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Abstract In this paper, a Biham-Middleton-Levine traffic model on a 2D hexagonal 
lattice is studied by computer simulations and its behavior is compared with the 
BML model on a 2D square lattice and a 3D cubic lattice (Supported by Excellence 
project TIC-6064 of Junta de Andalucía cofinanced with FEDER founds).

113.1 Introduction

In [1] Biham, Middleton and Levine (BML) introduced one of the most studied 
models about traffic flow in recent years. Based on a two-dimensional cellular au-
tomaton, this extremely simple model exhibits self-organization, pattern formation 
and phase transitions.

BML model considers the motions of two species of particles, north- and east-
bound particles, in a two dimensional square lattice with N × N sites with periodic 
boundary conditions in such a way that the geometric model corresponds to the 
discrete torus ZN × ZN . Several interesting generalizations of the model have been 
considered, such as free boundary conditions [6], non-square aspect ratio of the 
underlying square lattice [5], four-directional traffic [3], and an extension to three 
dimensional cubic lattice with periodic boundary conditions [2].
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Fig. 113.1 BML model on a

two dimensional hexagonal

tesselation with periodic

boundary conditions

In this paper we consider a BML model on a two-dimensional hexagonal lattice

and we pose the question of compare this model with the 2D square lattice [1] and

the 3D cubic lattice case [2].

113.2 BML on a Two-Dimensional Hexagonal Lattice

We consider an hexagonal lattice tessellation of the torus with three families of par-

ticles (red, blue and green) that try to move in north, north-east and north-west di-

rection. In order to consider the hexagonal lattice with periodic boundary conditions

we need the system size be an even natural number (see Fig. 113.1).

Initially, particles are placed randomly according to a parameter 0 ≤ p ≤ 1 which

is the probability of a lattice site to contain a particle. Each hexagonal cell has a

probability p/3 of having a blue particle, p/3 of having a red particle, p/3 of having

a green particle and 1 − p of being empty. In this way p is the particle density in

the system.

The discrete time dynamics is determined by the following rules: (a) first, all

red particle synchronously try to move forward one site in north direction. If the

site northward of a red particle is currently empty, it advances. Otherwise that red

particle stays in the present location, even if the northward site is to become empty

during the current time step; (b) second, blue particles follow the same rules but

they try to move in north-east direction; (c) finally, green particles try to move in

north-west direction following the same rules as before. This marks the end of a

time step and the above particle moving process is repeated over and over again. Let

us observe that the dynamics is fully deterministic and the only random event in the

model occurs in the initial condition.

In every discrete time step t , the instantaneous speed of the system vt is computed

as the ratio between the number of particles that succeed to move and the total

number of them. If vt = 0 then no particle has moved in the time step t ; if vt = 1

then all particles have moved. The asymptotic speed v is the speed vt averaged over

the asymptotic cycle and 〈v〉 is the average asymptotic speed over the random initial

configurations. We want to study the average asymptotic speed 〈v〉 as a function

of p.



Fig. 113.2 〈v〉 as a function of p for different system sizes

113.3 Simulation Results

We have implemented the BML model on hexagonal lattices of finite size N × N ,

for N = 32,64,128,256,512 and 1024.

In the left panel of Fig. 113.2, 〈v〉 is seen as a function of p. These curves have

been obtained as an average of 1000 random initial configurations for every value

of p. The asymptotic speed v for every initial configuration is approximated by the

average of vt between time steps t = 50.000 and t = 51.000. The step increment of

the parameter p has been of 0.01 units. Since we have a special interest in the sud-

den drop of 〈v〉, we have completed the numerical study repeating the experiments

moving p from 0.1 to 0.2 with increments of 0.001 and with the same conditions as

before. Results can be seen in the right panel of Fig. 113.2.

113.4 Analysis of the Results

Similar to the results in [1] for the 2D square lattice case and to [2] for the 3D cubic

lattice case, in the 2D hexagonal lattice case there are two qualitatively different

asymptotic states separated by a sharp dynamical transition. Below the transition

all particles move freely and the system reaches asymptotic speed 1 or very close

to 1 (the free flow phase) and above the transition the particles get stuck and the

system gets speed 0 (the global jam phase). It is interesting to observe the geomet-

ric patterns of the system. Below the transition the system is able to self-organize

and to form very well defined geometric patterns that can be seen in the left panel

of Fig. 113.3: ordered monochromatic clusters of particles almost freely flowing.

Above the transition the system forms one or more percolating clusters of jammed

particles (right panel of Fig. 113.3).

Following [1] we define the critical region as the range of densities where both

asymptotic states can be found with a non 0 probability. The size of this region

depends on the system size and the critical probability is taken as the center of the

critical region. We have made an estimation of the value of the critical probability

for different system sizes. We have considered the critical region as the region of



Fig. 113.3 Typical geometric

patterns of the free flow and

global jam phases in the

hexagonal lattice BML model

Table 113.1 Critical region

as a function of N N 〈v〉 < 0.99 〈v〉 > 0.01 Critical density

128 p > 0.14 p < 0.2 0.17

256 p > 0.13 p < 0.18 0.155

512 p > 0.12 p < 0.17 0.145

1024 p > 0.1 p < 0.16 0.13

densities for which speed lies between 0.01 and 0.99, and the critical probability

as the center of the interval. We see, as in [1], that the critical probability slightly

decrease as the system size increases (see Table 113.1).

In [1] Biham, Middleton and Levine reported the existence of two phases in the

two dimensional square lattice model separated by a sharp dynamical transition,

and the general belief was that the system showed a first order transition. However,

D’Souza [4, 5] found a region of metastable intermediate states with an asymptotic

speed around v = 2/3, and with a very well defined geometry. Thus, the BMLmodel

does not necessarily exhibit a sharp phase transition from free flow to global jam, but

instead has a range of intermediate states with regions of free flow intersecting at

jammed wave-fronts. In the 2D hexagonal lattice case, as in the 3D cubic lattice

case, we report that we have not found intermediate states: asymptotic speed is

always very close to 1 or to 0. Although we have observed a few results with v

around 0.84 the number of that cases is decreasing when the system size grows.

The curves for the hexagonal lattice model are more similar to the 3D cubic

lattice than to the 2D square lattice case. From the results we believe that the BML

model on the hexagonal lattice may show a first order phase transition. To support

this hypothesis we have plotted the hysteresis curve (Fig. 113.4) obtained in the

following way: starting from p = 0, the density is increased by a small increment

by randomly introducing particles to the empty sites of the system. Then the system

evolves until it reaches a recurrent state and speed is measured. This is done again

and again until p = 1. The blue curve represents this evolution. Now, we decrease

the density by the same increment by removing randomly particles from the system,

following the same process. The red line represents this process. In this way the

hysteresis loop, typical of first order phase transitions, is obtained.
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Fig. 113.4 Hysteresis curve:
the blue and red curves
represent the evolution of the
system when particles are
slowly added to or removed

from the system, respectively

Fig. 113.5 Typical geometric

pattern of the slow speed
phase in the hexagonal lattice
BML model

In [2] the authors also point out one interesting difference with respect the 2D

square lattice case. Besides the free flow phase and the global jam phase, they

observed an extensive region of densities with a low but non 0 asymptotic speed.

According to the authors this phase is a result of the formation of spatially limited-

extended percolating cluster of particles, where most particles are jammed by collid-

ing into the percolating cluster and a small number of residual particles freely move.

Since almost all particles are jammed the speed is very slow. This is a difference with

the 2D square lattice case, because in that case all particles will eventually merge

into the percolating backbone leading to a completely jamming configuration. Com-

pletely similar to the 3D cubic lattice case, in the 2D hexagonal lattice case there

exists a slow speed phase where speed is very close to 0, but greater than 0. The

system is able to form percolating clusters of jammed particles letting a residual

small number of particles flow freely. In Fig. 113.5 we can see a typical geometric

pattern of this phase.

One of the complications of the BML model from a theoretical point of view

is that it is not a monotonous model in the following sense: adding particles to a

configuration that is known to jam can actually change the sequence of particle

interactions and result a configuration going to free flowing instead of jamming. In

this model we can see this kind of behavior, where increasing the density causes

increased speed. This can be seen clearly in the critical region for system sizes 256

and 1024 (Fig. 113.2) and to a lesser extent in the slow speed phase, where we can

see a peak in the plots (Fig. 113.6). Our model can be a tool to study this behavior

that does not appear in the other two models.



Fig. 113.6 〈v〉 is not

decreasing as a function of p

in the slow speed phase

113.5 Conclusions

From the numerical results we conclude that the phase diagram of the 2D hexagonal

lattice model is more similar to the 3D cubic lattice than to the 2D square lattice

case. We can reproduce most of the features of the 3D cube lattice case which do

not appear in the 2D square lattice case, by changing the topology of the lattice that

supports the 2D model.
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