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Microarrays have revolutionized biotechnological research.The analysis of newdata generated represents a computational challenge
due to the characteristics of these data. Clustering techniques are applied to create groups of genes that exhibit a similar behavior.
Biclustering emerges as a valuable tool formicroarray data analysis since it relaxes the constraints for grouping, allowing genes to be
evaluated only under a subset of the conditions. However, if a third dimension appears in the data, triclustering is the appropriate
tool for the analysis. This occurs in longitudinal experiments in which the genes are evaluated under conditions at several time
points. All clustering, biclustering, and triclustering techniques guide their search for solutions by a measure that evaluates the
quality of clusters. We present an evaluation measure for triclusters called Mean Square Residue 3D. This measure is based on
the classic biclustering measure Mean Square Residue. Mean Square Residue 3D has been applied to both synthetic and real data
and it has proved to be capable of extracting groups of genes with homogeneous patterns in subsets of conditions and times, and
these groups have shown a high correlation level and they are also related to their functional annotations extracted from the Gene
Ontology project.

1. Introduction

The use of high throughput processing techniques has revo-
lutionized the technological research and has exponentially
increased the amount of data available [1]. Particularly,
microarrays have revolutionized biological research by their
ability to monitor changes in RNA concentration in thou-
sands of genes simultaneously [2].

A common practice when analyzing gene expression data
is to apply clustering techniques, creating groups of genes
that exhibit similar expression patterns [3].These clusters are
interesting because it is considered that genes with similar
behavior patterns can be involved in similar regulatory
processes [4]. Although in theory there is a big step from
correlation to functional similarity of genes, several articles
indicate that this relation exists [5].

Traditional clustering algorithms work on the whole
space of data dimensions examining each gene in the dataset
under all conditions tested. However, the activity of genes
could only appear under a particular set of experimental

conditions, exhibiting local patterns. Discovering these local
patterns can be the key to discover gene pathways, which
could be hard to discover in other ways. For this reason, the
paradigm of clustering techniques must change to methods
that allow local pattern discovery in gene expression data [6].

Biclustering [7] addresses this problem by relaxing the
conditions and by allowing assessment only under a subset
of the conditions of the experiment, and it has proved to be
successful in finding gene patterns [8]. However, if the time
condition is added to the dataset clustering, and biclustering
result insufficient. There is a lot of interest in temporal
experiments because they allow an in-depth analysis of
molecular processes inwhich the time evolution is important,
for example cell cycles, development at the molecular level or
evolution of diseases [9]. In this sense, triclustering appears
as a valuable tool since it allows for the assessment of genes
under a subset to the conditions of the experiment and under
a subset of times.

All clustering, biclustering, and triclustering techniques
guide their search for solutions by a measure that evaluates
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the quality of clusters [10]. In this work we propose an eval-
uation measure for triclusters called Mean Square Residue
3D (MSR3D). This measure is based on a classic biclustering
measure presented by Cheng and Church in [11] called Mean
Square Residue (MSR). MSR measures the homogeneity of
a bicluster in the relation of each value in the bicluster with
the average value for all genes in the bicluster, average of all
conditions, and average of all genes and conditions in the
bicluster. A perfect score would be zero, which represents a
constant bicluster of elements of a single value.

Our proposal, MSR3D, is an adaptation of MSR to the
three-dimensional space, so that a third factor, in this
case time, can be taken into account. MSR3D measures the
homogeneity of a tricluster in the relation of each value of
the tricluster, with the average of all genes, average of all
conditions, average of all times, average of all genes and
conditions, average of all genes and times, average of all
conditions and times, and average of all genes, conditions,
and times in the tricluster. As for MSR, a perfect score would
be zero, which represents a constant tricluster of elements of
a single value.

MSR3D has been applied as an evaluation measure along
with the TriGen (Triclustering-Genetic based) algorithm pre-
sented in [12]. TriGen is an algorithm based on evolutionary
heuristic, genetic algorithms. Many heuristic approaches
have been proposed both for biclustering and triclustering
algorithms [13, 14], due to the NP hard nature of the problem
[15].

We show the results obtained from applying the TriGen
algorithm along with the MSR3D measure to a synthetic
dataset and four real experiments datasets: the yeast cell
cycle regulated genes [16], mouse degeneration of retinal cells
[17], mouse ectopic bHLH transcription factor expression
Mesogenin1 effect on embryoid bodies [17], and human
Transcription factor oncogeneOTX2 silencing effect onD425
medulloblastoma cell line [17].

The results have been validated by analyzing the cor-
relation among the genes, conditions, and times in each
tricluster using two different correlation measures: Pearson
and Filon [18] and Spearman [19]. Besides this, we have
provided functional annotations for the genes extracted from
the Gene Ontology project [20].

The rest of the paper is structured as follows. A review of
the latest related works can be found in Section 2. Section 3
describes the methodology of the MSR andMSR3D measures
as well as a brief description of the TriGen algorithm. In
Section 4 we show the results of applying TriGen to the
synthetic and real datasets. Section 5 shows the conclusions.

2. State of the Art

This section is to provide a general overview of recent works
in the field of gene expression temporal data. In particular,
for those works related to the application of triclustering, we
focus on the measures applied to evaluate the triclusters.

In 2005, Zhao and Zaki [21] introduced the triCluster
algorithm to extract patterns in 3D gene expression data.
They presented a measure to assess triclusters’ quality based

on the symmetry property. This allows a very efficient cluster
mining since clusters are searched over the dimensions with
the least cardinality. The triclusters have to fulfill some
requirements such as being maximal; that is, no tricluster in
the set of solutions is totally included in another tricluster
in the set of solutions; the ratio of every pair of columns in
the tricluster is delimited by a given 𝜖; the maximum volume
of the tricluster is determined by the relation among 𝛿𝑥, 𝛿𝑦,
and 𝛿𝑧 for gene, condition, and time dimensions,respectively;
and the minimum volume for the tricluster is also controlled.
An extended and generalized version of this proposal, g-
triCluster, was published one year later [22]. The authors
claimed that the symmetry property is not suitable for all
patterns present in biological data and propose the Spearman
rank correlation [19] as a more appropriate tricluster evalua-
tion measure.

An evolutionary computation proposal was made in [23].
The fitness function defined is a multiobjective measure
which tries to optimize three conflicting objectives: clusters
size, homogeneity, and gene-dimension variance of the 3D
cluster.

LagMiner was introduced in [24] to find time-lagged 3D
clusters, which allows in turn finding regulatory relationships
among genes. It is based on a novel 3D cluster model called
𝑆
2

𝐷
3 Cluster. They evaluated their triclusters on homogene-

ity, regulation, minimum gene number, sample subspace size,
and time periods length.

Wang et al. [25] proposed a new algorithm called ts-
cluster basing their definition for coherent triclusters also
on finding regulatory relationships among genes. For that
purpose, time shifting is also considered among time points
in the evaluated triclusters.

A new strategy to mine 3D clusters in real-valued data
was introduced in [26]. The authors defined the Correlated
3D Subspace Clusters (CSCs) where the values in each cluster
must have high cooccurrences and those cooccurrences are
not by chance. They measure the clusters based on the
correlation information measure, which takes into account
both prerequisites. In particular, the authors were concerned
about discovering subspaces with a significant number of
items, one of the main problems typically found in tricluster-
based approaches. At the same conference, another approach
was presented focusing on the concept of Low-Variance 3-
Cluster [27], which obeys the constraint of a low-variance
distribution of cell values.

The work in [28] was focused on finding Temporal
Dependency Association Rules, which relate patterns of
behaviour among genes. The rules obtained are to represent
regulated relations among genes.

Finally, a brief survey on triclustering applied to gene
expression time series was published in 2011 [29].

3. Methodology

In this sectionwefirst describewhat is triclustering in relation
to biclustering, second we show the fundamentals of our
proposal, the two dimensions MSR measure proposed by
Cheng and Church [11] in order to assess the quality of
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Figure 1: Tricluster representation.

biclusters grouping gene and conditions, and third we make
a detailed description of our proposal, the three dimensions
MSR measure (MSR3D) to assess the quality of triclusters
which group gene, conditions, and the time dimension.
Finally, we describe TriGen and the genetic algorithm where
the (MSR3D) measure has been integrated to be tested.

3.1. Triclustering. Given a dataset containing information
from gene expression data organized in rows/columns (genes
as rows and conditions as columns), biclustering finds sub-
groups of genes and conditionswhere the genes exhibit highly
correlated patterns of behavior for every condition [30].

A bicluster BC can be defined as a subset from a dataset𝐷
which contains information related to the behavior of some
genes 𝐺

𝐷
under certain conditions 𝐶

𝐷
. The tricluster TC is

formally defined as TC = 𝐺 × 𝐶 where 𝐺 ⊆ 𝐺
𝐷
and 𝐶 ⊆ 𝐶

𝐷
.

Triclustering appears as an evolution of biclustering due
to its capacity tomine gene expression datasets involving time
as a third dimension and to find subgroups of genes, condi-
tions, and times which exhibit highly correlated patterns of
expression [12]. Figure 1 shows the structure of a tricluster,
with genes as rows, conditions as columns, and time as depth.

A tricluster TC is as a subset from a dataset 𝐷 which
contains information related to the behavior of some genes
𝐺
𝐷
under conditions 𝐶

𝐷
at times 𝑇

𝐷
. The tricluster TC is

formally defined as TC = 𝐺 × 𝐶 × 𝑇 where 𝐺 ⊆ 𝐺
𝐷
, 𝐶 ⊆ 𝐶

𝐷
,

and 𝑇 ⊆ 𝑇
𝐷
.

3.2. Two-Dimension MSR. The Mean Squared Residue
(MSR) was introduced by Cheng and Church in [11]. This
measure was proposed to assess the quality of biclusters

extracted from gene expression data based on biclusters’
homogeneity. The formal definition can be seen in

MSR (BC) =
∑
𝑔𝜖𝐺,𝑐𝜖𝐶

𝑟
2

𝑔𝑐

#𝐺 ∗ #𝐶
,

(1)

where 𝑟
𝑔𝑐
can be defined as

𝑟
𝑔𝑐
= 𝐵𝐶V (𝑔, 𝑐) − 𝑀𝐺 (𝑐) − 𝑀𝐶 (𝑔) −𝑀𝐺𝐶. (2)

Each of the terms of (1) and (2) are defined as follows:

(i) BC: bicluster being evaluated,
(ii) 𝐺: subset of genes of BC,
(iii) 𝐶: subset of conditions of BC,
(iv) #𝐺: number of genes in BC,
(v) #𝐶: number of conditions in BC,
(vi) BCV(𝑔, 𝑐): expression level of a gene𝑔under condition

𝑐 in BC,
(vii) 𝑀

𝐺
(𝑐): mean of the values of a condition 𝑐 under all

genes in BC,
(viii) 𝑀

𝐶
(𝑔): mean of the values of a gene 𝑔 under all

conditions in BC,
(ix) 𝑀

𝐺𝐶
: mean value of all values in BC.

A graphical representation of the values involved in (2)
can be seen in Figure 2. We can say that MSR measures the
homogeneity for a given bicluster based on the difference of
each individual gene expression BCV(𝑖,𝑗) (see Figure 2(a)) with
the average values of genes𝑀

𝐺(𝑗)
(see Figure 2(b)), conditions

𝑀
𝐶(𝑖)

(see Figure 2(c)), and genes and conditions 𝑀
𝐺𝐶

(see
Figure 2(d)). The closer the value of MSR is to zero, the
more homogeneous the bicluster is. This interpretation is the
basis for the extension to three-dimension measure MSR

3D
presented in the next section.

3.3. Three Dimensions MSR. Our proposal is an adaptation
to three dimensions of MSR that measures the homogeneity
of triclusters which contain subgroups of genes, conditions,
and time points. We call this measure MSR3D. The formal
definition can be seen in

MSR
3D (TC) =

∑
𝑔𝜖𝐺,𝑐𝜖𝐶,𝑡𝜖𝑇

𝑟
2

𝑔𝑐𝑡

#𝐺 ∗ #𝐶 ∗ #𝑇
,

(3)

where 𝑟
𝑔𝑐𝑡

can be defined as

𝑟
𝑔𝑐𝑡

= TCV (𝑔, 𝑐, 𝑡) + 𝑀𝐶𝑇 (𝑔) +𝑀𝐺𝑇 (𝑐) + 𝑀𝐺𝐶 (𝑡)

− 𝑀
𝐺
(𝑐, 𝑡) − 𝑀

𝐶
(𝑔, 𝑡) − 𝑀

𝑇
(𝑔, 𝑐) − 𝑀

𝐺𝐶𝑇
.

(4)

Each of the members of (3) and (4) is defined as follows:

(i) TC: tricluster being evaluated,
(ii) 𝐺: subset of genes from TC,
(iii) 𝐶: subset of conditions from TC,
(iv) 𝑇: subset of times from TC,
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Figure 2: MSR members.

(v) #𝐺: number of genes in TC,
(vi) #𝐶: number of conditions in TC,
(vii) #𝑇: number of times in TC,
(viii) TCV(𝑔, 𝑐, 𝑡): expression level of gene 𝑔 under condi-

tion 𝑐 at time 𝑡 in TC,
(ix) 𝑀

𝐶𝑇
(𝑔): mean of all conditions at all times for a gene

𝑔 in TC,
(x) 𝑀

𝐺𝑇
(𝑐): mean of all genes at all times for a condition

𝑐 in TC,
(xi) 𝑀

𝐺𝐶
(𝑡): mean of all genes under all conditions at time

𝑡 in TC,
(xii) 𝑀

𝐺
(𝑐, 𝑡): mean of the values of a condition 𝑐 and a

time 𝑡 under all genes in TC,
(xiii) 𝑀

𝐶
(𝑔, 𝑡): mean of the values of a gene 𝑔 and a time 𝑡

under all conditions in TC,
(xiv) 𝑀

𝑇
(𝑔, 𝑐): mean of the values of a gene 𝑔 and a

condition 𝑐 under all times in TC,
(xv) 𝑀

𝐺𝐶𝑇
: mean value of all values in TC.

A graphical representation of the values involved in (4)
can be seen in Figure 3. We can say that MSR3D measures the
homogeneity for a given tricluster based on the difference of
each individual gene expression TCV(𝑖, 𝑗, 𝑘) (see Figure 3(a)),
the mean of all conditions at all times for a gene 𝑔 𝑀

𝐶𝑇
(𝑔)

(see Figure 3(b)), the mean of all genes at all times for a
condition 𝑐 𝑀

𝐺𝑇
(𝑐) (see Figure 3(c)), the mean of all genes

under all conditions at time 𝑡 𝑀
𝐺𝐶
(𝑡) (see Figure 3(d)) with

the mean of a condition 𝑐 and a time 𝑡 under all genes

𝑀
𝐺
(𝑐, 𝑡) (see Figure 3(e)), the mean of a gene 𝑔 and a time

𝑡 under all conditions 𝑀
𝐶
(𝑔, 𝑡) (see Figure 3(f)), the mean

of a gene 𝑔 and a condition 𝑐 under all times 𝑀
𝑇
(𝑔, 𝑐) (see

Figure 3(g)), and the mean value of all values in TC 𝑀
𝐺𝐶𝑇

(see Figure 3(h)). The closer the value of MSR
3D is to zero,

the more homogeneous the tricluster is. MSR
3D is capable of

finding negatively correlated genes due to its formulation.

3.4. TriGen Algorithm. To test the effectiveness of MSR3D we
have included it as part of the TriGen (Triclustering-Genetic
based) algorithm [12]. TriGen extracts triclusters from gene
expression datasets where the time is also a component taken
into account in the experiment. TriGen applies a bioinspired
paradigm of an evolutionary heuristic, genetic algorithms,
which mimics the process of natural selection by creating an
initial population of individuals representing solutions which
are crossed and mutated for a number of generations and the
best individuals in the populations are finally selected.MSR3D
has been applied along with TriGen as a fitness function
to assess the quality of the triclusters or solutions in the
population.

The flowchart of the TriGen algorithm can be seen in
Figure 4. In these subsections we are going to present the
principal aspects of the algorithm including inputs, outputs,
representation of individuals, and genetic operators.

3.4.1. TriGen’s Input. The TriGen algorithm takes two inputs:

(i) 𝐷: a dataset containing the gene expression values
from an experiment containing genes 𝐺, experimen-
tal conditions 𝐶, and times 𝑇. Therefore, each cell



The Scientific World Journal 5

c0 · · · cj · · · cC
g0...
gi...
gG

c0 · · · cj · · · cC
g0...
gi...
gG

c0 · · · cj · · · cC
g0...
gi...
gG

c0 · · ·

· · ·

cj · · · cC
g0...
gi...
gG

t0 t1 tk tT

(a) TRIV(𝑖,𝑗,𝑘) in MSR
3D

c0 · · · cj · · · cC
g0...
gi...
gG

c0 · · · cj · · · cC
g0...
gi...
gG

c0 · · · cj · · · cC
g0...
gi...
gG

c0 · · ·

· · ·

cj · · · cC
g0...
gi...
gG

t0 t1 tk tT

(b) 𝑀
𝐶𝑇
(𝑖) in MSR

3D

c0 · · · cj · · · cC
g0...
gi...
gG

c0 · · · cj · · · cC
g0...
gi...
gG

c0 · · · cj · · · cC
g0...
gi...
gG

c0 · · ·

· · ·

cj · · · cC
g0...
gi...
gG

t0 t1 tk tT

(c) 𝑀
𝐺𝑇
(𝑗) in MSR

3D

c0 · · · cj · · · cC
g0...
gi...
gG

c0 · · · cj · · · cC
g0...
gi...
gG

c0 · · · cj · · · cC
g0...
gi...
gG

c0 · · ·

· · ·

cj · · · cC
g0...
gi...
gG

t0 t1 tk tT

(d) 𝑀
𝐺𝐶
(𝑘) in MSR

3D

c0 · · · cj · · · cC
g0...
gi...
gG

c0 · · · cj · · · cC
g0...
gi...
gG

c0 · · · cj · · · cC
g0...
gi...
gG

c0 · · ·

· · ·

cj · · · cC
g0...
gi...
gG

t0 t1 tk tT

(e) 𝑀
𝐺
(𝑗, 𝑘) in MSR

3D

c0 · · · cj · · · cC
g0...
gi...
gG

c0 · · · cj · · · cC
g0...
gi...
gG

c0 · · · cj · · · cC
g0...
gi...
gG

c0 · · ·

· · ·

cj · · · cC
g0...
gi...
gG

t0 t1 tk tT

(f) 𝑀
𝐶
(𝑖, 𝑘) in MSR

3D

c0 · · · cj · · · cC
g0...
gi...
gG

c0 · · · cj · · · cC
g0...
gi...
gG

c0 · · · cj · · · cC
g0...
gi...
gG

c0 · · ·

· · ·

cj · · · cC
g0...
gi...
gG

t0 t1 tk tT

(g) 𝑀
𝑇
(𝑖, 𝑗) in MSR

3D

c0 · · · cj · · · cC
g0...
gi...
gG

c0 · · · cj · · · cC
g0...
gi...
gG

c0 · · · cj · · · cC
g0...
gi...
gG

c0 · · ·

· · ·

cj · · · cC
g0...
gi...
gG

t0 t1 tk tT

(h) 𝑀
𝐺𝐶𝑇

in MSR
3D

Figure 3: MSR
3D structural members.

[𝑖, 𝑗, 𝑘] from 𝐷 where 𝑖 ∈ 𝐺, 𝑗 ∈ 𝐶, and 𝑘 ∈ 𝑇

represents the expression level of the gene 𝑖 under the
experimental condition 𝑗 at time 𝑘;

(ii) 𝑃: set of parameters to execute the algorithm as
described in Table 1. These parameters control the
number of solutions or triclusters to find (𝑁), the
number of generations to execute (𝐺), the number of
individuals in the population (𝐼), and the randomness
factor which are generated within the initial popu-
lation (𝐴𝑙𝑒) as well as weights for the selection and
mutation operators (sel y mut), weights to control
the size of the triclusters (𝑤

𝑔
, 𝑤
𝑐
, 𝑤
𝑡
), and weights to

control the overlap among solutions (𝑤𝑜
𝑔
, 𝑤𝑜
𝑐
, 𝑤𝑜
𝑡
).

3.4.2. TriGen’s Output. The TriGen algorithm’s output will be
a set of𝑁 triclusters. Each tricluster is composed of a subset of
genes 𝐺

𝑔
, conditions 𝐶

𝑐
, and times 𝑇

𝑡
from the input dataset

𝐷, with the best scores when evaluated under the MSR3D
measure.

3.4.3. Codification of Individuals. Each individual in the
evolutionary process of the TriGen algorithm represents a
tricluster, that is, a subset of genes, experimental conditions,
and time points. All genetic operators are applied to each
individual in the population, in each of these three subsets.

Table 1: TriGen algorithm parameters.

Parameter Description
𝑁 Number of triclusters extracted
𝐺 Number of generations
𝐼 Number of individuals in the population
Ale Randomness rate
Sel Selection rate
Mut Mutation probability
𝑤
𝑔

Weight for the number of genes
𝑤
𝑐

Weight for the number of conditions
𝑤
𝑡

Weight for the number of times
𝑤𝑜
𝑔

Weight for the overlap among genes
𝑤𝑜
𝑐

Weight for the overlap among conditions
𝑤𝑜
𝑡

Weight for the overlap among times

The genetic material is structured as follows. An individual,
as mentioned above, is composed of three sequences of
structures: one for the sequence of genes 𝐺 from the input
dataset 𝐷, one for the sequence of conditions 𝐶, and one
sequence of time points 𝑇. These sequences are set up based
on the input dataset; that is,

𝐺 = ⟨𝑔
𝑖
1

, 𝑔
𝑖
2

, . . . , 𝑔
𝑖
𝐵

⟩ , (5)
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Figure 4: Flowchart for the TriGen algorithm.

where 𝐵 is the number of genes listed in the input dataset,
𝑖
𝑗
< 𝑖
𝑗+1

for all genes, and 1 < 𝑖
𝑗
< 𝐵.

Analogously

𝐶 = ⟨𝑐
𝑖
1

, 𝑐
𝑖
2

, . . . , 𝑐
𝑖
𝐿

⟩ , (6)

where 𝐿 is the number of conditions listed in the input
dataset, 𝑖

𝑗
< 𝑖
𝑗+1

for all conditions, and 1 < 𝑖
𝑗
< 𝐿.

Finally, 𝑇 represents different time stamps or values of
pairs gene condition at different times:

𝑇 = ⟨𝑡
𝑖
1

, 𝑡
𝑖
2

, . . . , 𝑡
𝑖
𝑀

⟩ , (7)

where 𝑀 is the number of samples measured over time and
𝑡
𝑖
1

< 𝑡
𝑖
2

< ⋅ ⋅ ⋅ < 𝑡
𝑖
𝑀

.

[G = {g1, g2}, C = {c3, c4, c11}, T = {t10}]

[G = {g4}, C = {c8}, T = {t20}]

[G = {g5, g7}, C = {c12, c14}, T = {t13, t20}]

G= {g1, g2}, C = {c3, c4, c11}, T = {t10}

G = {g1, g2}

Gene

Individual

Population

Figure 5: Genetic algorithm codification.

The algorithm’s population is made up of several individ-
uals, as depicted in Figure 5, where the individual codification
has been represented.

3.4.4. Initial Population. The initial population is generated
attending to the 𝐴𝑙𝑒 randomness parameter. An 𝐴𝑙𝑒 percent
of individuals are created at random by two methods: half
of the individuals are purely randomly generated; this is a
random subset of genes 𝐺

𝑔
, conditions 𝐶

𝑐
, and times 𝑇

𝑡

chosen from𝐷 and the other half is also randomly created but
controlling that the values for the genes 𝐺

𝑔
are contiguous;

the values for the conditions 𝐶
𝑐
are contiguous and the times

𝑇
𝑡
are contiguous as well. The rest of the individuals are

created at random but taking into account the previously
created individuals to control overlapping of solutions.

3.4.5. Fitness Function. The proposed measure MSR3D has
been applied as part of the fitness function to evaluate the
homogeneity of the triclusters in the population. MSR3D has
been combined with two other factors which measure the
size of the triclusters and their overlap with previously found
solutions.

Controlling the size of each of the dimensions of the tri-
clusters might be a very important task since gene expression
datasets are unbalanced on the three dimensions, with the
number of genes counting in thousands and the number of
conditions and times counting in tens.Therefore, the weights
for the number of genes 𝑤

𝑔
, of conditions 𝑤

𝑐
, and times 𝑤

𝑡

control that the dimensions of the triclusters are balanced
(e.g., if we increase𝑤

𝑔
, the algorithm considers that solutions

with a high number of genes are better than those with low
number of genes).

We also control the overlap among found solutions with
the weights 𝑤𝑜

𝑔
, 𝑤𝑜
𝑐
, and 𝑤𝑜

𝑡
for the overlap among genes,

conditions, and times, respectively, (e.g., if we increase 𝑤𝑜
𝑔
,

the algorithm considers that solutions with low level of
overlapwith the genes in previously found solutions are better
than those with a high level of overlap).
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select a random cross point and combine

, . . .. . . ,

Figure 6: Representation of the crossover operator.

Therefore, the fitness function can be formulated as seen
in

FF (TC) = MSR
3D − size control − overlap control. (8)

3.4.6. Selection Operator. This operator is implemented fol-
lowing the roulette wheel selection method [31]. The fitness
level is used to associate a probability of selection with each
individual of the population. This emulates the behavior of a
roulette wheel in a casino. Usually a proportion of the wheel
is assigned to each of the possible selections based on their
fitness value. Then a random selection is made similar to
how the roulette wheel is rotated. While candidates with a
higher fitness will be less likely to be eliminated, there is still
a chance that they are eliminated.There is a chance that some
weaker solutions may survive the selection process, which
is an advantage, as though a solution may be weak, it may
include some component which could prove useful following
the recombination process. The 𝑆𝑒𝑙 parameter indicates how
many individuals will pass to the next generation undergoing
this method. The rest of the individuals up to complete the
next population (𝐼 − #𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑 𝑖𝑛𝑑𝑖V𝑖𝑑𝑢𝑎𝑙𝑠) will be created
based on the crossover operator.

3.4.7. Crossover Operator. To complete the next generation,
we create new individuals with this operator as follows: two
individuals (parents, 𝐴 and 𝐵) are combined to create two
new individuals (offspring, 𝑐ℎ𝑖𝑙𝑑1 and 𝑐ℎ𝑖𝑙𝑑2). The parents
are randomly chosen. Their genetic material is combined by
a random one-point cross in the genes𝐺

𝑔
, conditions𝐶

𝑐
, and

times𝑇
𝑡
andmixing the coordinates in both children.We can

see this process in Figure 6.

3.4.8. Mutation. An individual can be mutated according to
a probability of mutation, Mut. The mutation probability is
verified for every individual and if it is satisfied, one out of six
possible actions is taken. These actions are as follows: add a
new random gene to 𝐺

𝑔
in TC, add a new condition to 𝐶

𝑐
in

TC, or add a new time to 𝑇
𝑡
in TC or by removing a random

gene, condition, or time. The election of these actions is also
random. For the case of addition of a new gene, condition, or
time, the operator checks whether the newmember is already
in the individual or not.

4. Results

We have applied the proposed measure MSR3D as part
of the TriGen algorithm to analyse several datasets: syn-
thetically generated data, data from experiments with the
yeast cell cycle (Saccharomyces cerevisiae) obtained from
the Stanford University [16], three datasets retrieved from
Gene Expression Omnibus [17], and a database repository
of high throughput gene expression data. Two datasets are
experiments for mouse (Mus musculus) [32, 33] and the
third one is an experiment for humans (Homo sapiens)
[34]. All experiments examine the behaviour of genes under
conditions at certain times.

To examine the quality of the results in experiments with
real datasets, we show for each experiment two types of
validity measures: analysis of correlation among the genes,
conditions, and times in each tricluster and analysis of genes
and gene product annotations for the genes in each tricluster
based on the Gene Ontology project [20].

Regarding the correlation analysis, we show a table for
each tricluster (in rows) in which we calculate the Pearson
and Filon [18] and Spearman [19] correlation coefficient
between each combination of condition time and the values
series are the expression levels of all genes in the corre-
sponding condition-time combination. For example, for a
tricluster with ten genes {1, . . . , 10}, three conditions {1, 3
and 5}, and two times {2 and 7}, we provide Pearson’s and
Spearman’s correlation coefficient for values at the six possible
combinations 𝑉

𝑐=1,𝑡=2
, 𝑉
𝑐=1,𝑡=7

, 𝑉
𝑐=3,𝑡=2

, 𝑉
𝑐=3,𝑡=7

, 𝑉
𝑐=5,𝑡=2

, and
𝑉
𝑐=5,𝑡=7

for each of the ten genes.
In the biological analysis we provide a validation of the

triclusters obtained based on the Gene Ontology project
(GO) [20]. GO is amajor bioinformatic initiativewith the aim
of standardizing the representation of gene and gene product
attributes across species and databases. The project provides
an ontology of terms for describing gene product character-
istics and gene product annotation data. The ontology covers
three domains: cellular component, the parts of a cell or its
extracellular environment; molecular function, the elemental
activities of a gene product at the molecular level such as
binding or catalysis; and biological process, operations, or
sets of molecular events with a defined beginning and end,
pertinent to the functioning of integrated living units: cells,
tissues, organs, and organisms. For legibility reasons, we have
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presented for one solution of the experiment a GO analysis
table in which we include the most representative terms
extracted by the Ontologizer software [35].

We have also provided a graphical representation of the
triclusters found. For legibility reasons we show graphs for
one tricluster for each of the experiments. Each tricluster
is represented through three graphical views in which we
can see the pattern of behavior. In the first (sample curves),
we show one graph for each time, genes on the x-axis, the
expression levels on the y-axis, and the lines of condition as
the outline. In the second (time curves), we show for each
experimental condition (one graph for each condition) genes
on the x-axis, the expression levels in the y-axis, and the
time lines as the outline. In the third representation (gene
curves), for each experimental condition (one graph for each
condition) we show times in the x-axis, the expression levels
in the y-axis, and the genes as the outline.

All experiments were executed on a multiprocessor
machine with 64 processors Intel Xeon E7-4820 2.00GHz
with 8GB RAM memory. We have used Java for the TriGen
algorithm implementation (and other ad hoc developments)
and an R framework to create graphics and get datasets
resources from GEO [17].

We now analyse the results obtained in each of the five
experiments.

4.1. Synthetic Datasets. Synthetic data has the advantage that
the process that generated the data is well known and so one
is able to judge the success or failure of the algorithm [36].
Synthetic datasets generation has been widely applied both in
microarray related publications [37, 38] and in other general
data mining applications [39].

We have used an application designed by ourselves to
generate the synthetic data applied in this work. The data
generated is a three-dimensional dataset Dsynt3D with 4000
genes (rows), 30 conditions (columns), and 20 times (depth)
of random numbers generated by a cryptographic secure
standard library Math3 provided by Apache Commons [40]
where we insert 10 triclusters 𝑇Cale

𝑖
, 𝑖 ∈ 1, . . . , 10 with 3D

patterns of 150 genes (rows), 6 conditions (columns), and 4
times (depth) at random positions within Dsynt3D.

To see the behavior of the MSR3D measure applied along
with TriGen and also with the aim of analyzing the effect of
the value of the parameters in the solutions, we have made
executions varying the number of solutions 𝑁 in {100, 200}

and other control parameters as follows.

(i) Number of generations𝐺 in {50, 100}: greater number
of generations gives us an increase in genetic recombi-
nation of individuals; an excessive increase in 𝐺 may
favour exploitation versus exploration in excess and
the algorithm may return solutions which fall into a
local minimum.

(ii) Number of individuals 𝐼 in {300, 500}: an increase in
the number of individuals creates a larger search space
for the solutions; an excessive increase can create a
scatter search effect and therefore not return good
quality solutions.

Table 2: TriGen algorithm synthetic match ratios.

Triduster Match ratio
TCale1 91%
TCale2 91%
TCale

3
90%

TCale
4

96%
TCale

5
95%

TCale6 95%
TCale

7
95%

TCale
8

95%
TCale

9
95%

TCale
10

95%

(iii) Rate of selection 𝑆𝑒𝑙 in {0.5, 0.7, 0.9}: a high selection
rate creates individuals with low level of genetic
recombination, favouring exploitation versus explo-
ration and if the parameter is increased in excess, the
algorithm may fall into a local minimum.

(iv) Probability ofmutation𝑀𝑢𝑡 in {0.1, 0.5}: the opposite
to the rate of selection. A high probability of muta-
tion favours exploration versus exploitation, and if
increased in excess you will end up with solutions in
many areas of the search space but with low quality
levels.

(v) Randomness in the initial population𝐴𝑙𝑒 in {0.5, 0.9}:
increasing this parameter involves increasing the level
of randomness in the initial population.This has to be
combinedwith the overlap control tomake sure that a
wide area of the space of solutions is initially covered.

(vi) Weight for the number of genes in the solution 𝑤
𝑔
in

{0.0, 0.4}, weight for the number of conditions 𝑤
𝑐
in

{0.0, 0.1}, and weight for the number of times 𝑤
𝑡
in

{0.0, 0.1} control the number of items in the solutions;
increasing these weights involves favouring solutions
with more volume.

(vii) Overlap control weights for genes, 𝑤𝑜
𝑔
in {0.4, 0.7},

conditions 𝑤𝑜
𝑐

in {0.0, 0.1}, and times 𝑤𝑜
𝑡
in

{0.0, 0.1}: the increase in these weights leads to little
or nonoverlapped solutions; an excessive increase can
lead us to lose interesting solutions.

The results obtained are shown in Table 2. We can see the
high rate of coverage (90–96%) of the 10 different triclusters
TCale

𝑖
inserted at random positions in the dataset Dsynt3D.

We can conclude that the MSR3D measure applied along
with TriGen algorithm was successful in finding the solution
triclusters.

4.2. Yeast Cell Cycle Dataset. We have applied the TriGen
algorithm to the yeast (Saccharomyces cerevisiae) cell cycle
problem [16]. The yeast cell cycle analysis project’s goal is
to identify all genes whose mRNA levels are regulated by
the cell cycle. The resources used are public and available
in http://genome-www.stanford.edu/cellcycle/. Here we can
find information relative to gene expression values obtained
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Table 3: TriGen algorithm control parameters for Yeast Cell Cycle
Dataset.

Parameter Values
𝑁 20
𝐺 200
𝐼 50
Ale 0.3
Sel 0.5
Mut 0.3
𝑤
𝑔

0.7
𝑤
𝑐

0.5
𝑤
𝑡

0.5
𝑤𝑜
𝑔

0.8
𝑤𝑜
𝑐

0.5
𝑤𝑜
𝑡

0.5

from different experiments using microarrays. In particular,
we have created a dataset Delu3D from the elutriation exper-
iment with 7744 genes, 13 experimental conditions, and 14
time points. Experimental conditions correspond to different
statistical measures of the Cy3 and Cy5 channels while time
points represent different moments of taking measures from
0 to 390 minutes.

The parameter configuration used for this experiment is
shown in Table 3.

With this configuration we wanted to find solutions with
a considerable number of genes (𝑤

𝑔
= 0.7) because it is

the largest dimension on Delu3D. With the overlap control
values we seek a compromise between slightly overlapped
solutions and not losing interesting triclusters.The rest of the
parameters have been set to a default configuration.

To analyse the results, we can see the correlation in
Table 4. We see how the correlation levels vary from very
low up to almost perfect correlation. This is due to the
fact that MSR3D is capable of finding negatively correlated
values, and some genes involved in the yeast cell cycle behave
in an inversely correlated manner [41, 42] as can be seen
in Figure 7(a). Therefore, when calculating the averages of
correlations close to one and correlations close to minus
one, we get values close to zero. Triclusters TC

8
, TC
15
, and

TC
19
stand out for having Pearson and Spearman correlation

values close to one indicating an almost perfect correlation.
We also show a graphical representation of the genes,

conditions, and times selected by tricluster TC
9
with 30 genes,

3 conditions, and 9 time points in Figure 7. In Figure 7(a) we
see a representation of genes at each condition with a graph
for each time.The negative correlation among genes is clearly
shown. Figure 7(b) shows the genes at each time with one
graph for each condition, and finally in Figure 7(c) we see the
times at each gene with a graph for each condition.

In Table 5 we show an analysis of the biological annota-
tions related to the genes selected in our tricluster TC

9
.

In this type of studies, 𝑃 values are relevant below 0.05.
We show the tenmost significant termswith values ranking in
the [0.001970,0.01039] interval. Furthermore, these terms are
quiet specific increasing the quality of the tricluster obtained.

Table 4: Correlation results for tricluster Yeast Cell Cycle Dataset.

TCsol Pearson Spearman
1 −0.02 −0.02
2 0.32 0.28
3 0.17 0.24
4 0.37 0.37
5 0.02 0.02
6 0.05 0.04
7 0.03 0.03
8 0.99 0.98
9 0.04 0.03
10 0.03 0.01
11 0.03 0.03
12 0.02 0.02
13 0.06 0.03
14 0.04 0.04
15 0.99 0.98
16 0.03 0.01
17 0.01 0
18 0.03 0.03
19 0.92 0.9
20 0.03 0.02

Table 5: GO analysis for tricluster TC9 found in the Yeast Cell Cycle
Dataset.

ID Name 𝑃-value
GO:0071012 Catalytic Step 1 spliceosome 0.001970
GO:0071006 U2-type catalytic Step 1 spliceosome 0.001970

GO:0072521 Purine-containing compound
metabolic process 0.004610

GO:0051266 Sirohydrochlorin ferrochelatase
activity 0.005208

GO:0004385 Guanylate kinase activity 0.005208
GO:0004747 Ribokinase activity 0.005208
GO:0006014 D-ribose metabolic process 0.005208
GO:0006986 Response to unfolded protein 0. 007288
GO:0046148 Pigment biosynthetic process 0.009738

GO:0070899 Mitochondrial tRNA wobble uridine
modification 0.01039

4.3. MouseGDS4510Dataset. Thisdatasetwas obtained from
the GEO [17] with accession code GDS4510 and under the
title rd1 model of retinal degeneration: time course [32]. In
this experiment the degeneration of retinal cells in different
individuals of home mouse (Mus musculus) is analyzed over
4 days just after birth, specifically on days 2, 4, 6, and 8. Our
input dataset 𝐷𝐺𝐷𝑆4510

3D is composed of 22690 genes, 8
experimental conditions (one for each individual involved in
the biological experiment), and 4 time points.

We have executed the TriGen algorithm with the param-
eters shown in Table 6. We have increased the number of
generations and individuals to create a larger search space
as the input dataset has a considerable large volume. For the
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Figure 7: Graphical representation for tricluster TC
9
found in the Yeast Cell Cycle Dataset.

Table 6: TriGen algorithm control parameters for Mouse GDS4510
Dataset.

Parameter Values
𝑁 20
𝐺 500
𝐼 300
Ale 0.4
Sel 0.4
Mut 0.2
𝑤
𝑔

0.8
𝑤
𝑐

0.3
𝑤
𝑡

0.2
𝑤𝑜
𝑔

0.8
𝑤𝑜
𝑐

0.5
𝑤𝑜
𝑡

0.5

same reason we have increased𝑤
𝑔
to favor individuals with a

greater number of genes.
In Table 7 we see the correlation analysis for the 20

triclusters obtained.The correlation coefficients are very high
and, in most cases, perfect with values close to one. This
indicates almost perfect homogeneity between the genes,
conditions, and times of the tricluster.

We show the graphs associated with solution TC
20

with
78 genes, 6 conditions, and 3 time points in Figure 8. We see

Table 7: Correlation results for tricluster Mouse GDS4510 Dataset.

TRIsol Pearson Spearman
1 1 0.99
2 1 1
3 1 1
4 1 1
5 1 1
6 1 1
7 1 1
8 1 0.99
9 1 0.99
10 1 1
11 1 0.99
12 1 1
13 1 0.99
14 1 1
15 1 1
16 1 1
17 0.99 0.99
18 1 1
19 1 1
20 1 0.99

for the three views, Figures 8(a), 8(b), and 8(c), how all lines
are totally aligned.
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Figure 8: Graphical representation for tricluster TC
20
found in the Mouse GSD4510 Dataset.

Table 8: GO analysis for tricluster TC
20
inMouse GDS4510 Dataset.

ID Name 𝑃-value
GO:0004953 Icosanoid receptor activity 1.525 × 10

−6

GO:0004955 Prostaglandin receptor activity 2.879 × 10
−5

GO:0004954 Prostanoid receptor activity 3.729 × 10
−5

GO:0001892 Embryonic placenta development 9.795 × 10
−5

GO:0004958 Prostaglandin F receptor activity 1.595 × 10
−4

GO:0060706 Cell differentiation involved in
embryonic placenta development 2.868 × 10

−4

GO:0001890 Placenta development 5.151 × 10
−4

GO:0004982 N-formyl peptide receptor activity 7.342 × 10
−4

GO:0009265 2󸀠-deoxyribonucleotide
biosynthetic process 7.342 × 10

−4

G0:0046385 Deoxyribose phosphate
biosynthetic process 7.342 × 10

−4

Thebiological validity of the solution shown can be found
in Table 8 and yields good results regarding the terms listed
and high statistical significance (𝑃 values below 0.05). The
terms again are very specific and some are related to the
dataset under study such as embryonic placenta development
(GO:0001892) or cell differentiation involved in embryonic
placenta development (GO:0060706).

4.4. Mouse GDS4442 Dataset. This time we have accessed
the GEO database [17] to retrieve the dataset about the
experiment under code GDS4442 titled ectopic bHLH tran-
scription factor expression Mesogenin1 effect on embryoid
bodies: time course [33]. This biological experiment examines
the effect of doxycycline induction in mouse (Mus musculus)
embryonic individuals at three stages of development: 12, 24,
and 48 hours. Our input dataset 𝐷𝐺𝐷𝑆4442

3D is composed
by 45101 genes, 6 experimental conditions (one for each
individual involved in the biological experiment), and 3 time
points.

Regarding the TriGen parameters, we increased 𝐺 and 𝐼
for the same reason as in the previous experiment, that is,
to have more solutions in the evolutionary process with a
larger number of generations due to size of𝐷𝐺𝑆𝐷4442

3D, see
Table 9.

Regarding the correlation analysis, the results show high
correlation values, highlighting the solutions TC

5
, TC
6
, and

TC
15
with Pearson’s correlation values close to 1, see Table 10.

We show in Figure 9 the graphical representation of solu-
tion TC

15
with 15 genes, 5 conditions, and 2 time points. We

can see the great homogeneity among all genes, conditions,
and times in Figures 9(a), 9(b), and 9(c).

The biological evaluation of tricluster TC
15

shown
in Table 11 shows annotated terms with high statistical
significance, highlighting GO:0045127, GO:0009384, and
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Figure 9: Graphical representation for TC
15
found in the Mouse GSD4442 Dataset.

Table 9: TriGen algorithm control parameters for Mouse GDS4442
Dataset.

Parameter Values
𝑁 15
𝐺 500
𝐼 400
Ale 0.4
Sel 0.5
Mut 0.4
𝑤
𝑔

0.2
𝑤
𝑐

0.8
𝑤
𝑡

0.8
𝑤𝑜
𝑔

0.5
𝑤𝑜
𝑐

0.2
𝑤𝑜
𝑡

0.2

GO:0019262which are related to the cell wall synthesis which,
in turn, is related to the action of doxycycline.

4.5. Human GDS4472 Dataset. This dataset has been
obtained from GEO [17] under code GDS4472 titled
transcription factor oncogene OTX2 silencing effect on D425
medulloblastoma cell line: time course [34]. In this experiment
we analyze the effect of doxycycline on medulloblastoma
cancerous cells at six times after induction: 0, 8, 16, 24, 48, and

Table 10: Correlation results for triclusterMouseGDS4442Dataset.

TRlsol Pearson Spearman
1 0.52 0.53
2 0.34 0.36
3 0.49 0.53
4 0.52 0.45
5 0.92 0.79
6 0.86 0.83
7 0.39 0.31
8 0.35 0.44
9 0.46 0.44
10 0.6 0.58
11 0.62 0.62
12 0.59 0.58
13 0.76 0.61
14 0.61 0.64
15 0.98 0.6

96 hours. Our input dataset 𝐷𝐺𝑆𝐷4472
3D is composed by

54675 genes, 4 conditions (one for each individual involved),
and 6 time points (one per hour).

Because of the volume of the dataset𝐷4472
3D we increase

𝐺 and 𝐼 to expand the space of solutions. The full set of
parameters can be seen in Table 12.
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Table 11: GO analysis for tricluster TC
15

in Mouse GDS4442
Dataset.

ID Name 𝑃-value
GO:0045127 N-acetylglucosamine kinase activity 5.525 × 10

−4

GO:0009384 N-acylmannosamine kinase activity 0.001105

GO:0019262 N-acetylneuraminate catabolic
process 0.002208

GO:0004957 Prostaglandin E receptor activity 0.002760

GO:0006054 N-acetylneuraminate metabolic
process 0.003862

GO:0050901 Leukocyte tethering or rolling 0.004412
GO:0051352 Negative regulation of ligase activity 0.004963

GO:0051444 Negative regulation of
ubiquitin-protein ligase activity 0.004963

GO:0090136 Epithelial cell-cell adhesion 0.006063

GO:0001921 Positive regulation of receptor
recycling 0.006612

Table 12: TriGen algorithm control parameters for Human
GDS4472 Dataset.

Parameter Values
𝑁 15
𝐺 500
𝐼 300
Ale 0.2
Sel 0.3
Mut 0.4
𝑤
𝑔

0.2
𝑤
𝑐

0.5
𝑤
𝑡

0.5
𝑤𝑜
𝑔

0.5
𝑤𝑜
𝑐

0.4
𝑤𝑜
𝑡

0.4

We can see in Table 13 the high levels of correlation
obtained for the 15 solutions found.

We graphically represent tricluster TC
2
with 25 genes, 2

conditions, and 2 time points in Figure 10. We can see the
great homogeneity among all genes, conditions, and times in
Figures 10(a), 10(b), and 10(c).

The biological validation can be seen in Table 14, where
we see annotated terms with high statistical significance.

5. Conclusions

In this work we have presented a new evaluation measure for
triclusters, MSR3D, which measures the homogeneity among
genes, conditions, and times in a tricluster. This measure has
been inspired in the classicMSRmeasure proposed by Cheng
and Church in [11]. A detailed formulation of both MSR and
MSR3D has been provided.

In order to assess the quality of the measure, we have
applied it along with the TriGen algorithm [12], an evolution-
ary heuristic tomine triclusters frommicroarray experiments

Table 13: Correlation results for Human GDS4472 Dataset.

TRIsol Pearson Spearman
1 0.94 0.78
2 1 0.8
3 0.86 0.87
4 0.98 0.72
5 0.98 0.81
6 0.95 0.93
7 0.99 0.67
8 0.99 0.62
9 0.88 0.71
10 0.88 0.73
11 0.99 0.75
12 0.85 0.69
13 0.89 0.72
14 1 0.76
15 0.98 0.67

involving time, to several datasets: synthetically generated
data, data from experiments with the yeast cell cycle (Sac-
charomyces cerevisiae) obtained from the Stanford University
[16], and three datasets retrieved from Gene Expression
Omnibus [17], two datasets are experiments for mouse (Mus
musculus) and the third one is an experiment for humans
(Homo sapiens). All experiments examine the behavior of
genes under conditions at certain times.

The results obtained have been validated bymeans of ana-
lyzing the correlation among the genes, conditions, and times
in each tricluster using two different correlation measures:
Pearson and Filon [18] and Spearman [19]. Besides this, we
have provided functional annotations for the genes extracted
from theGeneOntology project [20]. Regarding the synthetic
data, we see that MSR3D combined with TriGen has been
capable of extracting almost all 10 triclusters artificially
inserted in the dataset with a coverage of 90% to 96%.
The results for the real datasets are also successful, with
correlation values close to one, with the exception of the
yeast dataset, where values are close to zero due to triclusters
containing negatively correlated genes, found by MSR3D.

The GO validation has given good results as well, with
high levels of significance for the terms extracted (𝑃 values
smaller than 0.05 and very specific terms). Graphical repre-
sentation of the triclusters has also been provided.

MSR3D is a tricluster evaluationmeasure created to assess
the quality of triclusters extracted from temporal experiments
with microarrays, but it can be used in other biologically
related fields, for instance combining expression data with
gene regulation information by means of substituting the
time dimension byChIP-chip data representing transcription
factor-gene interactionswhich can provide uswith regulatory
network information. This proposal can also be applied to
mine RNA-seq data repositories. Triclustering can also be
applied to not biologically related fields, for instance, the
seismic regionalization of areas at risk of undergoing an
earthquake [43]. In this case, the third component does not



14 The Scientific World Journal

0

200

400

600

800

0 hours

0

200

400

600

800

16 hours

10000

Genes
20000 30000 40000 50000

(a) Samples curves

0

200

400

600

800

TC1

0

200

400

600

800

TCNA

10000

Genes
20000 30000 40000 50000

(b) Time curves

0

200

400

600

800

0

200

400

600

800

Time (hour)

TC1

TCNA

0 16

(c) Gene curves

Figure 10: Graphical representation for tricluster TC
2
found in the Human GDS4472 Dataset.

Table 14: GO analysis for tricluster TC
2
in Human GDS4472 Dataset.

ID Name 𝑃-value
GO:0002753 Cytoplasmic pattern recognition receptor signaling pathway 4.543 × 10

−4

GO:2000299 Negative regulation of Rho-dependent protein serine/threonine kinase activity 8.415 × 10
−4

GO:2000298 Regulation of Rho-dependent protein serine/threonine kinase activity 8.415 × 10
−4

GO:2001264 Negative regulation of C–C chemokine binding 8.415 × 10
−4

GO:2001263 Regulation of C–C chemokine binding 8.415 × 10
−4

GO:0032479 Regulation of type I interferon production 0.001581
GO:0000226 Microtubule cytoskeleton organization 0.001755
GO:0032606 Type I interferon production 0.001762
GO:0070507 Regulation of microtubule cytoskeleton organization 0.001904
GO:0044092 Negative regulation of molecular function 0.001931

identify time points but features associated with every pair of
geographical coordinates of the area under study.
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and J. C. Riquelme, “An evolutionary algorithm to discover
quantitative association rules in multidimensional time series,”
Soft Computing, vol. 15, no. 10, pp. 2065–2084, 2011.

[32] V. M. Dickison, A. M. Richmond, A. Abu Irqeba et al., “A
role for prenylated rab acceptor 1 in vertebrate photoreceptor
development,” BMC Neuroscience, vol. 13, article 152, 2012.

[33] R. B. Chalamalasetty, W. C. Dunty Jr., K. K. Biris et al.,
“The Wnt3a/𝛽-catenin target gene Mesogenin1 controls the
segmentation clock by activating a Notch signalling program,”
Nature Communications, vol. 2, no. 1, article 390, 2011.

[34] J. Bunt, N. E. Hasselt, D. A. Zwijnenburg et al., “OTX2
directly activates cell cycle genes and inhibits differentiation in
medulloblastoma cells,” International Journal of Cancer, vol. 7,
no. 6, pp. E21–E32, 2011.



16 The Scientific World Journal

[35] S. Bauer, S. Grossmann, M. Vingron, and P. N. Robinson,
“Ontologizer 2.0—a multifunctional tool for GO term enrich-
ment analysis and data exploration,” Bioinformatics, vol. 24, no.
14, pp. 1650–1651, 2008.

[36] P. Mendes, “GEPASI: a software package for modelling the
dynamics, steady states and control of biochemical and other
systems,” Computer Applications in the Biosciences, vol. 9, no. 5,
pp. 563–571, 1993.

[37] M. Barenco, J. Stark, D. Brewer, D. Tomescu, R. Callard, andM.
Hubank, “Correction of scaling mismatches in oligonucleotide
microarray data,” BMC Bioinformatics, vol. 7, article 251, 2006.

[38] K. Hakamada, M. Okamoto, and T. Hanai, “Novel technique for
preprocessing high dimensional time-course data from DNA
microarray: mathematical model-based clustering,” Bioinfor-
matics, vol. 22, no. 7, pp. 843–848, 2006.

[39] R. P. Pargas,M. J. Harrold, and R. R. Peck, “Test-data generation
using genetic algorithms,” Software Testing Verification and
Reliability, vol. 9, no. 4, pp. 263–282, 1999.

[40] Apache Commons, “Commons-math: the apache commons
mathematics library,” 2011.

[41] T. Zeng and J. Li, “Maximization of negative correlations in
time-course gene expression data for enhancing understanding
of molecular pathways,” Nucleic Acids Research, vol. 38, no. 1,
article e1, 2009.

[42] M. J. Brauer, C.Huttenhower, E.M.Airoldi et al., “Coordination
of growth rate, cell cycle, stress response, andmetabolic activity
in yeast,”Molecular Biology of the Cell, vol. 19, no. 1, pp. 352–367,
2008.

[43] J. Reyes and V. H. Cárdenas, “A Chilean seismic regionalization
through a Kohonen neural network,” Neural Computing and
Applications, vol. 19, no. 7, pp. 1081–1087, 2010.



Submit your manuscripts at
http://www.hindawi.com

Computer Games 
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed 
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable
Computing

Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Applied 
Computational 
Intelligence and Soft 
Computing

 Advances in 

Artificial 
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in
Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer 
Engineering

Journal of

Journal of

Computer Networks 
and Communications

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

 Advances in 

Multimedia

 International Journal of 

Biomedical Imaging

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Artificial
Neural Systems

Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational 
Intelligence and 
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling & 
Simulation 
in Engineering
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014


