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a b s t r a c t

Two-dimensional Biham–Middleton–Levine traffic model on a N × N square lattice
embedded on a Klein bottle and a projective plane is investigated by computer simulations.
The behavior of the model with these boundary conditions is compared with the model
under toroidal boundary conditions. Our numerical results show that the phase diagram
depends strongly on the underlying topology. We also investigate the influence of the
ratio between the number of red and blue particles has over the speed of the system and
conclude that the projective plane case differs considerably from the other cases reviewed
here.

1. Introduction

Models about traffic flow are of importance in a broad range of physical systems and their interest resides not only on
specific applications, but also on a theoretical point of view. For a comprehensive review about the topic see Ref. [1].
The traffic model introduced by Biham, Middleton and Levine in Ref. [2] is one of the most studied in recent years. It is a

two-dimensional cellular automaton that exhibits self-organization, pattern formation and phase transitions.
The model is defined on a square lattice with N × N sites with periodic boundary conditions in such a way that the

geometric model corresponds to the discrete torus ZN × ZN . Every site can contain a blue particle, a red particle or can be
empty. Initially, particles are placed in random sites. According to a parameter p ∈ [0, 1], the probability of a site containing
a blue particle is p/2, a red one is p/2 and 1− p is the probability of being empty. In this way, p is the density of particles in
the lattice.
The dynamic of the particles is determined by the following rules: (a) in a first step, red particles try tomove forward one

site in a northward direction; unless the site they wish to occupy is non-empty they move; otherwise, they are blocked. (b)
In a second step, blue particles follow the same rules but they try to move in the eastward direction. The process is repeated
again and again.
Let us observe that the only random event in the model occurs in the initial distribution of the particles in the lattice.
In every discrete timestep t , the instantaneous speed of the system, vt , is the ratio between the number of particles that

succeed to move and the total number of them. If vt = 0 then no particle has moved in the timestep t; if vt = 1 then all the
particles have moved.
In spite of the simplicity of the model very few properties of the system were proven rigorously to date, with almost all

published studies reporting the results of numerical experiments. For analytical results we should mention [3–6].
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Fig. 1. The particle density p versus speed v corresponding to the BML model on a torus for several sizes of the lattice. Critical density slightly decreases
with increasing size of the system.
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Fig. 2. A two-dimensional graphic of v as a function of pred (density of red particles, in the horizontal axis) and pblue (density of blue particles, in the vertical
axis) corresponding to the BMLmodel on a torus. Below, we can see the same graphic in a 3D-picture. The size of the system is 256×256. Disparity among
densities does not affect the speed of the system. (For interpretation of the references to colour in this figure legend, the reader is referred to the web
version of this article.)

Several interesting generalizations of the model have been considered, such as extension to three-dimensional lattice
with periodic boundary conditions [7], free boundary conditions [8], non-square aspect ratio of the underlying lattice [9],
four-directional traffic [10], etc.



Fig. 3. A typical configuration in a experiment of the BMLmodel on a projective plane. Local jams have appeared on the bottom right and upper left corners
and the rest of particles move almost in a free flow, appearing self-organization in diagonal patterns.
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Fig. 4. A graphic of v as a function of p corresponding to the BML model on a projective plane for several sizes of the lattice. Speed starts to decrease as
soon as p increase. We can also see clearly that the speed increase when the size of the lattice increase for values of p between 0.2 and 0.4. In black we have
the expected limit curve when the size of the lattice tends to infinity.

In Ref. [3] it is remarked that the speed of the systemmay depend sensitively on the boundary conditions of themodel. In
this paper, wewant to investigate the effect of a change in the boundary conditions, providing a numerical study of the two-
dimensional BML model on a N × N square lattice embedded on a Klein bottle and a projective plane, both non-orientable
surfaces. We will focus on the differences between these two models and the one on the torus. Also, we investigate the
influence that the ratio between the number of red and blue particles has over the speed of the system, a question considered
in Ref. [11].
For the experiments, NVIDIA CUDA technology was used. This technology implements a massive parallel computation

over 512 cores, logically arranged into blocks and threads. The strength of this tool lies in the division of the problem into
small parts, which are assigned to threads. For more information on this technology see Ref. [12]. Briefly described, in
our implementation we divide every step into its horizontal and vertical movements. For the horizontal part, every row
is assigned to a block of threads. Thus, every thread processes one or more elements of its row. The same applies to the
vertical movement, where every block deals with a column.

2. BML model on a torus

In Ref. [2] numerical simulations show that the BML model on the torus seems to show a sharp transition that separates
a low-density dynamical phase in which all particles move at each step of time and a high-density static phase in which
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Fig. 5. A comparative of the standard deviation of speeds obtained from 1000 experiments as a function of p corresponding to the BML model on a torus
and on a projective plane. The size of the lattice is 256× 256. We can observe that for the projective plane case standard deviation is very close to 0, while
in the torus and Klein bottle cases we have a peak around the critical probability.
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Fig. 6. A two-dimensional graphic of v as a function of pred (density of red particles, in the horizontal axis) and pblue (density of blue particles, in the vertical
axis) corresponding to the BMLmodel on a projective plane. Below, we can see the same graphic in a 3D-picture. The size of the system is 256×256. In this
case disparity among densities has an influence in the behavior of the system; in fact, speed increases when the difference between densities increases.
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)



Fig. 7. A typical configuration in a experiment of the BMLmodel on a Klein bottle in the free flow region. Diagonal patterns from left to right are observed
as in the torus case, but this time they show a kind on deformation because of the changes on the boundary conditions.
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Fig. 8. The particle density p versus speed v corresponding to the BMLmodel on a Klein bottle for several sizes of the lattice. The behavior is similar to the
one of the torus case, although speed starts to decrease sooner than in the torus case.

particles are all stuck in a global traffic jam; in the middle there is a range of densities in which both extreme behaviors are
foundwith a non-negligible probability. On the other hand, in Ref. [9] intermediate speed configurations are found in which
the system keeps a speed far away from 0 and 1.
We have carried out numerical simulations (see Fig. 1) up to 512 × 512 square lattice as in Ref. [2]. In the regions

of extreme behavior (total free flow or global jam) almost all the experiments we have realized were stabilized before
t = 10 000, so the speed was 1 or 0 at that moment, respectively. This is not the case for the intermediate values of p, where
t ∼ 10 000 is not enough for the system to reach a recurrent state. Even if we allow the experiment to reach 50000 steps,
oscillations in speed continue appearing. In Fig. 1, v is seen as a function of p for several sizes of the lattice. These graphs
have been obtained as an average of 1000 experiments for every value of p. The speed for every experiment is computed as
the average of the speed of the system between timesteps t = 50 000 and t = 51 000. The step increment of the parameter
p has been of 0.01 units. As the reader can check, the plots are similar to those obtained in other papers.
In Ref. [11] several factors that can help in the appearance of jams for p being fixed are investigated. One of these factors

is the disparity among the number of red and blue particles. It could be said that a difference among the distributions of
colors can make more probable the appearance of jams, and consequently, a lower speed of the system. In Ref. [11] authors
report that in 45 experiments they carried out no correlation between these two facts was found.
We have performed a numerical study of the influence of this factor. In Fig. 2 speed is a function of pred, the probability

of a site containing a red particle at the initial configuration, and pblue, the probability of a site containing a blue particle at
the initial configuration. In this way pred and pblue are the density of red and blue particles, respectively. We have considered



Fig. 9. A periodic intermediate state in the Klein bottle case for a realization on the square latticewithN = 256 and p = 0.22. The time step is t = 500 000.
In contrast to the projective plane case, an stable local jam have appeared on the center and particles on the border move almost in a free flow.

10 experiments for every value of pred and pblue, allowing 5000 steps in every experiment, and taking the average of speeds
between timesteps 5000 and 5100. The step increment of density in every color is of 0.05. Because of the symmetry of the
parameter space, we have considered the range pred ∈ [0, 1], pblue ∈ [0, 1− pred]. The size of the lattice is 256× 256.
We can check that speeds for different values of pred and pblue, with total density p = pred + pblue constant, are very

similar, what it seems to show that disparity among densities does not affect the average speed of the system. In Fig. 2 we
can also see a 3D representation of these data.
As we will see in the next section, this is not the case in other topologies, where the disparity among densities is relevant

for the behavior of the system.

3. BML model on a projective plane

Let N ∈ N. Let us consider the finite lattice of size N×N . Every site in the lattice can be represented by a pair (i, j), where
i, j ∈ {0, . . . ,N − 1}. For every l ∈ ZN , the boundary site (N − 1, l) is connected with the one in (0,N − l − 1), in such
a way that a blue particle in site (N − 1, l) will try to move to the site (0,N − l − 1). In a similar way, the site (l,N − 1)
is connected with the site (N − l − 1, 0), so a red particle in (l,N − 1) will try to move to site (N − l − 1, 0) in the next
timestep. Under these geometrical considerations on the border, we obtain a traffic model on a discrete projective plane. In
Fig. 3 we can observe an instant of one experiment on a projective plane.
Typically, we can observe how local jams appear on the bottom right and upper left corners. The size of these jams

depends on density p. The rest of particles out of this local jam will move almost in a free flow, showing diagonal patterns.
Observe thatwe can have a stable local traffic jam, a gridlockmechanism as in the case of four directional traffic flow [10],

which may occur at any density p > 0 when a red particle is on the upper left site at the same time that a blue particle is on
the bottom right site of the lattice. This is a fundamental difference between the projective plane and the torus.
In Fig. 4, the average speed as a function of p for different values of the size of the lattice in the projective plane case is

shown. These plots, as in the torus case, have been obtained as an average of 1000 experiments for every value of p. The
speed for every experiment is computed as the average of the speed of the system between timesteps t = 50 000 and
t = 51 000. The step increment of the parameter p has been of 0.01 units.
As we have mentioned before, simulations show that in the torus the speeds obtained from experiments carried out for

the same value of p close to a critical probability may be very different. This does not seem to happen in the projective
plane, where for every fixed value of p different experiments have very similar results. In Fig. 5, a comparative plot between
the standard deviation of speeds obtained in 1000 experiments on the torus, the Klein bottle and on the projective plane is
shown. The size of the lattice is 256 × 256. It is clear that in the torus case we have a peak around the critical value of the
density while in the projective case standard deviation is almost constant equal to 0.
Because of the local jams on the corners, as soon as p increases, speed starts to decrease. Fig. 4 suggest the existence of a

smooth transition from a phase in which v > 0 to a global jam phase where v = 0. Another difference with respect to the
torus should be mentioned, given p ≥ 0, 1 the speed of the system as a function of the size. This can be clearly seen in Fig. 4.
The following remark may help us to understand the behavior of the speed in the projective plane case. Let us fix

p ∈ [0, 1]. Once the local jam has appeared as a consequence of a red particle being on the upper left site at the same
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Fig. 10. A two-dimensional graphic of v as a function of pred (density of red particles, in the horizontal axis) and pblue (density of blue particles, in the
vertical axis) corresponding to the BML model on a Klein bottle. Below, we can see the same graphic in a 3D-picture. The size of the system is 256× 256.
Disparity among densities does not affect the speed of the system as in the torus case. (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)

time that a blue particle is on the bottom right site of the lattice, the expected number of red particles blocked behind the
red one is Np. In the same way, the number of blue particles blocked behind the blue one is on average equal to Np. As a
consequence two squares of blocked particles, each one of area N2p2 are generated so N2p − 2N2p2 = N2p(1 − 2p) is the
number of particles that we expect to see flowing in the center of the lattice. Therefore the speed of the system will be
bounded by (1− 2p) for 0 ≤ p ≤ 1/2 and v = 0 for p > 1/2. Computer simulations up to 512× 512 square lattice suggest
that particles outside the two local jams are able to self-organize in an almost free-flow phase, consequently, the system
should reach speed close to 1− 2p. Curves in Fig. 4 seems to show this tendency.
We have also studied in this topology the speed in the case where densities of particles are different. As in the torus case

we have considered 10 experiments for every value of pred and pblue, allowing 5000 steps in every experiment and taking
the average of speeds between timesteps 5000 and 5100. The step increment of density in every color is of 0.05 again.
In Fig. 6 results are shown. Dependence between speed and disparity of densities can be observed. This is another

difference between the projective plane and the torus. Let us observe that the speed of the system tends to increase when
densities present big disparity; therefore, a disproportionate density of one color helps us to improve the speed of the system.
In Fig. 6, the 3D plot of speed as a function of densities of red and blue particles is also shown.

4. BML model on a Klein bottle

In order to work on the Klein bottle we must again consider the finite lattice of size N × N , with the following boundary
conditions. As in the projective plane, for every l ∈ {0, . . . ,N−1} the site (N−1, l) is connectedwith the one in (0,N−l−1),
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Fig. 11. Differences of speed as a function of p are observed for different topologies in several sizes: torus, Klein bottle (KB) and projective plane (PP).

in such a way that a blue particle in (N − 1, l) will try to move to (0,N − l − 1). However, the site (l,N − 1) is connected
with (l, 0), as in the torus case; hence a red particle in (l,N − 1)will try to move to site (l, 0) in the next timestep.
In Fig. 7, an instant of a typical experiment for a value p in the region of free flow is shown. The formation of diagonal

patterns from left to right is observed, but in this case, the diagonal shows some deformation because of the changes in
periodic boundary conditions.
In Fig. 8 the results of the experiments for the Klein bottle are shown. Again, these graphs have been obtained as an

average of 1000 experiments for every value of p. The speed for every experiment is computed as the average of the speed
of the system between timesteps t = 50 000 and t = 51 000 and the step increment of the parameter p has been of 0.01
units.
The behavior is much more similar to the one in the torus. However, simulations show that in the Klein bottle case the

speed starts to decrease sooner than that in the torus case, although after reaching the critical density, the behavior seems
to be the same (see Fig. 11).
As in the torus case speeds obtained from experiments carried out for a fixed value of p in a critical region may be

very different. In Fig. 5 we have a plot of the standard deviation of speeds obtained in 1000 experiments on the torus, the
projective plane and on the Klein bottle. The size of the lattice is 256× 256. The plots for the torus and for the Klein bottle
are similar.
As in Ref. [11] for the torus case, we also report the existence of intermediate states in the Klein bottle that coexist with

global jam states and almost free flow states for values of p close to the critical zone. In Fig. 9we can see an example obtained
for N = 256 and p = 0, 22. We have let run the realization untill t = 500 000 to observe that speed v stabilizes around the
value v = 0, 3. A stable local jam appears on the center, and some particles move almost in a free flow on the borders of the



world producing a periodic intermediate state, the opposite behavior that we observed on the projective plane case where
the local jams appeared on the border and the free flow on the center of the lattice.
To finish we also carried out the study of speeds under disparity of densities among red and blue particles. The behavior

is similar to the one in the torus. We can see the results in Fig. 10.

5. Discussion

In this paper the BMLmodel on a projective plane and a Klein bottle has been investigated by computer simulations. We
have found differences between these geometries and the torus one, as can be seen in Fig. 11, where speed is shown as a
function of density and different topologies are grouped by lattice size.
The existence of stable local jams on the projective plane case which may occur at any density p > 0 when a red particle

is on the upper left site at the same time that a blue particle is on the bottom right site of the lattice seems to be the reason
of the non-existence of phase transition, in contrast with the torus and Klein bottle cases. Also, the speed of the system in
the projective plane case depends on the ratio between densities of red and blue particles, another difference with respect
to the torus and Klein bottle case, where speed is independent of the ratio between densities of red and blue particles.
We have not studied the case when the aspect ratio of the underlying lattice is non-square; it could be of interest to

consider this problem and compare the results for the projective plane and the Klein bottle with the ones obtained for the
torus.
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