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In this note we present a characterization of halfspace depth which relates it with
well-known concepts of Locational Analysis. This characterization also leads to a
natural extension of the concept of depth to noneuclidean location estimation as
well as other settings like regression. � 1996 Academic Press, Inc.

1. INTRODUCTION

Given a d-dimensional dataset X=[X1 , X2 , ..., Xn], the depth depth
(x; X) of a point x # Rd is defined as

depth(x; X)= min
|u|=1

*[i: u$Xi�u$x] (1)

where | } | denotes the euclidean norm in Rd and *(A) stands for the car-
dinality of the set A. See, e.g., Tukey (1977) and Donoho and Gasko
(1992)��hereafter referred to as [DG]��for further properties.

The notion of depth leads in a natural way to a robust location estimate,
namely, the deepest point T

*
(X), defined in [DG] as

T
*

(X)=arg max
x

depth(x; X), (2)

which has been shown to be affine equivariant, is a multivariate generaliza-
tion of the median and enjoys good asymptotic properties.

In spite of these interesting properties, the original definition of
depth( } ; } ) does not seem to extend naturally from location estimation to
other settings like regression fitting (see page 1815 of [DG]); moreover, its
affine equivariance makes this concept of little use in anisotropic situations,
as happens, e.g., when one deals with mixed variables. See also Arabie
(1991).
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The purpose of this note is to present an equivalent definition of depth,
taken from the context of Locational Analysis, which extends in a natural
way to location estimation in anisotropic contexts and also to regression
estimation.

2. A CHARACTERIZATION OF DEPTH

Definition 1. Let P be a probability distribution on Rd. The nor-
malized depth ND(x; P) of a point x # Rd in P is defined to be

ND(x; P)= inf
y # Rd

P([a: | y&a|� |x&a|]) (3)

This function (1&ND, to be more precise) has been introduced in the
Operations Research literature to address facility location problems in a
competitive framework: Suppose two firms, F1 and F2 want to enter into
a market by sequentially locating one facility (e.g., shop) each. Consumers
are assumed to be distributed in R2 according to a probability measure P,
and will use their closest facility��ties allocated to the oldest firm, i.e., F1 ;
in other words, if F1 (respec. F2) locates its facility at x # R2 (respec. at y),
then F1 (respec. F2) captures the market consisting of those a # R2 with
&x&a&�&y&a& (respec. &x&a&>&y&a&). The purpose of both firms is
to find the facility locations maximizing their corresponding market share.
Hence, if F1 locates its facility at x, then F2 will locale its facility at any
y* # arg maxy P(&x&a&>&y&a&), leading to a market share 1&
ND(x; P), and arg maxx ND(x; P), the so-called Simpson points, are just
those locations for F1 which maximize its market share (by minimizing the
fraction of market captured by F2).

ND also appears in facility location with voting: Suppose that the loca-
tion of a certain facility is to be decided according to a voting process. The
users, distributed following P, act as voters, and want the facility as close
as possible. Hence, P([a: &x&a&>&y&a&]) represents the weight of the
coalition of voters which would agree in preferring y to x; 1&ND(x; P)
gives the weight of the strongest possible coalition against x, and the
Simpson points are then the least objectable locations. See, e.g., Carrizosa
(1992), Durier (1989), Michelot (1993) and the references therein.

We will show that, when P represents the empirical probability measure
of a dataset X of size n, ND(x; P) equals 1�n depth(x; X).

First, we give a more geometrical expression for ND. For any x # Rd, let
K(x) denote the family of nonempty subsets A of Rd such that x does not
belong to conv(A), the closure of the convex hull of A.
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Lemma 1. For any probability measure P and x # Rd, one has

ND(x; P)=1&sup[P(A): A # K(x)]. (4)

Proof. Let x # Rd. Given : # (0, 1],

ND(x; P)<: iff _y* # Rd such that P([a: | y*&a|<|x&a|])>1&:,

which is equivalent to saying that

_y* # Rd, _A*, s.t. P(A*)>1&: and | y*&a|<|x&a| \a # A* (5)

Now, by Proposition 1.3 of Durier and Michelot (1986), (5) turns out to
be equivalent to

_A*, such that P(A*)>1&:, and x � conv(A*)

or, in other words,

_A* # K(x) such that P(A*)>1&:. (6)

Since (6) is equivalent to

sup[P(A): A # K(x)]>1&:,

the result holds. K

Proposition 1. For any probability measure P and x # Rd, one has

ND(x; P)= inf
|u|=1

P([a: u$a�u$x]) (7)

Proof. Let : # (0, 1]. We will show that min|u|=1 P([a: u$a�u$x])<:
iff ND(x; P)<:. Suppose first that ND(x; P)<:; then, by Lemma above,
there exists A* such that P(A*)>1&: and x � conv(A*). Then (see, e.g.,
Luenberger (1984)), there exists a nonzero vector u� # Rd such that u� $x>u� $a
for all a # A*. Hence, inf |u|=1 P([a: u$a�u$x])<:.

The proof of the converse is straightforward, and will not be given
here. K

By Proposition 1 above, given a dataset X=[X1 , X2 , ..., Xn]/Rd,
if we denote by Pn its empirical probability measure (i.e., Pn(S)=
(1�n) *[i: Xi # S]), one has that

depth(x; X)=nND(x; Pn),

showing the equivalence between (1) and (3). This provides a new insight
into the nature of depth( } ; } ) and deepest points as estimators: asserting
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ND(x; Pn)>: just means that, if we make a pairwise comparison between
x and any other candidate to estimator y, the frequency of datapoints
strictly closer to y never attains the value :, yielding deepest points as, in
some sense, least-objectable estimates. This interpretation does not remain
true when the parameter space 3 is forced to be a proper subset of Rd due
to some prior knowledge on the location parameter��e.g., it has integer, or
nonnegative coordinates��as the following example shows.

Example 1. Let P be the bivariate probability measure given by

P(&1, &1)= 2
9

P(&1, 1)= 3
9

P(1, 1)= 2
9

P(1, &1)= 2
9

and suppose that the parameter space is 3=[(*, 0): * # R]. It is not dif-
ficult to see that, for any * # R,

ND((*, 0); P)= inf
y # R2

P([a: | y&a|�|(*, 0)&a|]) (8)

0, if |*|>1

={ 2
9 , if |*|�1, *{0 (9)
4
9 , if *=0

yielding (0, 0) as the unique deepest point, i.e.,

[(0, 0)]=arg max
x # 3

inf
y # R2

P([a: | y&a|�|x&a|]) (10)

However, ND and deepest points cannot be calculated through pairwise
comparisons among elements in 3, since, as can be readily seen, for any
* # R one has that

0, if |*|>1

inf
y # 3

P([a: | y&a|�|(*, 0)&a|])={ 4
9 , if &1<*�1 (11)
5
9 , if *=&1,

thus

[(&1, 0)]=arg max
x # 3

inf
y # 3

P([a: | y&a|�|x&a|]), (12)

yielding a different result than (11).
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3. DISCUSSION

Now, let us discuss a few consequences of the characterization presented
in the section above.

3.1. Noneuclidean Depth

The definitions (1) and (2) extend naturally to problems with non-
euclidean metrics or dissimilarity measures (also applicable to binary or
cathegorical data sets!), which is in agreement with the opinion that data-
induced requirements may make other noneuclidean distances preferable
for some data analysis problems. See, e.g. Arabie (1991) or Cuadras�
Fortiana�Oliva (1994).

Indeed, given a dissimilarity measure 2, one can define the normalized
depth associated with 2 as

ND2(x; P)=inf
y

P([a: 2(z, y)�2(a, x)]), (13)

and define the 2-deepest points as the maximizers of ND2 in (13).
Whilst statistical properties of 2-deepest points for noneuclidean metrics,

such as lp norms, seem to remain unexplored, a number of papers within
the field of Locational Analysis have addressed this topic from an optimiza-
tion or algorithmic viewpoint. See, e.g., the papers of McKelvey and
Wendell (1976), Demange (1982), Durier (1989) or Michelot (1993) for
theoretical properties, and Drezner (1982) for an O(n2 log2 n) algorithm to
find & }&2-deepest points, shown in Durier (1989) to be also valid for any
lp -norm (1< p<�).

3.2. Depth in Regression

Although much less geometrical than the original definition, the expres-
sion (1) proposed here is easily extended to regression settings such as
linear regression. Indeed, given a probability measure P in Rd_R corre-
sponding to a multivariate random variable (X, Y), we could define the
normalized depth ND(Ha, b ; P) of the hyperplane Ha,b# y=a$x+b as

ND(Ha, b ; P)= inf
(c, d ) # Rd_R

P([(x, y) # Rd_R : | y&a$x&b|�| y&c$x&d])

(14)

Deepest hyperplanes (i.e., maximizers of (14)) are then those hyperplanes
minimizing the highest mass of points for which some other hyperplane
yields strictly lower residuals.
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