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Signals captured in rotating machines to obtain the status of their components can be considered as a
source of massive information. In current methods based on artificial intelligence to fault severity assess-
ment, features are first generated by advanced signal processing techniques. Then feature selection takes
place, often requiring human expertise. This approach, besides time-consuming, is highly dependent on
the machinery configuration as in general the results obtained for a mechanical system cannot be reused
by other systems. Moreover, the information about time events is often lost along the process, preven-
ting the discovery of faulty state patterns in machines operating under time-varying conditions. In this
paper a novel method for automatic feature extraction and estimation of fault severity is proposed to
overcome the drawbacks of classical techniques. The proposed method employs a Deep Convolutional
Neural Network pre-trained by a Stacked Convolutional Autoencoder. The robustness and accuracy of this
elical gearbox new method are validated using a dataset with different severity conditions on failure mode in a helical
gearbox, working in both constant and variable speed of operation. The results show that the proposed
unsupervised feature extraction method is effective for the estimation of fault severity in helical gear-
box, and it has a consistently better performance in comparison with other reported feature extraction
methods.
. Introduction

Gearboxes are fundamental components in rotating machines
ainly composed by gears, bearings and shafts. These parts interact

n a lubricated environment to minimize the friction effects [1]. In
his context, the most common failure modes in gearboxes can hap-
en either by mechanical components or by lubrication conditions
2]. Gearbox failures can produce undesired machinery stops, caus-
ng huge economic losses and even fatal accidents [3]. Hence, it is

mportant to be able to recognize the condition of each component
n an easy way and at a reasonable cost.

∗ Corresponding author at: Department of Mechanical Engineering, Universidad
olitécnica Salesiana sede Cuenca, Ecuador.

E-mail address: dcabrera@ups.edu.ec (D. Cabrera).
Gear wear is a specific failure mode that can appear in all the
stages of the device useful life. This fault mode might start from
the beginning of the machine operation and increases over time.
The gear wear identification allows detecting incipient faults and
facilitates the synchronization with planning process, inventory
management and it is close to “on-time” maintenance.

The work in Jardine et al. [4] shows that historically the main
approaches, to diagnose the device conditions in rotating machin-
ery, are: (i) waveform data analysis, (ii) value type data analysis,
and (iii) data analysis combining event data and condition moni-
toring data. In the first case, time-frequency based techniques have
out-stood in the representation of information; e.g., Fan and Zuo
[5] have shown that Hilbert transform combined with Wavelet

Packet Decomposition are suitable to obtain the fault characteris-
tic features. In the second one, condition indicators are designed to
predict the status of machinery devices. Finally, the third approach
has emerged from advances in machine learning techniques over
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he last years. As an example, Chen et al. [6] show a Support Vector
achine classifier with a novel wavelet kernel function.
Generally speaking, the approaches mentioned above are con-

eived to work independently from each other. The link, that
sually allows to join waveform data analysis with other tech-
iques is the intermediate stage of feature extraction. The feature
xtraction process could be accomplished computing statistics
etrics from time, frequency, or time-frequency domain of the

ignal representation. For example in Vakharia et al. [7] classical
eature extraction and different feature selection techniques are
erformed for a fault diagnosis application using a Support Vector
achine classifier. However the designing of appropriate features is

ot a trivial task under different stationary or non-stationary opera-
ional parameters [8], where the frequency spectrum of an acquired
ibration signal shows changes in position and shape at different
peeds. Historically the feature extraction task is highly dependent
n the application problem, and for fault diagnosis in mechanical
ystems, it is mainly dependent on the machine to be analyzed.
ence, it is necessary to find a novel approach oriented to the orig-

nal ideas of machine learning which try to merge data processing,
eature extraction, knowledge representation, unsupervised and
upervised learning in a unique model, where every part inter-
cts directly with each other and where refinement strategies are
pplied together.

This paper introduces Stacked Convolutional Autoencoders
SCAE) together with Deep Convolutional Neural Network (DCNN)
s a method for unsupervised hierarchical feature extraction for
ault severity assessment in helical gearbox. The feature extraction
rocess uses raw time series data under stationary and non-
tationary operational conditions. The main contribution of the
roposed method is the expert-free accuracy improvement of fault
everity assessment estimation. This is carried out through unsu-
ervised detection of a hierarchy of time-frequency patterns local

r globally related to each other using DCNN, regardless the zone
here these patterns occur. DCNN is enhanced with SCAE used for

apturing a-priori patterns, and for pre-initializing the parameters

Fig. 1. Typical extraction of feature maps
of the DCNN. The results show that the proposed method is effec-
tive for the estimation of fault severity (severity class and fault size
in percentage) in helical gearbox.

The remaining of the paper is organized as follows. Section 2
provides the background of convolutional neural networks and
convolutional autoenconders. Section 3 describes in detail the pro-
posed method and applications to fault severity diagnosis. Section 4
shows the experimental setup used for the case study of fault sever-
ity assessment in helical gearbox. Subsequently, the results of the
proposed method and the comparison with similar unsupervised
feature extraction approaches, as [9,10], and supervised feature
extraction approach, as [7], are performed in Section 5. Finally, Sec-
tion 6 presents the main conclusions and contributions obtained in
this work.

2. Preliminaries

2.1. Convolutional Neural Network

Convolutional Neural Network (CNN) is a learning model bio-
inspired by animal visual cortex which tries to learn an optimum
set of g kernels relatively to a specific task from a dataset. CNN
has been originally used in image recognition tasks, for exam-
ple the model LeNet-5 in Lecun et al. [11] is used to character
recognition.

Eqs. (1) and (2) summarize the complete feature extraction pro-
cess at layer m from I features maps in the layer m − 1, Fig. 1 shows
the architecture of the CNN:

hmk [x, y] = o

⎛
⎝
Im−1−1∑
i=0

f m−1
i

∗ gmi,k + bmk

⎞
⎠ (1)
fk [x, y] = max −pooling(hk ) (2)

where I is the number of input functions f, g is the kernel function,
b is a bias factor, and o is an optional non-linear function.

in Convolutional Neural Network.
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Fig. 2. A layer of the C

The parameters of a CNN can be learned using a slightly modified
ersion of the stochastic gradient descent (SGD) algorithm, since it
eeds to compute the total gradient with respect to gm

i,k
, and it is

pplied many times to the input in the feature map extraction pro-
ess, then the total gradient is obtained considering each individual
radient.

.2. Convolutional Autoencoder

The Convolutional Autoencoder (CAE) is introduced by Masci
t al. [12], where the model is used to unsupervised feature extrac-
ion in the MNIST database of handwritten digits (a recognition task
rom a big image dataset) [13].

The goal of CAE is the same as that of denoising Auto-Encoder
roposed by Vincent et al. [14], but applied to CNN, to initialize a
onvolutional layer with the best possible estimates of parameters
and b. This is achieved using a modified autoencoder structure
here the encoding process consists of convolution and max-
ooling, and the decoding process is composed by un-pooling and
onvolution, as shown in Fig. 2. Max-pooling is a destructive non-
eversible operation. Then, the un-pooling operation only consists
y horizontal and vertical replication of each (x, y) element using
he same max-pooling size factor in all resulting feature maps of
ncoding process.

The training process for a CAE can be summarized in minimizing
he error between x and y. In this case, we can consider the objective
unction as:

= ‖x − y‖2 (3)

here x is the input feature maps. Note that y is the output of the
AE model with parameters: W, W′ representing the g function, b
nd b′ from bias vector. The optimization problem is summarized
s:

min
,W′,b,b′E(W,W′,b,b′) (4)

rom a computational point of view, it can be beneficial to consider
′ = WT, and the optimization problem result in:

min
,b,b′E(W,WT ,b,b′) (5)

. Methodology

The pattern discovery problem in machinery composed by a

elical gearbox has difficulties inherent to dependency on acquired
ignals with the operational parameters. This is illustrated in Fig. 3
ith stationary different operational parameters, where the fre-

uency spectrum of an acquired vibration signal shows changes
Fig. 3. Frequency spectrum of signal vibration acquired from a helical gearbox at 3
different constant speeds.
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impulse response of  wavelet mother function which is charac-
ig. 4. Frequency spectrum of signal vibration acquired from a helical gearbox to
ariable speed at 3 different constant loads.

n position and shape at different speeds. Moreover, harmonics at
peed 1 could be easily confused with fundamental frequency at
peed 3. It happens when the operational speeds are multiples of
ach other. While it is true that the spectrum positions at different
oads are almost the same, it is appreciated that the shapes change,
lthough the speeds are the same as in all cases (see Fig. 3(a) vs (b)).

Under non-stationary operational parameters, pattern identifi-
ation is even more difficult. Fig. 4 illustrates the spectrum at one
ariable speed and different constant loads. For this case depend-
ng on the load, the patterns in frequency domain are not clearly
dentifiable.

To address the problem of pattern identification in fault diagno-
is of machinery composed by gearbox, two main approaches have
een used. The first one is based on signal analysis and processing
ethodologies, that has as purpose identifying characteristic fre-

uency bands in the spectrum of vibration signals (signatures) [15],
or the stationary case where the band location typically indicates
he fault type and its amplitude shows the fault severity. In the non-
tationary case, ad-hoc filtering based techniques has been applied
o extract a more informative signal to be analyzed [16].

The second approach is based on pattern classification of clas-
ically extracted features from vibration signals in time domain,
requency domain, and/or time-frequency domain as Fig. 5 shows.
ach feature is carefully designed depending on the case study to
xtract only the most robust, invariant to changes in the process
nd informative, condition parameters. After the feature extraction
rocess, classical shallow learning models are used to the pattern
lassification process, as in Cabrera et al. [17] and Pacheco et al.

18]. Some deep learning models have also been applied (see, for
xample, Li et al. [19]), but in these cases the proposal works on
lassical pattern classification of previously extracted features.

Fig. 5. Classical methodology for fault diagnos
As we noted before, feature extraction and selection are not
trivial tasks and are highly dependent on the operational parame-
ters. Due to its complexity, in this work we propose a method for
automatic feature extraction to severity assessment of time-series
(vibration signals) extracted from a machinery under stationary
and non-stationary operational conditions. The proposed method
is presented in Fig. 6, where it is composed by the following steps:

1. Signal acquisition: Acquire vibration signals under multiple fault
severity values with stationary and non-stationary operational
conditions.

2. Time-frequency representation: Transform the vibration signals in
time to their equivalent time-frequency representation.

3. Automatic feature extraction: Construct the DCNN model initial-
ized by SCAE, to feature extraction using the time-frequency
representation of the signals.

4. Classification and regression: With the extracted features, build
the classification model to estimate the discrete severity level,
using the extracted features. Optionally, add a regression layer
of weighted sum to obtain the continuous severity value.

5. Online fault severity evaluation: Evaluate the fault severity assess-
ment of a new vibration signal using the obtained models. The
output can be the categorical severity class or the severity value
in percentage.

These stages are detailed in next subsections.

3.1. Signal acquisition

The vibration signals are obtained by direct measuring of this
variable from the machinery and its discretization through a Analog
to Digital process. Each vibration signal is normalized to [0, 1] inter-
val and grouped with other vibration signals acquired under either
different or no-stationary speed and load operational parameters.

3.2. Time-frequency representation

Time-frequency domain signals can be obtained using sev-
eral tools: Short Fourier Transform, Fractional Fourier Transform,
Wavelet Packet Transform (WPT), etc. We will use WPT because it
offers adaptive resolution adjust (multi-resolution) in time and fre-
quency. In our experiments we will work with no periodic signals
due to variable speed conditions in the input.

WPT is obtained by recursive decomposition of the input signal.
This decomposition is carried out by two parallel processes:

A = s ∗ g (6)

D = s ∗ h (7)

where s is the input signal, g is the impulse response of � wavelet
father function which is characteristic of low pass filter, h is the
teristic of high pass filter, and A and D are the resulting signals of the
decomposition process (called Approximation and Details signals,
respectively). The two filters g and h are restricted to be mutually

is with conventional feature extraction.
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Fig. 6. Proposed method

omplementary. Wavelet functions can be any function with finite
nergy.

A and D signals are decomposed recursively in order to achieve
desired level of decomposition, obtaining a binary tree decompo-

ition of signals as Fig. 7 shows.
The last level of nodes has all the information in time and fre-

uency domains of the input signal, and each node at this level
epresents a specific range in the spectrum. Signals inside these
odes can be normalized in time scale and after stack them from

ower frequency to the higher one, we obtain the time-frequency
epresentation showed in Fig. 8(a) and its equivalent 2D in Fig. 8(b).
s an example of possible patterns for gear fault severity assess-
ent, the coefficients with the highest values are marked. In a real
orld case, the patterns will be much more complex and more
ifficult to be identified.

In the works introduced by Cerrada et al. [20,21] a genetic algo-
ithm has been used to evaluate the importance of each wavelet
amily in gearbox fault diagnosis. Their results show daubechies
amily as the best choice for this task, and we will use it to obtain
he time-frequency plane for the signals in our experiments.

.3. Automatic feature extraction process

The features in the time-frequency representation of a vibra-

ion signal exhibit highly moving patterns due to the lack of an
xternal synchronization signal per turn of motor. This character-
stic requires the model to recognize features in any location of the
ime-frequency representation.
ult severity assessment.

Deep Convolutional Neural Network (DCNN) model works for
detecting patterns locally related to others in a bi-dimensional
input, regardless the zone where these events occur. Therefore
DCNN is robust to shifts and could be a good candidate as fea-
ture extraction model from patterns with local occurrence in
time-frequency representation. But, since it has to be trained by
Stochastic Gradient Descent from randomly initialized parameters,
it could suffer from premature convergence to a local minimum.

The weakness of DCNN model can be addressed with a better
method for initializing parameters. We propose to use Stacked Con-
volutional Autoencoders (SCAE) architecture which is composed
by CAE stacked, similar to Stacked denoising Autoencoder (SdAE)
architecture, in order to extract a priori knowledge regarding the
model capacity to reconstruct the time-frequency plane of the
input. Later the parameters obtained with SCAE are used as initial
point for fine-tuning of the DCNN.

Each element in the set of feature maps at the output of DCNN
is passed through a flatten function and stacked to construct the
vector of extracted features. The size of this vector is dependent
on the input size and the DCNN architecture, where the output of
each layer are k feature maps of size (M−m+1

2 × N−n+1
2 ), given input

feature maps of size (M × N) and k kernels of size (m × n).

3.4. Classification and regression
The vector of features obtained with the automatic feature
extraction process from time-frequency representation is used as
input into a multi-layer perceptron (MLP), built to evaluate the
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Fig. 7. Wavelet Packet Decompositi

everity fault. Taking into account that commonly the decision

pace created by the vector of features is high-dimensional, the
umber of neurons in the hidden layer of the MLP should be large
nough. The number of outputs is equal to the number of available
everity values established in the training phase.

ig. 8. Time-frequency representation of vibration signal using db5 wavelet. (a) The
tacked coefficient signals, where the amplitude of each bar represent the value of
oefficient at specific time and frequency. (b) The 2D version where the color indicate
he value of specific coefficient. The ovals mark equivalent patterns in 3D and 2D
isualization with the colors according to its position.
e of a time-domain vibration signal.

The classification error is computed using the correct level
severity class and the output of the DCNN. Then the error is back-
propagated from the output through hidden layer to DCNN to
complete the cycle of fine-tuning in the automatic feature extrac-
tion process. Thereby the features are adjusted to obtain a better
accuracy according to the prediction of the severity class. Addi-
tionally, a regression layer composed by weighted sum operation
(linear neuron) of the inputs could be added to obtain a real val-
ued output. It could be done by using the discretization layer after
the logistic regressor or not. In the first case, the predicted severity
class is directly weighted by its equivalent percentage of damage.
In the second case, each probability of the severity class is weighted
by the corresponding value of severity in percentage and sum-
ming with others to give a real value. Both cases were tested in
our experiments.

3.5. Online fault severity evaluation

After the models have been adjusted following the previous
method, on-line tests could be performed. A new vibration signal
acquired from the machinery is entered into the black-box method
without changes in the internal parameters. The process can gen-
erate two outputs: The first one with a categorical severity class
and the second one with the percentage of damage present in the
evaluated gear of the machinery.

4. Experiments

In this section we present the set of experiments carried out in
helical gearboxes to obtain the vibration signals. Also we present
the different configurations used by the proposed method.

4.1. Experimental setup
The experiments were performed following the diagram dis-
played in Fig. 9. The one stage helical gearbox (GB) is composed by
two gears (Z1 and Z2) mounted in independent shafts. The input
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Table 3
Data of acquisition system components.

Component Description

sine and square profiles. The periods of these profiles were constant
and repeated until the end of the experiment. Table 5 summarizes
the different speed profiles.

Table 4
Damage levels of helical gear tooth breakage fault.

Code Description Damage (mm) Percentage of tooth (%)
Fig. 9. Block diagram of the experimental setup.

haft is connected to a motor, that transforms electrical energy to
otational movement in order to be transmitted to the mechanical
ystem. The output shaft is linked to the break system (B), which has
belt connected to a magnetic break, and transforms the electrical
nergy into mechanical force opposed to the rotational movement
f the output shaft. The most important information about these
echanical components is extended in Table 1.
The motor is driven by a speed drive configured as follows: it

ses the mode control of estimate speed, 1 s ramp time from min to
ax speed, automatic identification of the motor parameters, and

et point configured in analog voltage input mode. The magnetic
reak is driven by a variable voltage source power. The technical
escriptions of these components are shown in Table 2.

Two signals were obtained from the system. The first one is
he vibration acquired from an unidirectional accelerometer device
ransforming the mechanical acceleration in one axis to an ana-
og voltage signal. Since the contact between gears mainly occurs
ertically the accelerometer is mounted in this direction. The sec-
nd signal is the angular position of the motor, acquired from an

ncoder device giving a pulse each 0.036◦. The technical descrip-
ions of these components are shown in Table 3.

able 1
ata of mechanical system components.

Component Description

M Motor Siemens 1LA7 090-4YA60 1.49 kW, 4 poles, 28.33 Hz
Z1 Pinion, 76 mm, 30 tooth, pressure angle = 20◦ , helix angle = 20◦

Z2 Gear, 112 mm, 45 tooth, pressure angle = 20◦ , helix angle = 20◦

B Magnetic break, proportional force to input voltage, belt coupled

able 2
ata of source system components.

Component Description

Speed drive Danfoss VLT 1.5 kW
Source power TDK Lambda GEN 150-10, 0–150 V, 10 A
A Accelerometer unidirectional IMI Sensor 603C01, 100 mV g−1

E Encoder SICK DFS60-S4PL10000, 10000 ppr

The analog signals are digitalized using Data Acquisition (DAQ)
cards. We use a NI9234 card (from National Instrument) for the
accelerometer signal measure, specific for piezo-electric sensors. It
is configured in pseudo-differential mode to noise immunity mea-
sure, integrates source power at the same cable, has 24 bits of
resolution at 50 ksamples/s which permits to detecting fault char-
acteristic frequencies up to 25 kHz. For the encoder pulses, we use
a NI9401 card, with high speed digital inputs, and it is configured to
acquire pulses at 1 Msample/s, which is able to detect up to 50 Hz
of motor rotation speed. The speed drive and power source of the
break system are connected to analog outputs of other DAQ card.

All previous DAQ cards are plug in a NI cDAQ-9188 chassis, that
permits the temporal synchronization between all signals from dif-
ferent modules with the subsequent real time measure and control.
The chassis groups all signals and sends them to a buffer located in
the RAM of a laptop (Fig. 9). A program developed in Labview takes
the buffer data and stores them to the hard drive. On the other hand,
data from encoder is used to adjust the real speed and compensate
the rotation speed. The source power voltage of B works in open
loop, hence the voltage is used to quantify the force opposed to the
movement of the gearbox.

4.2. Experimental plan

Based on the previous setup, an experimental plan was designed
using the controlled variables in the entire system. The main goal in
this plan was the assessment of severity in helical gear tooth break-
age fault, and for this purpose different damages were produced
by cutting the tooth of Z1 gear at 9 levels while Z2 is not modi-
fied. Table 4 presents a summary of the damage configurations and
Fig. 10 shows the physical results.

The rotation speed was considered in 5 variants. Three of them
were at constant speed and two more at variable speed, changing in
P1 Level 1 or normal 0.0 100.0
P2 Level 2 2.37 88.42
P3 Level 3 4.0 80.42
P4 Level 4 5.73 71.94
P5 Level 5 7.6 62.81
P6 Level 6 10.57 48.29
P7 Level 7 12.37 39.48
P8 Level 8 14.33 29.85
P9 Level 9 17.5 14.36
P10 Level 10 or without tooth 20.43 0.0

Table 5
Constant and variable speed profiles.

Code Type Rotation frequency (Hz) Profile

F1 Constant 8 –
F2 Constant 12 –
F3 Constant 15 –
F4 Variable 8–15 Sine-period = 2 s
F5 Variable 8–15 Square-period = 2 s
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in layer 1, layer 2 and layer 3, respectively; and corruption level of
0.3 was used in the fully connected layer in all cases. The pretrain-
ing learning rate was 0.01 and the number of epochs adjusted to
100. Table 7 summarizes the architecture of each SCAE.

Table 6
Configuration of CNNs with number of kernels and shape of each kernel.

Code Kernels layer 1 Kernels layer 2 Kernels layer 3

CNN1 100 × (5, 5) 200 × (3, 3) –
CNN2 100 × (5, 5) 40 × (5, 5) –
CNN3 100 × (5, 5) 200 × (3, 3) 400 × (3, 3)

Table 7
Configuration of SCAEs with number of kernels and shape of each kernel.
Fig. 10. Damage in helical gear

The load had three constant levels. Each level was achieved by
arying the voltage supplied to the braking system. They are coded
ith L1, L2, L3 and represent 0 V (without load), 10 V and 30 V,

espectively.
For each level of severity P, each speed F was evaluated in each

oad L. Hence a set of experiments under all combinations of P,
and L could be achieved. For each element of this set, 5 repeti-

ions of 10 s were performed, obtaining an experimental dataset of
0 · 5 ·3 · 5 = 750 signals, (a subsample of acquired signals is shown

n Fig. 11). Then, each signal of this dataset was normalized to the
0, 1] interval and it was cut into 40 sub-signals using a rectangular
indow of 0.25 s with no overlapping, resulting in a new dataset

f 30000 elements. These sub-signals are equivalent to vibrations
uring 2 turns of the input shaft at the lower rotation frequency of
Hz. The time series dataset was transformed into time-frequency
ataset using WPT with wavelet mother daubechies 5 at decompo-
ition level 6. As a result, a time-frequency image of 136 × 64 pixels
as obtained for every element of the dataset.

After data acquisition, training and testing of SCAE network was
erformed, where the dataset was divided into three subsets: train-

ng (60%), validation (20%) and testing (20%). In order to obtain the
ame percentage of elements of every severity level in each subset,
process of stratification was made. The validation subset was used
s a method for avoiding overfitting and guarantee the results.

. Results and discussions

Three groups of tests were performed for specific purposes. The
rst group allows to compare between DCNN with randomly ini-
ialized kernels and the proposed DCNN with initialized kernels
sing SCAE, evaluating the advantage of starting the training pro-
ess from a pre-optimized solution. Then the best DCNN with SCAE
as evaluated in each severity level to analyze if the majority of

he errors occur between adjacent classes.
The second group was performed to evaluate the incidence of

sing the linear regressor with the discretization layer after the
ogistic regressor and without it. The goal was to measure if the
et of probabilities gives information in concordance with the real
alued level severity and if each probability is close to the others
hich is proved with the MSE and MedAE metrics.
The third group provided a comparison with other methods,
upervised and unsupervised, that have been previously applied
o fault diagnosis cases. The selected methods use classical tech-
iques of feature extraction without the conventional design of
according to code from Table 4.

features for obtaining a comparison between methods looking for
the same goal: the automation in the process of feature extraction
from time series. In the next subsections the details about these
tests are summarizes.

5.1. Comparison of DCNN vs SCAE-DCNN

The first tests were performed using DCNN with random initial-
ization of parameters, uniformly sampled from a bounded range.
The architectures with 2 and 3 convolutional layers were tested.
The common factors in architectures and training parameters are:

• Presence of a max-pooling layer in each convolutional layer.
• Unique hidden layer fully connected to last convolutional layer

with 1000 neurons.
• Final layer composed of logistic regressors.
• Mini-batch size of 200 elements.
• Learning rate for the supervised training at 0.1.
• Training epochs set at 400.

The different configurations (changing the number of kernels in
each convolutional layer) are summarized in Table 6.

Furthermore, other tests using the same architecture and train-
ing parameters were performed with SCAEs. In these new tests, the
pretraining stage was added with 0.1, 0.2, and 0.3 of corruption level
Code Kernels layer 1 Kernels layer 2 Kernels layer 3

SCAE1 100 × (5, 5) 200 × (3, 3) –
SCAE2 100 × (5, 5) 40 × (5, 5) –
SCAE3 100 × (5, 5) 200 × (3, 3) 400 × (3, 3)
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ig. 11. Examples of signal vibration. (a)–(j) A signal acquired at each severity leve
nd F5 speed, respectively.

We used the accuracy, which is a classical metric to quantify
he global performance of classifiers. In Table 8, CNN1 y CNN2

ompared with SCAE1 y SCAE2 show a little difference of 0.0018
etween CNN1 and SCAE1, and 0.0012 between CNN2 and SCAE2.
oth show a little better performance in CNNs than SCAEs but could
e considered negligible. Moreover, SCAE3 shows a significant
P10) with F1 speed and L1 load. (k) and (l) A signal at P1 severity level, L1 load, F4

increase of 0.0223 in performance compared to CNN3, which have
the same architecture, and an increase of 0.0083 compared to

CNN2, which is the best of all CNNs.

SCAE3, which presents the best accuracy, is evaluated in its
performance with each severity level using precision, recall and
f-measure, classical metrics, as Table 9 shows. All metrics are



Table 8
Accuracy of each classifier over test set.

Code CNN SCAE

1 0.9208 0.919
2 0.9382 0.937
3 0.9242 0.9465

Table 9
Metrics of performance in each level of severity.

Code severity Precision Recall f-Measure

P1 0.9680 0.9583 0.9631
P2 0.9533 0.9533 0.9533
P3 0.9538 0.9283 0.9409
P4 0.9400 0.9400 0.9400
P5 0.9218 0.9233 0.9226
P6 0.9103 0.9133 0.9118
P7 0.9422 0.9233 0.9327
P8 0.9532 0.9850 0.9689
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Table 11
Quantitative performance with, and without, discrete layer.

Code MSE MedAE

resulting vector PCA is applied, to select the number principal

T
C

P9 0.9635 0.9667 0.9651
P10 0.9589 0.9733 0.9661

alculated from the data given by the confusion matrix showed in
able 10. The confusion matrix is obtained from the test set with
00 samples for each level of severity.

The best precision, which indicates the capacity of the model to
void the inclusion of samples from any other classes in the ana-
yzed class, is obtained for P1 (normal condition). It shows that
ignatures P2 to P10 have the best characteristics of separability
ith respect to P1. The worst case is obtained with the confusion of

ignatures P3 (10 samples), P5 (11 samples), and P7 (14 samples)
ith P6.

On other hand, the best recall, which shows the capacity of the
odel to include all the samples that, in fact, are inside a class, is

btained for P8. It shows that signature P8 is distinguished from
ther signatures. Newly, the worst case is obtained for P6, which
hows the major error with P5 (7 samples) and P7 (11 samples).
his is justified by the closeness in the severity level of P6 to those
rom P5 and P7.

Additionally, f-measure shows the general performance of
odel, considering both precision and recall. In this case, the best

-measure is obtained for P8 and the worst for P6.

.2. Incidence of discretization layer

This test is performed with discretization layer after logistic
egressor and without it. The results are shown in Table 11. These
esults show a better general performance of SCAE without discrete
ayer with a lower Mean Squared Error (MSE) that the other case.
The results indicate that the output probability of the logistic
egressors gives information related to the fault severity. There
s a large difference of values between the correct class and the

able 10
onfusion matrix obtained from evaluation of model with the test set.

Class P1 P2 P3 P4 P5

P1 575 6 3 1 5
P2 6 572 1 2 3
P3 2 3 557 5 14
P4 0 4 3 564 7
P5 3 2 11 5 554
P6 4 6 6 5 7
P7 3 0 1 12 3
P8 0 2 0 0 0
P9 0 5 0 6 4
P10 1 0 2 0 4
SCAE3 with discrete layer 7.985 × 10−3 5.332 × 10−9

SCAE3 without discrete layer 5.853 × 10−3 4.073 × 10−5

others (low MSE and low MedAE), obtaining a great confidence in
the response.

5.3. Comparison with others feature extraction methods

In order to compare the proposed method with others, two com-
parison blocks are performed. The first one uses an unsupervised
feature extraction methods without knowledge of the specific task
to obtain the features from data neither raw data nor otherwise.
The second one uses a supervised feature extraction and selection
method together with a shallow classifier as a representative of a
classical approach (see Fig. 5).

To minimize comparison bias resulting from the random selec-
tion of data in train and test sets, a 5-folds cross-validation is
performed for each type of method, i.e., for both the unsupervised
method comparison and for the supervised method comparison.

5.3.1. Unsupervised feature extraction methods
The comparison is performed using the accuracy (acc) metric

between the proposed method with 5 additional methods:

1. T-PCA-MLP [9]: Principal Components Analysis (PCA) technique
is applied to vibration signal, to select the number of principal
components the Maximum Likelihood Estimation of Minka is
used obtaining 765 features. The selected features are the inputs
to a MLP with the same structure used in SCAE3.

2. F-MLP [10]: Fast Fourier Transform (FFT) is applied to vibration
signal, all spectrum components are the inputs (4097 features)
to a MLP with the same structure used in SCAE3.

3. F-PCA-MLP [9]: Fast Fourier Transform (FFT) is applied to vibra-
tion signal, then PCA technique is applied to spectrum, to select
the number principal components the Maximum Likelihood
Estimation of Minka is used obtaining 780 features. The selected
features are the inputs to a MLP with the same structure used in
SCAE3.

4. TF-MLP: The time-frequency representation proposed in this
work is obtained from vibration signal, it is flatten and the result-
ing vector of 8704 features is the input to MLP with the same
structure used in SCAE3.

5. TF-PCA-MLP: The time-frequency representation proposed in
this work is obtained from vibration signal, it is flatten and the
components the Maximum Likelihood Estimation of Minka is
used obtaining 754 features. The selected features are the inputs
to a MLP with the same structure used in SCAE3.

P6 P7 P8 P9 P10

1 1 3 0 5
5 0 4 2 5
10 2 3 2 2
8 7 3 4 0
11 6 1 3 4
548 11 4 6 3
14 554 6 4 3
2 2 591 0 3
1 3 1 580 0
2 2 4 1 584



Table 12
Comparison of SCAE with other unsupervised feature extraction methods. Each fold column has the accuracy with the corresponding fold. The last column has the average
accuracy with the respective standard deviation.

Code Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Avg. acc.

SCAE3 95.02 95.05 95 94.22 95.53 94.96 ± 0.47
T-PCA-MLP 24.1 26.22 17.46 20.56 13.78 20.42 ± 5
F-MLP 10.08 10.5 10 10.71 10.42 10.34 ± 0.3
F-PCA-MLP 17.67 20.01 18.52 15.05 16.45 17.54 ± 1.91
TF-MLP 15.4 13.56 15.63 17.2 14.28 15.21 ± 1.39
TF-PCA-MLP 24.3 26.12 25.47 22.5 26.23 24.92 ± 1.56
TF-SVM 15.02 15.13 14.58 14.63 14.87 14.85 ± 0.24

Bold value highlights the highest result.

Table 13
Comparison of SCAE with RELIEF+SVM. Each fold column has the accuracy with the corresponding fold. The last column has the average accuracy with the respective standard
deviation.

Code Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Avg. Acc.

SCAE3 95.02 95.05 95 94.22 95.53 94.96 ± 0.47
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sored by the GIDTEC project No. 002-002-2016-03-03 supported by
Universidad Politécnica Salesiana sede Cuenca, and the Prometeo
Rel+SVM 88 89.33 84

old value highlights the highest result.

. TF-SVM: In order to compare the results of our proposal with
a method using other classifier, the time-frequency representa-
tion proposed in this work is obtained from vibration signal, it
is flatten and the resulting vector of 8704 features is the input
to multi-class one-vs-rest Support Vector Machine (SVM) with
Gaussian Kernel.

The results are presented in Table 12. They show that meth-
ds using traditional feature extraction techniques cannot extract
nformative features for the present task. This is due to, firstly by
igh variability in the signal vibration with redundant information,
ut mainly to the combination of stationary and non-stationary sig-
als from multiples operational parameter, that hide the important

eatures. These techniques have been applied to stationary or min-
mum non-stationary condition separately with good results, but
hey fail in more complex scenarios.

.3.2. Classical feature extraction method
An additional comparison is performed using the classical

pproach to fault diagnosis based on machine learning. The vibra-
ion signals are processed to extract statistical features proposed by
acheco et al. [18], in time, frequency and time-frequency domain
btaining a set of 817 condition indicators. Subsequently a process
o filter the correlated indicators is applied obtaining a set of 183
on-correlated features to which a zero mean and one standard
eviation normalization is applied. Later, 16 features are selected
sing RELIEF as the best feature selection technique together a
ulti-class one-vs-rest SVM with Gaussian Kernel classifier pro-

osed by Vakharia et al. [7] to make the classification of the severity
evel.

The results are shown in Table 13. Its has evidence of a bet-
er performance in the estimation of severity assessment using the
esigned features by experts in complement with a process of fea-
ure selection and classification. However in comparison with the
roposed method, Rel+SVM has a poor accuracy of 6.69% minus.
lso it is possible to note that there is a little variation of only 0.47%

n the results with our method in front of 2.56% with Rel+SVM,
hich shown that performance of our proposal is not dependent of

he data used to train the models.
. Conclusions

A new method of automatic feature extraction has been pro-
osed to fault severity assessment. It consists in a pattern extraction
90.67 89.33 88.27 ± 2.56

process following an unsupervised approach from a representation
in time-frequency domain of time-series signals, that adjusts the
convolutional layer to minimize the reconstruction error of inputs.
The feature maps obtained from a layer is the input for the next
layer, in order to further refine them. As a result of the successive
application of this procedure a hierarchical extraction of features
and pattern identification are obtained. With this approach, the
parameter space is explored starting from a good initial configura-
tion that minimizes the possibility of becoming trapped in a local
minimum in a later supervised learning stage.

The case study is the identification of fault severity in helical
gearboxes from a vibration signal, where the design and extraction
of condition parameters is a non-trivial task when performed by
the conventional classical methods. Moreover, the results obtained
by the latter methods are hardly applicable to other real-world
systems as the features containing the most representative infor-
mation are highly dependent on the specific mechanism.

The experimental results for this case study show relevant
aspects for fault severity assessment:

1. Time-frequency representation of vibration signals retains the
information of the original time-series with respect to level of
damage, and shows the relevant information more clearly.

2. The use of hierarchical architectures with convolutional layers
allows extracting successfully features and detecting patterns
from time-varying inputs.

3. The use of Stacked Convolutional Autoencoder approach
improves the accuracy of level severity assessment model with
respect to Convolutional Neural Network without a pre-training
stage.
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