
Combining reservoir computing and variational 
inference for efficient one-class learning on 

dynamical systems

Diego Cabrera
Department of Mechanical Engineering
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Abstract—Usually, time series acquired from some measure-
ment in a dynamical system are the main source of infor-
mation about its internal structure and complex behavior. In
this situation, trying to predict a future state or to classify
internal features in the system becomes a challenging task that
requires adequate conceptual and computational tools as well as
appropriate datasets. A specially difficult case can be found in
the problems framed under one-class learning. In an attempt to
sidestep this issue, we present a machine learning methodology
based in Reservoir Computing and Variational Inference. In
our setting, the dynamical system generating the time series is
modeled by an Echo State Network (ESN), and the parameters
of the ESN are defined by an expressive probability distribution
which is represented as a Variational Autoencoder. As a proof of
its applicability, we show some results obtained in the context
of condition-based maintenance in rotating machinery, where
vibration signals can be measured from the system, our goal
is fault detection in helical gearboxes under realistic operating
conditions. The results show that our model is able, after trained
only with healthy conditions, to discriminate successfully between
healthy and faulty conditions.

Index Terms—Dynamical System Modeling, Reservoir Com-
puting, Variational Inference

I. INTRODUCTION

Modelling a dynamical system from time series is an
important but complex task. The approaches range from Tak-
ens’ theorem based methods [1] to the discovery of strange
attractors in the trajectories generated by the time series, or
to new methods for parameters estimation of models with
a predefined structure, e.g. [2]. A complete review of the
methodologies that have been applied for the identification
and prediction of dynamical systems can be seen in [3].

However, in most cases, a preliminary knowledge of the
structure of the dynamical system is required in order to have
a prefixed structure with optimizable parameters or, on the
contrary, a greater diversity in the time series available for the
generation of the model [4]. The first case has the drawback of
limiting the resulting model only to a set of possible dynamical
systems that can be expressed by the prefixed structure. The
second one has the disadvantage of requiring a large number

of time series obtained from a, as complete as possible, variety
of states of the dynamical system.

The contribution of this paper is the introduction of a
novel methodology for the modelling of a dynamical system
from time series measured from one only known state. Here
we combine ideas from Reservoir Computing [5], Variational
Inference [6] and Deep Learning [7]. Our approach uses an
Echo State Network (ESN) as a means for representing the
time series as occurrences from a random variable, then its
probability distribution is approximated using a variational
autoencoder (VAE). After the model construction, new time
series are classified using the reconstruction error as a metric
from the generative model included on VAE.

This paper is organized as follows. In Section II we explain
basics from Echo State Network and Variational Autoencoder.
In Section III each phase of our methodology is shown in
detail, which begins with the acquisition and preprocessing
of signals and culminates with a similarity metric that will
provide a classification of new signals. In Section IV we apply
the methodology to detect faults in a helical gearbox from a set
of vibration signals having a high complexity because of their
variability. In this section the experimental configuration, the
values chosen for the hyperparameters of the models, and the
analysis of the results obtained in the application are detailed.
Finally, we conclude highlighting the main features of our
approach from a theoretical and practical point of view.

II. BACKGROUND

In this section we review the fundamentals of the two
models used in this work: Echo State Networks and Variational
AutoEncoders.

A. Echo state network

Echo State Networks (ESN) is a biologically-inspired, re-
current neural network model proposed by Herber Jager in
[8]. This bio-inspired model eliminates the problem of gradient
loss, known to affect the training of deep networks (a recurrent
network can be seen as a stack of layers receiving as input the
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Fig. 1. Architecture of an ESN

response of the previous instant), by separating the model in
independent layers: Input, Reservoir, and Output layer.

1) Architecture: The architecture of an ESN is shown in
Fig. 1. For every time instant t we will denote the input by
u(t) ∈ RNin , the output by y(t) ∈ RNout , and the activation
of neurons in the reservoir by x(t) ∈ RD, also called the state
vector. Parameters of the input layer, output layer, reservoir
and feedback are given by Win ∈ RD×Nin , Wout ∈ RNout×D,
Wstate ∈ RD×D and Wfb ∈ RD×Nout respectively.

In this situation, the dynamics that occurs in an ESN follows
the next state equations:

x(t) = f
(
Winu(t) +Wstatex(t− 1) +Wfby(t− 1)

)
(1)

y(y) =Woutx(t) (2)

where f is the (same) activation function in every neuron from
the reservoir. Above equations exposes that an excitation at the
input at an instant t induces a non-linear alteration in the state
of the reservoir which is also affected by the state and outputs
of the instant t−1. The output of the network depends linearly
on the reservoir state.

2) Input-reservoir optimization: In this model Win, Wstate

and Wfb are chosen and optimized independently of Wout.
The reservoir matrix, Wstate, defines the connections in the
reservoir, which must mainly comply with two properties: echo
state, and separability.

Echo state property means that the effect of the input and
previous states decays with time, otherwise the reservoir is
said to be unstable. For example, if f = tanh, u(t) = 0, and
ρ(Wstate) > 1 (the spectral radius of Wstate, the absolute
value of its largest eigenvalue), then the reservoir is known
to be unstable. Consequently, from a practical point of view,
we want ρ(Wstate) < 1, although this does not guarantee the
stability of the reservoir. Spectral radius is directly related to
the amount of memory required for the application, higher
ρ(Wstate), greater the memory capacity of the reservoir.

On the other hand, separability property means that it gener-
ates different states from different inputs. This property can be
achieved by: 1) initializing Wstate as a sparse matrix from a
sample of a standard normal distribution, and 2) guaranteeing
a large enough number of neurons in the reservoir. The size of
the reservoir is directly linked to the computational capacity
of the network.

Input parameters Win are typically initialized with a sam-
pling of the same distribution as Wstate, with the difference
that in this case the connections are dense. However, in most
applications Wfb is initialized with 0, unless a network capable
of generating time series from no input (free-running mode)
is required.

3) Output layer optimization: Having achieved a stable
reservoir and with enough memory capacity and computation
power, the only parameters to optimize are Wout, which
represents a linear regression model mapping a set of known
states into a target time series ytarget(t).

Consequently, the cost function for this model is given by
the mean square error (MSE):

E(y,ytarget) =
1

Nout

1

T

Nout∑
i=1

T∑
t=1

[yi(t)− ytargeti (t)]2 (3)

As usual, the model can be optimized in the following way:

Wout = argmin
Wout

E(y,ytarget) (4)

To solve it we proceed to obtain a state x(t) at each instant
of the input u(t), for 1 ≤ t ≤ T . These states can be
stacked as columns of a matrix that we denote by X ∈ RD×T .
Similarly we stack each desired output vector ytarget(t) in the
matrix Ytarget ∈ RNout×T . Using these two new matrices, the
optimization problem (4) is solved by Ridge Regression [9]
as (I denotes the identity matrix):

Wout = YtargetXT (XXT + βI)−1 (5)

B. Variational autoencoder

Variational Autoencoder (VAE) [10] is a machine learn-
ing model based on the theory of variational inference and
enhanced with the computational capacity of deep learning
algorithms. VAE attempts to discover a hidden structure in
the data from a set of samples which captures complex
relationships in the elements of a visible random variable x
to be modelled. This is achieved by projecting x, following a
complex probability distribution, into a new variable z (called
latent variable), with much simpler probability distribution,
and then trying to recover x with a new projection from z.

This procedure is inspired by the inverse transform method:

x := F−1x (Fz(z)) (6)

where F−1x is the quantile function of x and Fz is the
cumulative density function of z. As this composition can-
not be explicitly calculated, VAE approximates it through a
generative model built from the available dataset of samples.

1) Formalization: From a formal point of view, VAE at-
tempts to maximize a variational function LV AE given by:

LV AE(qφ(z|x)) =
∫
qφ(z|x)ln pθ(x|z)dz

−
∫
qφ(z|x)

qφ(z|x)
p(z)

dz (7)



where qφ(z|x) (depends on a set of parameters φ) is the
model responsible for the first projection, and approximates the
probability distribution of the best code z given the variable
x; p(z) is the probability distribution of the latent variable,
which must be known and simple (usually, p(z) is defined as a
Gaussian distribution with as many components as the problem
requires); and pθ(x|z) (depends on a set of parameters θ) is a
generative model responsible of the projection from z to x.

We seek to maximize LV AE because it is a lower bound
of the log-likelihood of the data ln p(x). If this lower bound
is optimized it would represent the best computationally
achievable model for the distribution of the x variable. To
achieve this goal we note that the first term is the expectation
Eqφ [ln pθ(x|z)], which can be maximized by finding the
parameters θ that reduce the reconstruction error of x from a
sampling of the latent variable z. The second term is the KL-
divergence between the qφ model and the prior p(z), which
can be minimized by finding the parameters φ that allows the
mapping from a sampling of x to the parameters that define the
prior. If p(z) is chosen as a Gaussian distribution, then we try
to go from the data sampled from an unknown and complex
distribution to a set of means and variances according to the
known distribution.

III. METHODOLOGY

In most cases, the only source of information available about
a dynamical system comes from time series extracted from
measurements of a subset of its variables. This information
can be used for multiple purposes, such as: estimating the state
of other variables, predicting future events in the dynamical
system, or detecting anomalies in its evolution. A data-oriented
approach for these tasks is based on the characterization of the
dynamical system by direct measurement of the evolution of
the variables of interest in their different states, which allows
to obtain a set of tuples (time series, state label), where
state label is the current state, or a future state or condition
of the dynamical system. Our goal is to find high-level patterns
in the time series data that allow their mapping towards the
label. Although the acquisition of the data in all possible states
of the dynamical system would help to achieve this goal, it is
in fact a very expensive or even impossible labelling process.

As a extremal case of classification, in this section we
propose a methodology for a dynamical system modelling
which considers only information coming from time series
obtained in one only specific known state of the variable
of interest. This proposal is robust under changes on the
other variables of the dynamical system. Fig. 2 shows the
methodology, which is composed of four main stages:

1) Acquisition and preprocessing.
2) Unsupervised feature extraction by representation learn-

ing.
3) Learning of a probabilistic model over the new repre-

sentation space
4) Inference over previous model.

Fig. 2. Proposed methodology

A. Acquisition and preprocessing

A signal measured in a multi-component dynamical system
can exhibit a chaotic behaviour [4] due to the interaction
between internal/external noise sources and all its elements.
When periodicity exists, to mitigate the effects of noise and
highlight the important information, the signals are typically
measured and synchronously averaged using external sensors
to find the start and end of each period. Unfortunately, includ-
ing additional devices increases the costs and it is not always
physically possible to perform such measurement.

Our methodology avoids the use of additional devices
for acquisition stage, but some simple preprocessing step is
required. If y(n) ∈ R with n = 1, ..., T is the signal, then the
following normalizing correction is applied:

y′(t) =
y(t)−min(y)

max(y)−min(y)
∈ [0, 1] (8)

From now on, we will consider only normalized signals. Also,
for every signal y, a set of N sub-signals (y1, ...,yk, ...,yN )
are extracted using a sliding window of prefixed length and
sliding step. It is worth noting that depending of length
and step, the sub-signals yk−1,yk,yk+1 could be overlapped



which is a desirable property to capture the intrinsic temporal
relationships between them.

B. Unsupervised feature extraction

For every signal we will use the following ESN [5] to
anticipate one step (predict y(s+ 1) from {y(t) : t ≤ s}):

x(t) = f (Winy(t− 1) +Wstatex(t− 1)) (9)
yapp(t) =Woutx(t) (10)

where we can note that yapp(t) is computed from the previous
input y(t− 1).

The number of inputs Nin depends on the number of signals
obtained from the dynamical system. As the goal is to predict
the same input signals, then Nout = Nin. Win and Wstate are
initialized according to subSection II-A and fixed for all yk

signals. Therefore, the only parameters to be learned to predict
yk(t) are W k

out. In this way, W k
out encodes yk, and for yk

longer enough, this encoding is invariant under entering new
temporal values, and then W k

out is a static representation of the
input time series. Matrix Wout, composed by W k

out grouped
column-wise, represents an encoding of the entire normalized
time-series y.

C. Learning of a probabilistic model

From a probabilistic perspective, Wout can be seen as a
random vector with an unknown complex and hard to model
probability distribution. In order to solve this problem, we
propose to use a VAE that will encode Wout in a simpler
lower dimensional latent variable z.

Although both qφ and pθ in VAE can be approximated
with several data-based learning models, the most common
are neural networks because they are proven to be universal
approximators [11]. We will require two neural networks,
one coding network for qφ, that will encode a multivariable
Gaussian probability distribution; and one generation network
for pθ, that will reconstruct the original variable. As they
are part of the same process of optimizing the lower bound
LV AE , they are trained together by using some version of
the gradient descendant algorithm, firstly back-propagating
the reconstruction error through the layers of the generation
network, and then back-propagating through the layers of the
coding network. This implies that it is necessary to back-
propagate the error through a random variable, which is
not possible. In order to solve this problem, we will make
use of the reparametrization trick, which prevents the back-
propagation of the error by a random variable by choosing
the variables z of our process as a Gaussian distribution
z = u+σ� ε, where ε ∼ N (0, I) becomes one more input to
the network. On the other hand, it is known that KL-divergence
loss and reconstruction error constitute together the total loss
to optimize and, knowing that z ∼ N (µ, cov) (being cov the

covariance matrix), they can be obtained by using the next
equations:

KLloss =
−1
2N

N∑
k=1

|z|∑
j=1

1 + ln[(σkj )
2]− (µkj )

2 − (σkj )
2 (11)

Erec =
−1
N

N∑
k=1

D∑
i=1

wkout,i · ln(ŵkout,i)

+ (1− wkout,i) · ln(1− ŵkout,i)

(12)

Loss =KLloss + Erec (13)

D. Inference

After the model has been obtained, it is possible to perform
inference about the state of the variable of interest from new
time series acquired from the dynamical system. For this, we
maintain Win and Wout for the ESN, and the weights from
the VAE neural networks.

To evaluate a new signal the same Acquisition and Pre-
processing process is followed to generate a batch of time
series. Then, with the ESN a static representation is obtained
from each batch element, obtaining a new matrix Wout. Later,
every k column from Wout is passed through the coding
and generation networks of the VAE model, where Ekrec is
calculated. Finally, Lavg is calculated by:

Lavg =
1

N

N∑
k=1

Ekrec (14)

that provides the closeness between the new signal and the
distribution of signals corresponding to the original dynamical
system from where the model was generated.

IV. APPLICATION TO FAULT DETECTION

We are now able to offer an application of previous method-
ology to a real dynamical system. The objective is the fault
detection in a mechanical component of a rotative machinery,
namely a helical gear, where its wear is our variable of interest.
To achieve this, two processes must be carried out: learning of
healthy state (from the variable of interest) and on-line testing.

The learning of healthy state is carried out minimizing the
Loss (13) for a set of vibration signals acquired from different
operational conditions of rotation speed and load with the
knowledge of the healthy condition of the gear (without wear).
On-line testing is performed with the input of unknown-state
vibration signal to the previously learned model and taking as
output the average reconstruction error given by (14). Large
negative values indicate a high probability that the signal
corresponds to a state of machinery without fault, and small
negative values (or non-negative) correspond to states of faulty
machinery.

A. Gear rig tests

The experiments were conducted to identify the presence
of breakage tooth fault in a helical gear at different levels of
severity independently of the operational speed and load in
the mechanical system. The motor drives the input shaft to



Fig. 3. Block diagram of the experimental setup

Code Description Damage (mm) Percentage (%)

P1 Level 1 or Normal 0.0 100.0
P2 Level 2 2.37 88.42
P3 Level 3 4.0 80.42
P4 Level 4 5.73 71.94
P5 Level 5 7.6 62.81
P6 Level 6 10.57 48.29
P7 Level 7 12.37 39.48
P8 Level 8 14.33 29.85
P9 Level 9 17.5 14.36
P10 Level 10 or without tooth 20.43 0.0

TABLE I
DAMAGE LEVELS OF HELICAL GEAR TOOTH BREAKAGE FAULT

speeds of 480 rpm, 720 rpm and 900 rpm (coded as F1, F2,
and F3, respectively). The experiments were carried out on
a gearbox fault diagnosis test-rig (fabricated by the GIDTEC
group of the Universidad Politécnica Salesiana, Ecuador) with
the configuration shown in Fig. 3. For each input speed, three
output loads of 0V, 10V and 30V (coded as L1, L2, and L3,
respectively) are applied through a magnetic break controlled
by a high current voltage source and coupled to the output
shaft through a belt. The test gear is the input pinion (diameter
of 76mm, 30 tooth, pressure angle of 20◦, helix angle of
20◦), with different levels of breakage in a tooth as specified
in Table I (P1 represents healthy state).

For each possible combination of speed and load, 5 vibration
signals of 280 001 samples each one (≈ 5.6s), acquired at
50 000 samples/s, provide a set of 45 training signals used to
build the model in healthy-state of gear. The sliding window
has a length of 50 000 samples (1s) and sliding step of
10 000 samples. For the unsupervised feature extraction stage,
the size of W k

out is 1001 (1000 weights and 1 bias term).
Each, the recognition and generation models are composed by
one hidden layer of 1000 neurons, and use 10 Gaussians (20
values) for the latent space z.

For the testing of the model, for each possible combination
of speed, load and P-state (including healthy-state), 5 vibration

signals with the same conditions as above are acquired, given
a total of 450 testing signals.

B. Results and Analysis

Fig. 4 shows the Lavg obtained by testing the learned model
with new acquired vibration signals. Note that the maximum
value of Lavg in a healthy-state is −147.2 (reached in F1 L2
conditions, Fig. 4(a)). On the other hand, under fault presence,
the lower value of Lavg is −8.6 (reached in F2 L3 conditions,
Fig. 4(b)). The large distance between these two cases (138.4)
increments the confidence of the result. As speed increases this
distance between healthy and fault states increases (−391.2,
in Fig. 4(c)). Also, we can observe that higher the load, higher
the distance.

Consequently, and independently on speed and load condi-
tions, and on the detection of faults (incipient as P2, or higher
level severity damage as P3-P7), the model allows to select a
decision threshold providing a 100% of accuracy rate.

V. CONCLUSIONS

In this paper a novel methodology, based on a machine
learning approach, for modelling dynamical systems has been
presented. The resulting model can successfully approximate
complex probability distributions on a new representation
space which is learned in an unsupervised way from time
series without a prior knowledge. As we have shown in the
applications, the methodology can be used in fault detection
tasks in rotative machinery where the model is built uniquely
from healthy vibration signals at different operational condi-
tions, and later it can be used for fault detection.

The average reconstruction error, Lavg , is proposed as a
similarity metric to discriminate between healthy and faulty
states, where small errors represent a healthy-state and big
errors represent a faulty-state.

Our methodology presents two main advantages in relation
to other machine learning and signal-based approaches to fault
detection reported in the literature:

1) Contrarily to other learning-based methodologies, that
address the problem as binary (or multi) classification
task requiring examples from normal and faulty states,
the presented method only needs normal-state vibration
signals, which are easily (and cheaper) to obtain.

2) In comparison to other signal-based methods, where a
specific prior knowledge of the dynamical system under
study is needed, the proposed method does not require
expert knowledge due to unsupervised feature extraction
stage.
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