions shown in are not
enough for an adequate graphic representation of the
separation between the data. However, it is easy to see that
the classes most clearly separable are normal, tooth broken
100%, tooth broken 10% and gear misalignment. Never-
theless, the joint information provided by MDS and by the
eigen-values helps to understand the distribution of data in
a high-dimensional space as the one we are considering, so
MDS can be seen as an additional and valuable tool in
combination with classification models that work on high
dimensional structures.

5 Conclusions and future work

The results obtained with this classifier show a lower error
rate and over 96% of classification accuracy for the gear
faults classes. It must be stressed out the efficiency in the
use of wavelet energy coefficients as features predictors.
The lowest AUC is located between classes 2 (10%

broken tooth) and 3 (pinion pitting), concluding that the
energy of these two faults are most similar and can produce
more errors for a correct classification. From a computa-
tional point of view, the training of the RF model does not
present high complexity in time, and it is easy to do a

Table 2 Confusion matrix

Class 1 2 3 4 5 6 7

1 37 0 0 0 0 0 0

2 0 37 0 0 0 0 0

3 0 3 34 1 0 0 0

4 0 0 2 35 1 0 0

5 0 0 0 0 38 0 0

6 0 0 0 0 0 36 1

7 0 0 0 0 0 0 37

Table 3 Classifier’s performance measures

Metric Value/%

Accuracy 96.950

Sensibility 97.000

F score 96.975

Table 4 AUC individual unit: %

Class 2 3 4 5 6 7

1 100 100 100 100 100 100

2 96.05 100 100 100 100

3 96.30 100 100 100

4 98.68 100 100

5 100 100

6 98.65



parallel implementation both for training stage and for
validation stage, since each tree is independent of the
others.
The RF classifier has shown great ability to handle high

dimensional samples as one of the most appropriate

models for their implementation in learning complex
patterns that require a very detailed classification.
Aweakness of the RF classifier, like all other supervised

classifiers used in fault diagnosis tasks, is the inability to
classify patterns extracted from signals in the presence of

Fig. 7 Separation of samples. (a) Location of samples; (b) coordinates eigen-values



more than one fault at the same time, despite the classifier
has been trained with each fault pattern separately. Some
information can be obtained from the fact that the
underlying process follows a probabilistic model where
the overall response is greater than the sum of its parts.
This weakness can be addressed by training the classifier
with the patterns obtained from mixed fault signals which
will aim for a future work.
Other future work we are starting is about the use of RF

classifier for fault diagnosis in different types of mechani-
cal elements, as well as the inclusion of a greater number of
incipient failures.
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