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1. Introduction

In 1970, Frucht and Harary [1] introduced the corona product G � H of a center graph
G = (V(G), E(G)) and an outer graph H as the graph that is obtained from G and |V(G)| copies of H,
all of them being vertex-disjoint, so that the ith vertex of V(G) is joined to every vertex in the ith copy
of H. Further, the subdivision graph of a graph G is defined as the graph S (G) obtained by inserting a
new vertex into every edge of G. From here on, the set of such inserted vertices is denoted I(G). In
2016, Pengli Lu and Yufang Miao [2] introduced the subdivision-edge corona G 	 H of two
vertex-disjoint graphs G and H as the graph obtained from S (G) and |I(G)| copies of H, all of them
being vertex-disjoint, so that the ith vertex of I(G) is joined to every vertex in the ith copy of H.

In the literature, one can find different studies on chromatic numbers of the corona product of two
given types of graphs [3–17] and even some particular study on chromatic numbers of the subdivision-
edge corona of two graphs [18]. This paper delves into this last topic. Particularly, we focus on the
r-dynamic proper k-coloring of a subdivision-edge corona of a finite path and a certain simple, finite
and connected graph. Recall in this regard that, in 2001, Bruce Montgomery [19] (see also [20])
introduced the concept of r-dynamic proper k-coloring or (r, k)-coloring of a graph G = (V(G), E(G))
as a proper k-coloring c : V(G) → {1, . . . , k} such that the number of colors appearing within the
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neighborhood N(v) of each vertex v ∈ V(G) satisfies that

|c(N(v)| ≥ min{r, d(v)}. (1.1)

Here, d(v) denotes the degree of the vertex v within the graph G. Further, the r-dynamic chromatic
number χr(G) was introduced as the minimum positive integer k such that the graph G has an r-
dynamic proper k-coloring. As such, both notions generalize the classical ones of proper coloring and
chromatic number of a graph, which result for r = 1. Since the original manuscript of Montgomery,
a wide amount of authors have dealt with the study of r-dynamic proper k-colorings and r-dynamic
chromatic numbers of different types of graphs [21–29]. Of particular interest for the topic of this
paper, it is remarkable the study of r-dynamic chromatic numbers of graphs described by a corona
product [5, 10–13]. Furthermore, the notion of r-dynamic proper coloring was generalized by Akbari
et al. [30] to that of list dynamic coloring of a graph, for which the color of each vertex is chosen from
its own list assignment of colors. Recent advances concerning this last topic are dealt with in [31–38].

This paper is organized as follows. In order to get a self-contained paper, Section 2 describes some
preliminary concepts and results on Graph Theory that are used throughout the paper. In Section 3, we
establish a series of lemmas that are later used in our study. Finally, Section 4 enumerates the different
results dealing with the r-dynamic chromatic numbers of the subdivision-edge corona of a path with
each one of the nine types of graphs under study.

2. Preliminaries

This section deals with some preliminary concepts and results on Graph Theory that are used
throughout the paper.

A graph is a pair G = (V(G), E(G)) formed by a set V(G) of vertices and a set E(G) of edges joining
two vertices, which are then said to be adjacent. Each edge is said to be incident to the two vertices
that it contains. If both vertices are indeed the same one, then the edge is said to be a loop. A graph is
said to be simple if it does not contain any loop. The neighborhood of a vertex v ∈ V(G) is the subset
NG(v) ⊆ V(G) that is formed by all its adjacent vertices. The cardinality of this subset is the degree
of v, which is denoted dG(v). From now on, we denote N(v) and d(v) whenever there is no risk of
confusion. Moreover, the maximum vertex degree of the graph G is denoted ∆(G). Further, a subgraph
of the graph G is any other graph H = (V(H), E(H)) such that V(H) ⊆ V(G) and E(H) ⊆ E(G).

The order of a graph is the number of its vertices. A graph is said to be finite if its order is. A finite
graph is said to be complete if any two of its vertices are adjacent. The complete graph of order n is
denoted Kn. Further, a finite graph of order m + n is said to be complete bipartite if its vertices can
be partitioned into two subsets of respective sizes m and n so that every pair of vertices in different
subsets are adjacent, but no more edges exist. This graph is denoted Km,n. The complete bipartite graph
K1,n, with n > 2, is called a star. Its center is the unique vertex that is contained in all the edges. A
double star K1,n,n, with n > 2, is the graph that results after adding n new vertices and edges to the star
K1,n so that each new edge joins a non-center vertex of the star with one of the new vertices. Figure 1
illustrates these four types of graphs.
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K4 ≡ K4,2 ≡

K1,4 ≡ K1,4,4 ≡

Figure 1. Illustrative examples of a complete graph, a complete bipartite graph, a star and a
double star.

From now on, the edge formed by two given vertices v,w ∈ V(G) is denoted vw. A path between
two distinct vertices v,w ∈ V(G) is any ordered sequence of adjacent vertices 〈 v, v2, . . . , vn−1,w 〉 in
V(G), with n > 2, such that all the vertices under consideration are pairwise distinct. This is a cycle if
v = w. If all the vertices of a cycle are joined to a new vertex, then the resulting graph is called a wheel.
From here on, let Pn, Cn and Wn respectively denote the path, the cycle and the wheel, all of them of
order n. A graph is said to be connected if there always exists a path between any pair of vertices. The
fan graph Fm,n is the graph that results after joining each vertex of a set of m isolated vertices with all
the vertices of the path Pn. Further, the friendship graph Fn is the graph that results after joining n
copies of the cycle C3 with a common vertex. Figure 2 illustrates these five types of graphs.

P4 ≡ C4 ≡ W4 ≡

F1,4 ≡ F4 ≡

Figure 2. Illustrative examples of a path, a cycle, a wheel, a fan graph and a friendship graph.

A proper k-coloring of the graph G is any map c : V(G) → {1, . . . , k} assigning a set of k labels
or colors to the vertices of V(G) so that no two adjacent vertices have the same color. The chromatic
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number χ(G) of the graph G constitutes the minimum positive integer k for which such a graph has
a proper k-coloring. A particular example of both concepts are the so-called r-dynamic proper k-
coloring and r-dynamic chromatic number χr(G) of a graph G, which have already been described
in the preliminary section (see (1.1)). In particular, χ1(G) = χ(G). In the original manuscript of
Montgomery [19], he established the following results.

Lemma 1. [19] Let G be a graph and let r be a positive integer. Then, the following results hold.

χr(G) ≤ χr+1(G). (2.1)

χr(G) ≤ χ∆(G)(G). (2.2)

χr(G) ≥ min {r,∆(G)} + 1. (2.3)

Lemma 2. [19] Let n, r be two positive integers such that n > 2 and r ≥ 2. Then,

χr(Cn) =


5, if n = 5,
3, if n = 3k, for some k ≥ 1,
4, otherwise.

Furthermore, it is also known the r-dynamic chromatic number of certain graphs.

Lemma 3. [27] Let m, n, r be three positive integers. The following results hold.

a) χr(Kn) = n.
b) If 2 ≤ m ≤ n, then χr(Km,n) = min{2r,m + n,m + r}.

Finally, concerning the r-dynamic chromatic number of a corona product of graphs, the following
results are also known.

Theorem 4. [10] Let m, n, r be three positive integers such that m, n > 2. Then,

χr(Pn � Pm) =


3, if r ∈ {1, 2},
r + 1, if 3 ≤ r < m + 2,
m + 3, otherwise.

Theorem 5. [10] Let m, n, r be three positive integers such that m, n > 2. Then,

χr(Pn �Cm) =



3, if r ∈ {1, 2} and m is even,

4, if

r ∈ {1, 2} and m is odd,

r = 3 and m = 3k, for some k ≥ 1,
5, if r = 3 and 5 , m , 3k, for some k ≥ 1,
6, if r = 3 and m = 5,
r + 1, if 4 ≤ r < m + 2,
m + 3, otherwise.
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Theorem 6. [10] Let m, n, r be three positive integers such that m, n > 2. Then,

χr(Pn �Wm) =



4, if r ∈ {1, 2, 3} and m is even,

5, if

r ∈ {1, 2, 3} and m is odd,

r = 4 and m = 3k, for some k ≥ 1,
6, if r = 4 and 5 , m , 3k, for some k ≥ 1,
7, if r = 4 and m = 5,
r + 1, if 5 ≤ r < m + 3,
m + 4, otherwise.

3. Some preliminary lemmas

In this section, we establish a series of preliminary lemmas that are later used in our study. Our
first result shows that the r-dynamic chromatic number of a subdivision-edge corona G 	 H is lower
bounded by that one of the graph H.

Lemma 7. Let G and H be two simple, finite and connected graphs, and let r be a positive integer. The
following results hold.

a) χ(H) < χr(G 	 H).
b) If r > 1, then, χr−1(H) < χr(G 	 H).

Proof. Let k = χr(G 	 H) and let Hi be the ith copy of the graph H, whose vertices are all of them
joined with the ith vertex of the set I(G) within the subdivision-edge corona G 	 H. The first assertion
holds readily from the fact that, in any r-dynamic proper k-coloring of the graph G 	 H, this ith vertex
in I(G) must be colored in a different way from all the vertices of the graph Hi.

Further, in order to prove the second assertion, it is enough to see that χr−1(Hi) < χr(G	H). To this
end, let c : V(G 	 H) → {1, . . . , k} be an r-dynamic proper k-coloring of the subdivision-edge corona
G 	 H satisfying Condition (1.1). In particular, the restriction of the map c to the subset V(Hi) is a
proper (k− 1)-coloring of the graph Hi. Notice to this end that, at least, the color of the ith vertex of the
set I(G) is not used in such a restriction. Moreover, if v ∈ V(Hi), then |c(NG	H(v))| ≥ min{r, dG	H(v)}.
Thus, since dHi(v) = dG	H(v) − 1, we have that

|c(NHi(v))| = |c(NG	H(v))| − 1 ≥ min{r, dG	H(v)} − 1 = min{r − 1, dHi(v)}.

Hence, the restriction of the map c to the subset V(Hi) constitutes indeed an (r − 1)-dynamic proper
(k − 1)-coloring of the graph Hi. As a consequence, χr−1(Hi) < χr(G 	 H). �

Let n > 2 be a positive integer and let G be a simple, finite and connected graph. From here on, we
suppose that:

• Pn = 〈 v1, . . . , vn 〉.
• I(Pn) = {u1, . . . , un−1}. That is, {viui, uivi+1} ⊂ E(S (Pn)), for all 1 ≤ i < n.
• xi, j denotes the copy of each vertex x j ∈ V(G) in the ith copy of the graph G. It is joined to the

vertex ui ∈ I(Pn).
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The following result holds.

Lemma 8. Let r, n be two positive integers such that n > 2 and let G be a simple and connected graph
of order m ≥ 2. Then,

3 ≤ min {χr(Pn 	G), χr(Pn �G)} .

Proof. Since G is a simple and connected graph of order m ≥ 2, one always can find a pair of distinct
vertices x j, x j′ ∈ V(G) such that xix j ∈ E(G). Then, the result follows straightforwardly from the
definition of the subdivision-edge corona Pn 	 G. Notice to this end that each set of vertices
{ui, xi, j, xi, j′} ⊂ V(Pn 	 G), together with their corresponding edges, constitutes a complete subgraph
K3 of both graphs Pn 	G and Pn �G, and recall that χ(K3) = 3. �

We focus now on the relationship between the r-dynamic chromatic numbers of both the
subdivision-edge corona Pn+1 	G and the corona product Pn �G.

Lemma 9. Let r, n be two positive integers such that n > 2 and let G be a finite graph. Then,

χr(Pn+1 	G) ≤ χr(Pn �G).

Proof. Firstly, notice that the corona product Pn�G may be seen as a subgraph of the subdivision-edge
corona Pn+1 	G. To see it, we consider the following two steps.

1. We define the path Pn := 〈 u0, v1, u1, v2, . . . , vn−1, un−1, vn, un 〉 that results after adding two new
edges u0v1 and vnun to the subdivision graph S (Pn).

2. The subdivision-edge corona Pn+1 	 G results from replacing the center graph Pn of the corona
product Pn�G by the new path Pn. More specifically, the vertices vi are placed in the same position
that they were. That is, all the edges joining the center and the outer graphs G are preserved.

Now, let k = χr(Pn � G) and let c : V(Pn � G) → {1, . . . , k} be an r-dynamic proper k-coloring
of the corona product Pn � G satisfying Condition (1.1). From this map, it is possible to define an
r-dynamic proper k-coloring c of the subdivision-edge corona Pn+1	G satisfying also Condition (1.1).
Notice to this end that, according to our construction, each vertex xi, j is adjacent to the vertex vi in the
subdivision-edge corona Pn+1 	 G. Then, let us consider the map c : V(Pn+1 	 G) → {1, . . . , k} such
that

c(vi) := c(v2), for all i ∈ {1, . . . , n},

c(xi, j) := c(x2, j), for all i ∈ {1, . . . , n} if and j ∈ {1, . . . , |V(G)|},

c(ui) :=

 c(v1), if i = 2 j + 1,
c(v3), if i = 2 j,

for some j ∈
{
0, . . . ,

⌊n
2

⌋}
.

This repetitive distribution of colors throughout the graph Pn+1 	G, together with the fact that the map
c holds Condition (1.1), enables us to ensure that such a condition is also satisfied by the map c, and
hence, the result holds. �
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4. Dynamic coloring of subdivision-edge coronas of a path

In this section, we study separately the r-dynamic chromatic number of the subdivision-edge corona
of a path Pn with each one of the following nine types of graphs: a path Pm, a cycle Cm, a wheel Wm, a
complete graph Km, a complete bipartite graph Km,t, a star K1,m, a double star K1,m,m, a fan graph F1,m

and a friendship graph Fm. Throughout all the section, we use the following notation.

• Pn = 〈 v1, . . . , vn 〉.
• I(Pn) = {u1, . . . , un−1}. That is, {viui, uivi+1} ⊂ E(S (Pn)), for all 1 ≤ i < n.

Moreover, for each graph G ∈ {Pm,Cm,Wm,Km,Km,t,K1,m,K1,m,m, F1,m, Fm}, all the r-dynamic proper
colorings c : V(Pn 	G)→ {1, 2, 3, . . .} described throughout the different proofs of this section satisfy
that the first three colors 1, 2 and 3 are sequential and repetitively assigned to the vertices v1, u1, v2,
. . ., un−1 and vn. That is,

c(v1) = 1, c(u1) = 2, c(v2) = 3, c(u2) = 1, c(v3) = 2, . . . (4.1)

Let us start with the path Pm, the cycle Cm and the wheel Wm.

Theorem 10. Let m, n, r be three positive integers such that m, n > 2. Then,

χr(Pn 	 Pm) = χr(Pn � Pm).

Proof. From Lemma 8 and Condition (2.3), once it is observed that ∆(Pn 	 Pm) = m + 2, we have that

χr(Pn 	 Pm) ≥


3, if r ∈ {1, 2},
r + 1, if 3 ≤ r < m + 2,
m + 3, otherwise.

Then, the result holds readily from Theorem 4 and Lemmas 8 and 9. �

Theorem 11. Let m, n, r be three positive integers such that m, n > 2. Then,

χr(Pn 	Cm) = χr(Pn �Cm).

Proof. From Lemma 8, together with Condition (2.3) once it is observed that ∆(Pn 	Cm) = m + 2, we
have that

χr(Pn 	Cm) ≥


3, if r ∈ {1, 2},
r + 1, if 3 ≤ r < m + 2,
m + 3, otherwise.

In order to prove the current theorem, let us study separately each one of the cases exposed in
Theorem 5. In this regard, the case r ∈ {1, 2} with m even, the case r = 3 and m = 3k, for some k ≥ 1,
and both cases concerning r ≥ 4 follow straightforwardly from the previous lower bound together with
Theorem 5 and Lemma 9. Figure 3 illustrates the case m = n = r = 3.
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Figure 3. 3-dynamic proper 4-coloring of the graph P3 	C3.

Let us study separately the remaining three cases.

• Case r ∈ {1, 2} and m odd.
From the above mentioned results, we have that χr(Pn 	 Cm) ∈ {3, 4}. Nevertheless, Lemma 7
implies that the best lower bound is not possible, because χ(Cm) = 3. Hence, χr(Pn 	Cm) = 4.

• Case r = 3 and m = 5.
Based on Lemmas 2 and 7, together with Theorem 5, we have that χ3(Pn 	C5) = 6.

• Case r = 3 and 5 , m , 3k, for some k ≥ 1.
Again, based on Lemmas 2 and 7, together with Theorem 5, we have that χ3(Pn 	Cm) = 5.

�

Theorem 12. Let m, n, r be three positive integers such that m, n > 2. Then,

χr(Pn 	Wm) = χr(Pn �Wm).

Proof. The result follows similarly to the proof of Theorem 11, once it is observed that χr(Wm) =

χr(Cm) + 1. �

Let us focus now on the complete graph Km and the complete bipartite graph Km,t.

Theorem 13. Let m, n, r be three positive integers such that n > 2. Then,

χr(Pn 	 Km) =


m + 1, if 1 ≤ r < m + 1,
m + 2, if r = m + 1,
m + 3, otherwise.

Proof. From Lemmas 3 and 7, we have that m = χ(Km) < χr(Pn 	 Km). Moreover, since ∆(Pn 	Cm) =

m + 2, we have from Condition (2.3) that

χr(Pn 	 Km) ≥

 m + 2, if r = m + 1,
m + 3, if r > m + 1.
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In order to prove that all these lower bounds are fitted, let us define an appropriate r-dynamic
proper coloring c : V (Pn 	 Km) → {1, 2, . . .} satisfying Condition (4.1) for each one of the three
cases described in the hypothesis. To this end, we suppose that xi, j denotes the copy of each vertex
x j ∈ V(Km) in the ith copy of the graph Km. It is joined to the vertex ui ∈ I(Pn).

• Case 1 ≤ r < m + 1.
Let c : V (Pn 	 Km) → {1, 2, . . . ,m + 1} satisfying that all the m colors different from c(ui) are
assigned to the vertices of the ith copy of the complete graph Km. Then, Condition (1.1) holds and
hence, χr(Pn 	 Km) = m + 1.

• Case r = m + 1.
Let c : V (Pn 	 Km) → {1, 2, . . . ,m + 2} satisfying that all the m colors different from both c(vi)
and c(ui) are assigned to the vertices of the ith copy of the complete graph Km. Then, Condition
(1.1) holds and hence, χr(Pn 	 Km) = m + 2. Figure 4 illustrates the case n = 3, m = 4 and r = 5.

Figure 4. 5-dynamic proper 6-coloring of the graph P3 	 K4.

• Case r ≥ m + 2.
Let c : V (Pn 	 Km) → {1, 2, . . . ,m + 2} satisfying that all the m colors in the set {4, 5, . . . ,m + 3}
are assigned to the vertices of the ith copy of the complete graph Km. Then, Condition (1.1) holds
and hence, χr(Pn 	 Km) = m + 3.

�

Theorem 14. Let m, n, r, t be four positive integers such that 2 ≤ m ≤ t and n ≥ 3. Then,

χr(Pn 	 Km,t) =



3, if r ∈ {1, 2},
2r − 1, if 3 ≤ r < m,

m + r, if m ≤ r < t,

m + t + 1, if t ≤ r < m + t,

r + 1, if m + t ≤ r < m + t + 2,
m + t + 3, otherwise.

Proof. From Lemmas 3, 7 and 8, together with Condition (2.3) once it is observed that ∆(Pn 	 Km,t) =

m+t+2, we have that all the expressions in the hypothesis are lower bounds of χr(Pn	Km,t). In order to
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prove that all of them are fitted, we define an r-dynamic proper coloring c : V
(
Pn 	 Km,t

)
→ {1, 2, . . .}

satisfying Condition (4.1) for each one of the cases. To this end, let us suppose that the vertices of the
graph Km,t are distributed into the sets

V1 = {x1, . . . , xm} and V2 = {y1, . . . , yt},

with
E(Km,t) = {xiy j : 1 ≤ i ≤ m, 1 ≤ j ≤ t}.

Moreover, let V1,i and V2,i respectively denote the copies of the sets V1 and V2 in the ith copy of the
graph Km,t, for all i ∈ {1, . . . , n}. All these vertices are joined to the vertex ui ∈ I(Pn).

• Case r ∈ {1, 2}.
Let c : V

(
Pn 	 Km,t

)
→ {1, 2, 3} satisfying that the two colors different from c(ui) are respectively

assigned to all the vertices in V1 and V2. Then, Condition (1.1) holds and hence, χr(Pn	Km,t) = 3.
• Case 3 ≤ r < m.

Let c : V
(
Pn 	 Km,t

)
→ {1, 2, . . . , 2r − 1} be such that the following conditions hold.

– All the r − 1 colors in the set {1, 2, . . . , r} \ {c(ui)} are assigned to the set V1,i.
– All the r − 1 colors in the set {r + 1, r + 2, . . . , 2r − 1} are assigned to the set V2,i.

Then, Condition (1.1) holds and hence, χr(Pn 	 Km,t) = 2r − 1.
• Case m ≤ r < t.

Let c : V
(
Pn 	 Km,t

)
→ {1, 2, . . . ,m + r} be such that the following conditions hold.

– All the m colors in the set {1, 2, . . . ,m + 1} \ {c(ui)} are assigned to the set V1,i.
– All the r − 1 colors in the set {m + 2,m + 3, . . . ,m + r} are assigned to the set V2,i.

Then, Condition (1.1) holds and hence, χr(Pn 	 Km,t) = m + r.
• Case t ≤ r < m + t.

Let c : V
(
Pn 	 Km,t

)
→ {1, 2, . . . ,m + t + 1} be such that the following conditions hold.

– All the m colors in the set {1, 2, . . . ,m + 1} \ {c(ui)} are assigned to the set V1,i.
– All the t colors in the set {m + 2,m + 3, . . . ,m + t + 1} are assigned to the set V2,i.

Then, Condition (1.1) holds and hence, χr(Pn 	 Km,t) = m + t + 1. Figure 5 illustrates the case
m = 2, n = t = 3 and r = 4.

Figure 5. 4-dynamic proper 6-coloring of the graph P3 	 K2,3.
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• Case m + t ≤ r < m + t + 2.
Let c : V

(
Pn 	 Km,t

)
→ {1, 2, . . . , r + 1} be such that the following conditions hold.

– All the m colors in the set {1, 2, . . . ,m + 2} \ {c(vi), c(ui)} are assigned to the set V1,i.
– All the r − m − 1 colors in the set {m + 3,m + 4, . . . , r + 1} are assigned to the set V2,i.

Then, Condition (1.1) holds and hence, χr(Pn 	 Km,t) = r + 1.
• Case r ≥ m + t + 2.

Let c : V
(
Pn 	 Km,t

)
→ {1, 2, . . . ,m + t + 3} be such that the following conditions hold.

– All the m colors in the set {4, 5, . . . ,m + 3} are assigned to the set V1,i.
– All the t colors in the set {m + 4,m + 5, . . . ,m + t + 3} are assigned to the set V2,i.

Then, Condition (1.1) holds and hence, χr(Pn 	 Km,t) = m + t + 3.

�

Let us focus now on the star K1,m and the double star K1,m,m.

Theorem 15. Let m, n, r be three positive integers such that m, n > 2. Then,

χr(Pn 	 K1,m) =


3, if r ∈ {1, 2},
r + 1, if 3 ≤ r < m + 3,
m + 4, otherwise.

Proof. From Lemma 8 and Condition (2.3), once it is observed that ∆(Pn 	 K1,m) = m + 3, all the
expressions in the hypothesis are lower bounds of χr(Pn 	 K1,m). In order to prove that all of them are
fitted, we define an appropriate r-dynamic proper coloring c : V

(
Pn 	 K1,m

)
→ {1, 2, . . .} satisfying

Condition (4.1) for each one of the cases. To this end, let us suppose that

V(K1,m) = {x, y1, . . . , ym}

and

E(K1,m) = {xyi : 1 ≤ i ≤ m, }.

Moreover, let xi and yi, j respectively denote the copies of the vertices x and y j in the ith copy of the
graph K1,m. All these vertices are joined to the vertex ui ∈ I(Pn).

• Case r ∈ {1, 2}.
Let c : V

(
Pn 	 K1,m

)
→ {1, 2, 3} be such c(xi) = c(vi+1) and c(yi, j) = c(vi), for all 1 ≤ i ≤ n and

1 ≤ j ≤ m. Then, Condition (1.1) holds and hence, χr(Pn 	 K1,m) = 3.
• Case 3 ≤ r < m + 3.

Let c : V
(
Pn 	 K1,m

)
→ {1, 2, . . . , r + 1} be such c(xi) = c(vi+1) and all the r − 1 colors in the set

{c(vi), 4, 5, . . . , r + 1} are assigned to the set of vertices {yi,1, . . . , yi,m}. Then, Condition (1.1) holds
and hence, χr(Pn 	 K1,m) = r + 1. Figure 6 illustrates the case m = n = 3 and r = 4.
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Figure 6. 4-dynamic proper 5-coloring of the graph P3 	 K1,3.

• Case r ≥ m + 3.
Let c : V

(
Pn 	 K1,m

)
→ {1, 2, . . . ,m + 4} be such c(xi) = 4 and all the m colors in the set

{5, 6, . . . ,m + 4} are assigned to the set of vertices {yi,1, . . . , yi,m}. Then, Condition (1.1) holds and
hence, χr(Pn 	 K1,m) = m + 4.

�

Theorem 16. Let m, n, r be three positive integers such that m, n > 2. Then,

χr(Pn 	 K1,m,m) =


3, if r ∈ {1, 2},
r + 1, if 3 ≤ r < 2m + 3,
2m + 4, otherwise.

Proof. From Lemma 8, together with Condition (2.3) once it is observed that ∆(Pn 	 K1,m,m) = 2m + 3,
we have that all the expressions in the hypothesis are lower bounds of χr(Pn	K1,m,m). In order to prove
that all of them are fitted, let us define an appropriate r-dynamic proper coloring c : V

(
Pn 	 K1,m,m

)
→

{1, 2, . . .} satisfying Condition (4.1) for each one of the cases. To this end, let us suppose that

V(K1,m,m) = {x, y1, . . . , ym, z1, . . . , zm}

and
E(K1,m,m) = {xyi, yizi : 1 ≤ i ≤ m}.

Moreover, let xi, yi, j and zi, j respectively denote the copies of the vertices x, y j and z j in the ith copy of
the graph K1,m,m. All these vertices are joined to the vertex ui ∈ I(Pn).

• Case r ∈ {1, 2}.
Let c : V

(
Pn 	 K1,m,m

)
→ {1, 2, 3} be such that c(xi) = c(zi, j) = c(vi+1) and c(yi, j) = c(vi), for all

1 ≤ i ≤ n and 1 ≤ j ≤ m. Then, Condition (1.1) holds and hence, χr(Pn 	 K1,m,m) = 3.

• Case 3 ≤ r < 2m + 3.
Let c : V

(
Pn 	 K1,m,m

)
→ {1, 2, . . . , r + 1} be such c(xi) = c(vi+1) and the following conditions

hold.

– If 3 ≤ r < m + 2, then all the r − 1 colors in the set {c(vi), 4, 5, . . . , r + 1} are assigned to both
sets of vertices {yi,1, . . . , yi,m} and {zi,1, . . . , zi,m} so that c(yi, j) , c(zi, j), for all 1 ≤ j ≤ m.
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– If m + 2 ≤ r < 2m + 2, then
∗ all the m colors in the set {c(vi), 4, 5, . . . ,m + 2} are assigned to the set of vertices
{yi,1, . . . , yi,m}; and
∗ all the r−m−1 colors in the set {m + 3,m + 4, . . . , r + 1} are assigned to the set of vertices
{zi,1, . . . , zi,m}.

Figure 7 illustrates the case m = n = 3 and r = 6.

Figure 7. 6-dynamic proper 7-coloring of the graph P3 	 K1,3,3.

– If r = 2m + 2, then
∗ all the m colors in the set {4, 5, . . . ,m+3} are assigned to the set of vertices {yi,1, . . . , yi,m};

and
∗ all the r−m−2 colors in the set {m + 4,m + 5, . . . , r + 1} are assigned to the set of vertices
{zi,1, . . . , zi,m}.

Then, Condition (1.1) holds and hence, χr(Pn 	 K1,m,m) = r + 1.

• Case r ≥ 2m + 3.
Let c : V

(
Pn 	 K1,m,m

)
→ {1, 2, . . . , 2m + 4} be such c(xi) = 4, for all 1 ≤ i ≤ n, and the following

conditions hold.

– All the m colors in the set {5, 6, . . . ,m + 4} are assigned to the set of vertices {yi,1, . . . , yi,m}.
– All the m colors in the set {m + 5,m + 6, . . . , 2m + 4} are assigned to the set of vertices
{zi,1, . . . , zi,m}.

Then, Condition (1.1) holds and hence, χr(Pn 	 K1,m,m) = 2m + 4.

�

Let us study now the fan graph F1,m.

Theorem 17. Let m, n, r be three positive integers such that m, n > 2. Then,

χr(Pn 	 F1,m) =


4, if r ∈ {1, 2, 3},
r + 1, if 4 ≤ r < m + 3,
m + 4, otherwise.
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Proof. Let us suppose that
V(F1,m) = {x, y1, . . . , ym}

and
E(F1,m) = {xy1, . . . , xym}.

Moreover, let xi and yi, j respectively denote the copies of the vertices x and y j in the ith copy of the graph
F1,m. All these vertices are joined to the vertex ui ∈ I(Pn). Notice in particular that, for all i ∈ {1, . . . , n},
the set of vertices {ui, xi, yi, j, yi, j′} ⊂ V(Pn 	 F1,m) with their corresponding edges constitute a complete
subgraph K4 of the graph Pn 	 F1,m. Then, 4 = χ(K4) ≤ χr(Pn 	 F1,m). Furthermore, from Condition
(2.3), once it is observed that ∆(Pn 	 F1,m) = m + 3, we have that

χr(Pn 	 F1,m) ≥

 r + 1, if 4 ≤ r < m + 3,
m + 4, otherwise.

In order to prove that all these lower bounds are fitted, we define separately an appropriate r-dynamic
proper coloring c : V

(
Pn 	 F1,m

)
→ {1, 2, . . .} satisfying Condition (4.1) for each one of the cases.

• Case r ∈ {1, 2, 3}.
Let c : V

(
Pn 	 F1,m

)
→ {1, 2, 3, 4} be such that c(xi) = c(vi+1) and both colors in the set {c(vi), 4}

are assigned to the set of vertices {yi,1, . . . , yi,m}. Then, Condition (1.1) holds and hence, we have
that χr(Pn 	 F1,m) = 4.

• Case 4 ≤ r < m + 3.
Let c : V

(
Pn 	 F1,m

)
→ {1, 2, . . . , r + 1} be such that c(xi) = c(vi+1) and the following conditions

hold.

– If 4 ≤ r < m + 2, then all the r − 1 colors in the set {c(vi), 4, 5, . . . , r + 1} are assigned to the
set of vertices {yi,1, . . . , yi,m}. Figure 8 illustrates the case m = n = 3 and r = 4.

Figure 8. 4-dynamic proper 5-coloring of the graph P3 	 F1,3.

– If r = m + 2, then all the r − 2 colors in the set {4, 5, . . . , r + 1} are assigned to the set of
vertices {yi,1, . . . , yi,m}.

Then, Condition (1.1) holds and hence, χr(Pn 	 F1,m) = r + 1.
• Case r ≥ m + 3.

Let c : V
(
Pn 	 F1,m

)
→ {1, 2, . . . ,m + 4} be such c(xi) = 4 and all the m colors in the set

{5, 6, . . . ,m + 4} are assigned to the set of vertices {yi,1, . . . , yi,m}. Then, Condition (1.1) holds and
hence, χr(Pn 	 F1,m) = m + 4.
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�

In a very similar way to the proof of Theorem 17, the following result concerning a friendship graph
holds.

Theorem 18. Let m, n, r be three positive integers such that m, n > 2. Then,

χr(Pn 	 Fm) =


4, if r ∈ {1, 2, 3},
r + 1, if 4 ≤ r < 2m + 3,
2m + 4, otherwise.

Figure 9 illustrates the case m = n = 3 and r = 6.

Figure 9. 6-dynamic proper 7-coloring of the graph P3 	 F3.

5. Conclusion and further works

In this paper, we have established the r-dynamic chromatic number of the subdivision-edge corona
Pn 	 G of a path Pn and a graph G of one of the following nine types: a path, a cycle, a wheel, a
complete graph, a complete bipartite graph, a star, a double star, a fan graph or a friendship graph. In
case of considering the graph G to be a path, a cycle or a wheel, it has been proven that this number
coincides with the corresponding r-dynamic chromatic number of the corona product Pn � G. It is
established as further work the study of such a relationship among the r-dynamic chromatic numbers
of both graphs Pn 	G and Pn �G, not only for the rest of considered types, but also for any graph G.
Lemma 9 may be an interesting starting point to deal with this aspect.

Notice also that all the results here exposed concerning r-dynamic coloring of the subdivision-edge
corona of two given graphs may be generalized for the more general concept of list dynamic coloring
of a graph [30], which has already been mentioned in the introductory section. We also establish this
generalization as further work.
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