

End of Master’s Project

Master’s in Industrial Engineering

Automatics Specialisation

Implementation of a control algorithm for a self-

balancing robot in Julia in a Jetson Nano

Department of Systems Engineering and

Automatics

Escuela Técnica Superior de Ingeniería

Universidad de Sevilla

Author: Fernando Lazcano Alvarado

Tutor: Ignacio Alvarado Aldea

Seville, 2020

 2

Trabajo Fin de Máster

Máster en Ingeniería Industrial

Intensificación Automática

Implementation of a control algorithm for a self-

balancing robot in Julia in a Jetson Nano

Autor:

Fernando Lazcano Alvarado

Tutor:

Ignacio Alvarado Aldea

Profesor titular

Dpto. de Ingeniería de Sistemas y Automática

Escuela Técnica Superior de Ingeniería

Universidad de Sevilla

Sevilla, 2020

 4

Proyecto Fin de Carrera: Implementation of a control algorithm for a self-balancing robot in Julia in a Jetson

Nano

Autor: Fernando Lazcano Alvarado

Tutor: Ignacio Alvarado Aldea

El tribunal nombrado para juzgar el Proyecto arriba indicado, compuesto por los siguientes miembros:

Presidente:

Vocales:

Secretario:

Acuerdan otorgarle la calificación de:

Sevilla, 2020

 6

El Secretario del Tribunal

To my family

To my friends

ACKNOWLEDGEMENTS

This section of most of my Master’s companions is usually less effusive and commonly seen more as an

imposition than a place to really thank the ones who made possible not only the project itself, but also the path

followed from the beginning to where we are. I will try to express, as good as my words can, my gratitude to the

ones I realise and to say sorry in advance for the ones I forgot.

This project would not have been possible without the outstanding assistance, advices, understanding, quick

replies, patience and, above all, insistence and availability of Ignacio, my tutor. He has been a very close tutor

and a very nice person. Thank you.

To my family, particularly to my parents, siblings, and grandparents for being understanding people when nerves

won the match of nerves on the edge and made me say and do things I did not want to. Thank you all, and

specially to my sister, for always being close when I needed, uniquely when those bad times we know occurred.

Thank you.

I would really like to thank to the Council of the Wise, my friends, not for supporting me, but just for being…

well, them. Thank you for being part of my life from the beginning.

Finally, I would like to make a special mention to L.M.G. You cannot tell me I am not an Engineer anymore,

but I am sure you will come up with a way to torture me for some more years with other ‘theoretically-speaking’

shenanigans.

I will try to never forget that I have reached what you I am only because of myself, but also thanks to the ones

which are part of my reality, who are, indeed, part of me.

Fernando Lazcano Alvarado

Seville, 2020

SYNOPSIS

This text will drive the reader through the process of developing a programme which will control an inverted-

pendulum-like robot in its steady stable position, which is facing the pendulum upwards.

In addition, this thesis intends to introduce the reader to Julia—a fast programming language specifically focused

on mathematical development—and the Jetson Nano—a minicomputer, comparable to Arduino, but with much

better characteristics in relation to what is being tested—.

Throughout the document, it will be learnt how to use and implement complex control algorithms in Julia and

MATLAB. The programmes will be created from scratch so as to learn from the very base of the language. In

addition, the mathematical development of the equations which will simulate the robot’s model and the

controller will be explained from zero.

Several tests will be performed in order to check the response of the algorithms and programmes to different

casuistry and eventually, a graph for each corresponding test will be drawn to show the behaviour of the system.

INDEX

Acknowledgements 9

Synopsis 11

Index 13

Index of tables 15

Index of figures 17

Notation 21

1 Preface 23
1.1 The cart-pole 23
1.2 The Segway 24
1.3 Our project 25

2 Julia 29
2.1 Introduction 29
2.2 Features analysis 30

2.2.1 Technical computing 30
2.2.2 Compiling 30
2.2.3 Type checking 30
2.2.4 Speed 31
2.2.5 Multiple dispatch 32
2.2.6 Composability 32
2.2.7 Parallelism 33
2.2.8 Package manager 33

3 NVIDIA Jetson Nano 35
- 35
3.1 Introduction 35
3.2 Getting started 38
3.3 Configuration of the Jetson Nano 40

4 The system 45
4.1 Introduction 45
4.2 Equations of the system 46

5 Controller design 51
5.1 Basic concepts 51
5.2 Mathematical development 52

5.2.1 Model transformation 52

 Index 14

5.2.2 Dealing with constraints 53
5.2.3 Change to incremental model 56
5.2.4 Model integration 57

5.3 Particularization 59

6 The coding 61
6.1 Mathematical clarifications 61
6.2 Optimizer in Julia 64

6.2.1 JuMP 64
6.2.2 Ipopt 66
6.2.3 Optimization problem 67

6.3 Code in Julia 68
6.3.1 Optimization 68
6.3.2 Plotting 73

6.4 Code in MATLAB 75
6.4.1 Optimization 75
6.4.2 Plotting 78

7 Results 81
7.1 PC specifications 81
7.2 Julia’s programme 81

7.2.1 In the PC 81
7.2.2 In Jetson Nano 93

7.3 MATLAB’s programme 104
7.3.1 Steady reference 105
7.3.2 Changing reference 107
7.3.3 Using linearised model 110

8 Conclusions 113
8.1 Contributions 113
8.2 What is next? 114

9 References 11

INDEX OF TABLES

Table 3-1. Jetson Nano’s technical specifications. 36

Table 3-2. Comparison between Nano and Nano 2GB development kits. 37

Table 4-1. Mathematical development to obtain system's equations. 47

Table 7-1. PC characteristics. 81

INDEX OF FIGURES

Figure 1-1. Cart-pole system. 23

Figure 1-2. Pendulum's stable position. 24

Figure 1-3. Pendulum's unstable position. 24

Figure 1-4. A Segway. 24

Figure 1-5. Segway's analogy. 25

Figure 1-6. Physical implementation of the previous project. 26

Figure 1-7. Electronics scheme of the previous project. 26

Figure 3-1. NVIDIA Jetson Nano Developer Kit. 35

Figure 3-2. NVIDIA Jetson Nano module with passive heatsink. 37

Figure 3-3. Developer kit module and carrier boards: front and rear views. 39

Figure 3-4. Developer kit carrier boards: rev A02 top view. 39

Figure 3-5. Developer kit module and carrier board: rev B01 top view. 39

Figure 3-6. MPU-6050 detailed view. 41

Figure 3-7. J41 header pin layout. 42

Figure 4-1. Inverted pendulum. 45

Figure 4-2. Two-wheeled inverted pendulum example. 46

Figure 4-3. Schematic of the robot. 46

Figure 6-1. JuMP's logo. 64

Figure 6-2. COIN-OR's logo. 66

Figure 7-1. Tilt (steady reference). 82

Figure 7-2.Tilt's speed (steady reference). 83

Figure 7-3. Wheels' speed (steady reference). 83

Figure 7-4. Control action (steady reference). 84

Figure 7-5. Julia's optimization time with steady reference. 84

 Index of figures 18

Figure 7-6. Julia's compiler behaviour. 85

Figure 7-7. Tilt (distant starting point). 86

Figure 7-8. Tilt's speed (distant starting point). 86

Figure 7-9. Wheels' speed (distant starting point). 87

Figure 7-10. Control action (distant starting point). 87

Figure 7-11. Tilt (changing reference). 88

Figure 7-12. Tilt's speed (changing reference). 89

Figure 7-13. Wheels' speed (changing reference). 89

Figure 7-14. Control action (changing reference). 90

Figure 7-15. Optimization time. 91

Figure 7-16. Solving time with changing setpoints. 91

Figure 7-17. Solving time (linearised model). 91

Figure 7-18. Linear vs. nonlinear tilt. 92

Figure 7-19 Linear vs. nonlinear tilt's speed. 92

Figure 7-20 Linear vs. nonlinear wheels' speed. 93

Figure 7-21 Linear vs. nonlinear control action. 93

Figure 7-22. Tilt (steady reference). 94

Figure 7-23. Tilt's speed (steady reference). 95

Figure 7-24. Wheels' speed (steady reference). 95

Figure 7-25. Control action (steady reference). 96

Figure 7-26. Julia's optimization time with steady reference (Jetson Nano). 96

Figure 7-27. Julia's compiler behaviour (Jetson Nano). 97

Figure 7-28. Tilt (distant starting point). 97

Figure 7-29. Tilt's speed (distant starting point). 98

Figure 7-30. Wheels' speed (distant starting point). 98

Figure 7-31. Control action (distant starting point). 99

Figure 7-32. Optimization time (distant starting point). 99

Figure 7-33. Tilt (changing reference). 100

Figure 7-34. Tilt's speed (changing reference). 100

Figure 7-35. Wheels' speed (changing reference). 101

Figure 7-36. Control action (changing reference). 101

Figure 7-37. Optimization time. 102

Figure 7-38. Solving time with changing setpoints. 102

Figure 7-39. Linear vs. nonlinear tilt. 103

Figure 7-40. Linear vs. nonlinear tilt's speed. 103

Figure 7-41. Linear vs. nonlinear wheels' speed. 104

Figure 7-42. Linear vs. nonlinear control action. 104

Figure 7-43. Tilt (steady reference). 105

Figure 7-44. Tilt's speed (steady reference). 105

Figure 7-45. Wheels' speed (steady reference). 106

Figure 7-46. Control action (steady reference). 106

Figure 7-47. MATLAB's optimization time with steady reference. 107

Figure 7-48. Tilt (changing reference). 108

Figure 7-49. Tilt's speed (changing reference). 108

Figure 7-50. Wheels' speed (changing reference). 109

Figure 7-51. Control action (changing reference). 109

Figure 7-52. MATLAB's computation time. 110

Figure 7-53. Linear vs. nonlinear tilt. 110

Figure 7-54. Linear vs. nonlinear tilt's speed. 111

Figure 7-55. Linear vs. nonlinear wheels' speed. 111

Figure 7-56. Linear vs. nonlinear control action. 112

NOTATION

𝑚𝑟 Wheel’s mass

𝑅 Wheel’s radium

𝑀 Mass of the vehicle’s body (without wheels)

𝐿 Distance from the wheel’s axle and the centre of gravity

𝑔 Gravity

𝜃 Wheels’ rolling angle

𝜙 Tilt with respect to the vertical

𝜙0 Centre of gravity deviation tilt

𝜙𝑐 Corrected tilt

𝐿 Lagrangian

𝑇𝑡𝑟𝑎𝑠 Translational kinetic energy

𝑇𝑟𝑜𝑡 Rotational kinetic energy

𝑉 Potential energy

𝑥𝑟 Horizontal position of the wheels

𝑥̇𝑟 Horizontal velocity of the wheels

𝑦𝑟 Vertical position of the wheels

𝑦̇𝑟 Vertical velocity of the wheels

𝑥𝑚 Horizontal position of the centre of mass

𝑥̇𝑚 Horizontal velocity of the centre of mass

𝑦𝑚 Vertical position of the centre of mass

𝑦̇𝑚 Vertical velocity of the centre of mass

𝑥𝑘 State of the system at sample 𝑘.

𝑢𝑘 Control action at sample 𝑘.

𝑦𝑘 Output of the system at sample 𝑘.

𝐴 State matrix.

𝐵 Input matrix.

𝐶 Output matrix.

𝐷 Feedthrough matrix.

𝑉 Cost function.

𝑄 States weighting matrix.

𝑅 Inputs weighting matrix.

𝐻 Quadratic objective term.

 Notation 22

𝑓 Linear objective term.

𝐴𝑞𝑝 Linear inequality constraints.

𝑏𝑞𝑝 Linear inequality constraints.

𝑥𝑘 State incremental variable.

𝑦̂𝑘 Output incremental variable.

𝑢̂𝑘 Input incremental variable.

1 PREFACE

he aim of this project is to create a controller capable of leading an inverted-pendulum-like robot, based

on the popular urban transport Segway. Nevertheless, its initial purpose was not only to program a

controller for the robot, but also to implement it in a real prototype which would have included several

improvements with respect to its previous versions. Sadly, public health situation in Spain has prevented us from

doing so due to the impossibility of 3D-printing the necessary parts of the robot.

1.1 The cart-pole

An inverted pendulum-like robot is one which includes, mainly, two wheels and a body. The body stands over

the wheels, which share an axle, and it is supposed to hold all the electronics, such as the microcontroller, the

engines, the batteries, etc. inside.

Its functioning principle is based on the cart-pole system, which is shown below:

Figure 1-1. Cart-pole system.

The cart-pole is, as its name says, a pole (an inverted pendulum, where the mass is placed above (and a cart).

The cart is allowed to move horizontally thanks to having a set of two wheels, which are themselves thrusted by

a motor, whose exerted force is represented in the image as the force 𝐹⃗. Along with this, there is a pole fixed to

the cart by a rotation joint, which allows it to freely oscillate around the joint.

This system is by itself highly unstable, and the two equilibrium points numerical analysis throws are the one

T

Preface

24

with the pole vertically aligned facing down and the other facing up:

Figure 1-2. Pendulum's stable position.

Figure 1-3. Pendulum's unstable position.

Being the first one not very interesting to analyse, the facing-up pendulum was the object of study of this project,

i.e., it will be tried to drive an inverted pendulum-like robot to the unstable point

1.2 The Segway

A commercial robot based on the inverted pendulum is the Segway. It is a robot on which a person stands and

is driven by the subject’s inclination:

Figure 1-4. A Segway.

When a person stands on the Segway and leans forward, the robot will make the wheels roll to compensate that

temporal imbalance and it will try to make the robot stand in a vertical position. Thus, if the controller keeps on

leaning forward, the wheels will keep on rolling forward—and hence, the robot will go forward as well—until

the person desires to stop being inclined.

The problem the Segway’s controller must solve every time is analogue to balancing a vertically placed stick

(or broom) with a finger:

25 Implementation of a control algorithm for a self-balancing robot in Julia in a Jetson Nano

Figure 1-5. Segway's analogy.

It can be easily appreciated that Segway are robots based on the cart-pole, as most of the mass is distributed

throughout the body, which is driven by the force created by the rolling wheels.

1.3 Our project

The case study of this work initially consisted of a self-made robot based on Segway’s structure being controlled

by the new Jetson Nano, a minicomputer with very good specifications and community response throughout the

net.

The aim was to build—by 3d printing—a robot from scratch and design the algorithm that would drive it to

reach the balance point explained above.

For the algorithm, Julia language was chosen. It was elected due to being a language with very good timing

specifications, i.e., a fast one, a very needed characteristic for driving the robot through the setpoints, as slow

calculations would mean that the robot could reach instability in the calculation time.

Some pictures of the previous project are shown below to inspire the reader about what it was going to be

performed throughout the project:

Preface

26

Figure 1-6. Physical implementation of the previous project.

Figure 1-7. Electronics scheme of the previous project.

As it can be seen in the previous pictures, an Arduino UNO was the brain in charge of performing the calculations

of control actions based in how inclined was the vehicle—measurements given by an IMU—and the setpoints,

which could be stated in the programme.

Even so, it has been written in past because the improvements could not be implemented due to the restrictions

imposed by the global health situation caused by COVID-19 and other external factors out of the control of the

27 Implementation of a control algorithm for a self-balancing robot in Julia in a Jetson Nano

author.

Instead of that, it was thought that using the Jetson Nano and Julia to create a non-previously developed

programme would be challenging enough and it would also contribute to the current state of art of both Julia and

the Jetson Nano, which are both recent technologies under development and with very scarce documentation to

read about.

This document covers what Julia and the Jetson Nano are, telling about all their specifications, specific

installation procedures and configuration issues. After that, some mathematical developments are shown to

demonstrate where the equations come from, to subsequently—in the following chapter—demonstrate the

equations the controller should have when programming. Then, the specific programmes used in MATLAB and

Julia are shown and explained in detail and compared to eventually show the results, performed not only in the

Jetson Nano, but also in the author’s PC. Finally, the conclusions drawn from this work are summed up.

2 JULIA

ulia is a modern, functional programming language, developed in 2009 by Jeff Bezanson, Stefan Karpinski,

Viral B. Shah, and Alan Edelman, who had the idea of designing a language that was free, high-level, and

fast. Its creators wanted to combine the readability and simplicity of Python with the speed of statically

typed, compiled languages like C. The language was officially unveiled to the world in 2012 when the team

launched a website with a blog post explaining the language’s mission.

2.1 Introduction

As said, Julia is a relatively new language and is still under development. This means there are more bugs and

fewer native packages than it would be expected from a more mature language.

Established languages like Python and Java also have much larger communities, making it easier to find tutorials,

third-party packages, and answers to one’s questions. On the other hand, Julia’s speed, ease of use, and suitability

for big-data applications (through its high-level support for parallelism and cloud computing) have helped it to

grow quickly and it continues to attract new users. Nonetheless, Julia changes frequently due to being a relatively

new programming language. In this project, version 1.4.2 has been the chosen one.

A strong point about Julia is that is an interpreted language, just like MATLAB or Python—two languages to

which Julia will be compared throughout this project—but when the time of compiling arrives, it behaves just

as a compiled language—thanks to JIT—as C, for instance, gaining that comparable speed for which it is widely

known. Even so, this celerity superior to interpreted languages shall be beheld after the first cycle.

Although Julia is designed as a technical language first, this does not mean that it cannot be used for other things.

Just like Python, Julia can also be used for writing software in the widest variety of application domains. This is

because Julia does not include language constructs designed to be used within a specific application domain.

Julia lets you write UIs, statically compile your code, or even deploy it on a webserver. It also has powerful

shell-like capabilities for managing other processes. It provides Lisp-like macros and other metaprogramming

J

(Did we mention it should be as fast as C?)

- julialang.org -

Julia

30

facilities. The standard library also provides asynchronous I/O, process control, logging, profiling, and more.

However, this chapter is not intended as a guide to learn Julia, but a review of the aspects that lead us to choose

it above other programming languages. These main features are the following, and some of them will be treated

in detail subsequently:

• Julia is compiled, not interpreted. For faster runtime performance, Julia is just-in-time (JIT) compiled

using the LLVM compiler framework. At its best, Julia can approach or match the speed of C.

• Julia is interactive. Julia includes a REPL (read-eval-print loop), or interactive command line, like

what Python offers. Quick one-off scripts and commands can be punched right in.

• Julia has a straightforward syntax. Julia’s syntax is similar to Python’s—terse, but also expressive

and powerful.

• Julia combines the benefits of dynamic typing and static typing. You can specify types for variables,

like “unsigned 32-bit integer”. Furthermore, it is one recommended good programming practice [1].

But you can also create hierarchies of types to allow general cases for handling variables of specific

types—for instance, to write a function that accepts integers without specifying the length or signing of

the integer. You can even do without typing entirely if it is not needed in a particular context.

• Julia can call Python, C, and Fortran libraries. Julia can interface directly with external libraries

written in C and Fortran. It is also possible to interface with Python code by way of the PyCall library,

and even share data between Python and Julia.

• Julia supports metaprogramming. Julia programs can generate other Julia programs, and even

modify their own code, in a way that is reminiscent of languages like Lisp.

• Julia has a full-featured debugger. Julia 1.1 introduced a debugging suite, which executes code in a

local REPL and allows you to step through the results, inspect variables, and add breakpoints in code.

You can even perform fine-grained tasks like stepping through a function generated by code.

2.2 Features analysis

2.2.1 Technical computing

Designed with data science in mind, Julia excels at numerical computing with a syntax that is great for math,

with support for many numeric data types, and providing parallelism out of the box, but more on that last bit

later. Julia’s multiple dispatch is a natural fit for defining number and array-like data types.

The Julia REPL (Read/Evaluate/Print/Loop) provides easy access to special characters, such as Greek alphabetic

characters, subscripts, and special maths symbols. If the backslash is typed, a string can then be typed (usually

the equivalent LATEX string) to insert the corresponding character. This is great as it allows developers to just

derive some equation and directly type it in.

2.2.2 Compiling

Julia is a compiled language—that is one of the reasons that it performs faster than interpreted languages.

However, unlike traditional compiled languages, Julia is not strictly statically typed. It uses JIT (Just In Time,

i.e. every statement is run using compiled functions which are either compiled right before they are used, or

cached compilations from before) compilation to infer the type of each individual variable in your code. The

result is a dynamically typed language that can be run from the command line like Python, but that can achieve

comparable speeds to compiled languages like C and Go.

2.2.3 Type checking

Other languages as Python are dynamically typed, meaning that a variable can be declared without specifying

its type; the Python interpreter determines the type from the value provided (e.g. m = 5 will be interpreted as

an integer). Variables in Julia can be declared in this way as well; however, it is possible to specify types, or a

range of possible types, for a variable. Specifying the expected types for a function helps the compiler optimize

for better performance and can also prevent errors resulting from unexpected or incorrect input.

31 Implementation of a control algorithm for a self-balancing robot in Julia in a Jetson Nano

2.2.4 Speed

It is hard to talk about Julia without talking about speed. Julia prides itself on being very fast.

Unlike Python, Julia, which is interpreted, is a compiled language that is primarily written in its own base.

Nevertheless, unlike other compiled languages like C, Julia is compiled at run-time, whereas traditional

languages are compiled prior to execution. Julia, especially when written well, can be as fast and sometimes

even faster than C. As mentioned before, Julia uses the Just In Time (JIT) compiler and compiles incredibly fast,

though it compiles more like an interpreted language than a traditional low-level compiled language like C, or

Fortran.

Julia is faster than other scripting languages, allowing you to have the rapid development of Python/MATLAB/R

while producing code that is as fast as C/Fortran. Julia complies codes on the fly, reaching an incredible velocity.

It combines the method of interpreting languages, such as Python, that transform the code into bytecode on the

fly, with compiled languages (C/Fortran), that compile their code into machine code and then running the

resulted executable. This approach allows Julia to produce similar speeds to C, while having a code like Python

or MATLAB.

To demonstrate Julia’s computational power, a demonstration section of code is shown, displaying a brief

application whose intention is merely to sum an array of random numbers:

julia> x = rand(1000);

julia> function sum_global()
 s = 0.0
 for i in x
 s += i
 end
 return s
 end;

julia> @time sum_global()
 0.017705 seconds (15.28 k allocations: 694.484 KiB)
496.84883432553846

julia> @time sum_global()
 0.000140 seconds (3.49 k allocations: 70.313 KiB)

496.84883432553846

If slight changes are performed, such as passing x as an argument to the function, it no longer allocates memory

(the allocation reported below is due to running the @time macro in global scope) and is significantly faster after

the first call:

julia> x = rand(1000);

julia> function sum_arg(x)
 s = 0.0
 for i in x
 s += i
 end
 return s
 end;

julia> @time sum_arg(x)
 0.007701 seconds (821 allocations: 43.059 KiB)
496.84883432553846

julia> @time sum_arg(x)
 0.000006 seconds (5 allocations: 176 bytes)

496.84883432553846

Julia

32

The 5 allocations seen are from running the @time macro itself in global scope. If we instead run the timing in

a function, we can see that indeed no allocations are performed:

julia> time_sum(x) = @time sum_arg(x);

julia> time_sum(x)
 0.000001 seconds

496.84883432553846

Julia’s compiler does not have to know beforehand what type of variable it is being tried to use, but it cleverly

plans whenever a function is called. When a function is called in Julia, the arguments are already known; Julia’s

compiler uses this knowledge to figure out the exact CPU instructions necessary for the arguments by peeking

into the function. Once the exact instructions are mapped out, Julia can execute them very quickly—therefore,

calling a function in Julia takes long the first time. During this period, Julia’s compiler would be figuring out all

the types of variables being used and compiles them all into fast and precise CPU instructions. This means that

when the same function is called repeatedly, consequent calls run much, much faster.

2.2.5 Multiple dispatch

There exist two types of programming languages, static languages, where it is required to have a type computable

before the execution of the program, and dynamic languages, where nothing is known about types until run time,

when the actual values manipulated by the program are available.

Multiple dispatch refers to declaring different versions of the same function to better handle input of different

types. For example, two different reverse functions might be written, one that accepts an array as an argument

and one that accepts a string. The Julia interpreter will check the type of the argument whenever reverse is

called and dispatch it to the version matching that type. A multiple dispatch environment ensures that, depending

on the variables provided to the function, different results will be produced.

Type stability is the idea that there is only 1 possible type which can be output from a method. For example, the

reasonable type to output from *(::Float64,::Float64) is a Float64. It does not matter what you give it,

it will produce a Float64. This right here is multiple dispatch: the * operator calls a different method depending

on the types that it sees. When it sees floats, it will generate floats.

Julia allows for unicode characters, and these can be used by tab completing Latex-like statements. Also,

multiplication by a number is allowed without the * if followed by a variable. For example, the following is

allowed Julia code:

α = 0.5
∇f(u) = α*u; ∇f(2)
sin(2π)

The default behaviour in Julia when types are omitted is to allow values to be of any type. Thus, one can write

many useful Julia functions without ever explicitly using types. When additional expressiveness is needed,

however, it is easy to gradually introduce explicit type annotations into previously “untyped” code. Adding

annotations serves three primary purposes: to take advantage of Julia’s powerful multiple-dispatch mechanism,

to improve human readability, and to catch programmer errors.

2.2.6 Composability

Julia packages naturally work well together. This is thanks to the language’s function composition which makes

it easy to pass two or more functions as arguments. Julia has a dedicated function composition operator (∘) for

achieving this.

For example, the sqrt() and + functions can be composed like this:

julia> (sqrt ∘ +)(3, 5)
(sqrt ∘ +)(3, 5)

which adds the numbers first, then finds the square root.

This example composes three functions.

33 Implementation of a control algorithm for a self-balancing robot in Julia in a Jetson Nano

julia> map(first ∘ reverse ∘ uppercase, split("you can compose functions like
this"))
6-element Array{Char,1}:
'U'
'N'
'E'
'S'
'E'
'S'

This was just a basic example, but Julia makes it easy for packages to communicate with each other. Matrices

of unit quantities, or data table columns of currencies and colours, just work—and with good performance.

2.2.7 Parallelism

Math and scientific computing thrive when you can make use of the full resources available on a given machine,

especially multiple cores. In fact, data has gotten so huge that it has become unpractical to run applications on a

single computer. Nowadays, people are computing big data on multiple nodes in a cluster to decrease the

execution time by running tasks in parallel, but unfortunately many languages were never designed for this.

For instance, both Python and Julia can run operations in parallel, but Julia was designed for parallelism from

the ground-up and provides built-in primitives for parallel computing at every level: instruction level parallelism,

multi-threading, and distributed computing. The Celeste.jl project achieved 1.5 PetaFLOP/s on the Cori

supercomputer at NERSC using 650,000 cores [2].

It is possible to run code in parallel in Python with the purpose of taking advantage of all of the CPU cores on

your system. However, Python’s methods for parallelizing operations often require data to be serialized and

deserialized between threads or nodes. This requires importing modules and involves some quirks that can make

concurrency difficult to work with. Julia’s parallelization is more refined. In contrast, it has top-level support for

parallelism and a simple, intuitive syntax for declaring that a function should be run concurrently:

nheads = @parallel (+) for i = 1:100000000

 rand(Bool)

end

2.2.8 Package manager

Julia’s Pkg package manager comes loaded with its own REPL from which you can build, add, remove, and

instantiate packages. This is especially convenient because of Pkg’s tie-in with Git.

Pkg is designed around “environments” instead of a single global set of packages like traditional package

managers. In Julia, packages can either be local to an individual project, or shared and selected by name.

Environments are maintained in a manifest file, containing the exact set of packages and versions which a

particular application needs.

Thanks to such environments, each application maintains its own its own independent set of package versions—

this greatly improves reproducibility, allowing developers to check out a project on a new system, simply

materialize the environment described by its manifest file, and immediately be up and running with a known-

good set of dependencies.

Due to its built-in package manager, Julia already has over 4000 registered packages (and the number keeps

growing [3]). It also provides the possibility to resort to C, Fortran, and Python packages, making it easy to run

existing code.

Even so, Julia is a relatively new language and is still under development. This means there are more bugs and

fewer native packages than it would be expected from a more mature language. Established languages like

Python and Java also have much larger communities, making it easier to find tutorials, third-party packages, and

answers to one’s questions. It is possible to run Python libraries in Julia (through the PyCall package), and

C/Fortran libraries can be called and run directly from Julia code. This allows Julia users to access a wider range

of external libraries than it would otherwise have, but Python still has the advantage of a large set of native

packages and a vibrant community.

Julia

34

On the other hand, Julia’s speed, ease of use, and suitability for big-data applications (through its high-level

support for parallelism and cloud computing) have helped it to grow quickly and it continues to attract new

users. Julia developers are already working at companies including Google, NASA, and Intel, and major projects

like RStudio have announced plans to add support for Julia.

3 NVIDIA JETSON NANO

he NVIDIA Jetson platform introduced six years ago revolutionized embedded computing by delivering

the power of artificial intelligence to edge computing devices. NVIDIA Jetson today is widely used in

diverse fields such as robotics, retail, industrial, agriculture, and AIoT—also called intelligent IoT,

artificial intelligence meeting internet of things—.

Figure 3-1. NVIDIA Jetson Nano Developer Kit.

3.1 Introduction

The science of AI computing is changing fast, and new neural network architectures that deliver better accuracy

and performance are being invented by researchers. AI practitioners today use a wide variety of AI models and

frameworks in their projects, so the ideal platform for learning and creating AI projects is one flexible enough

to run a diverse set of AI models and also powerful enough to deliver the performance required to create

meaningful interactive AI experiences.

Hardware, low power consumption, high accuracy and performance are crucial factors for deep learning

applications. High level graphics processing units (GPU) are commonly used in high performance deep learning

applications. However, it is a lot in terms of cost and power consumption to build a high-performance platform.

NVIDIA has a specific product line with great computing capabilities for AI and Machine Learning such as the

T

The new Jetson Nano is the ultimate starter AI

computer that allows hands-on learning and

experimentation at an incredibly affordable price.

- Deepu Talla, vice president and general manager of

Edge Computing at NVIDIA -

NVIDIA Jetson Nano

36

Jetson AGX XAVIER or Jetson TX2, but its price skyrockets for those who just want to do a specific project

or test the technology.

In March 2019, NVIDIA launched the original Jetson Nano Developer Kit and enabled developers, students,

and enthusiasts alike to learn, explore, and build AI applications for edge devices. The Jetson Nano offers a

much cheaper solution. In addition, it is itself the size of a SO-DIMM RAM module of only 69.6 x 45 millimetres

and that makes it especially interesting to easily insert it into a final product by simply including a socket type

connector of the same type together with its circuitry necessary for its operation. The adoption by the enthusiast

community was quite rapid. The Jetson Nano Developer Kit not only supports all popular AI frameworks and

networks, but also delivers a powerful AI performance.

NVIDIA® Jetson Nano™ Developer Kit is a small, powerful computer that lets running multiple neural networks

in parallel for applications like image classification, object detection, segmentation, and speech processing. All

in an easy-to-use platform that runs in as little as 5 watts. Useful for deploying computer vision and deep

learning, Jetson Nano runs Linux and provides 472 GFLOPS of FP16 compute performance with 5-10W of

power consumption. Nonetheless, even being created with those purposes in mind, it is also feasible for

developing a myriad of different projects, hence being feasible for our project as well.

The compute performance, compact footprint, and flexibility of Jetson Nano brings endless possibilities to

developers for creating AI-powered devices and embedded systems, which could be beneficial, if not crucial, in

future enhancements of the vehicle, just as image recognition for self-guidance.

The Jetson Nano can be purchased either as a development kit or a single module. In either way, the

specifications of it are listed in the table below:

Table 3-1. Jetson Nano’s technical specifications.

GPU 128-core Maxwell

CPU Quad-core ARM A57 @ 1.43 GHz

Memory 4 GB 64-bit LPDDR4 25.6 GB/s

Storage microSD (not included)

Video Encode 4K @ 30 | 4x 1080p @ 30 | 9x 720p @ 30 (H.264/H.265)

Video Decode 4K @ 60 | 2x 4K @ 30 | 8x 1080p @ 30 | 18x 720p @ 30 (H.264/H.265)

Camera 2x MIPI CSI-2 DPHY lanes

Connectivity Gigabit Ethernet, M.2 Key E

Display HDMI and display port

USB 4x USB 3.0, USB 2.0 Micro-B

Others GPIO, I2C, I2S, SPI, UART

Mechanical 69 mm x 45 mm, 260-pin edge connector

The Jetson Nano Developer Kit is an easy way to get started using Jetson Nano, including the module, carrier

board, and software. What is included:

• 80x100mm Reference Carrier Board

• Jetson Nano Module with passive heatsink

• Pop-Up Stand

• Getting Started Guide

(the complete devkit with module and heatsink weighs 138 grams)

37 Implementation of a control algorithm for a self-balancing robot in Julia in a Jetson Nano

Figure 3-2. NVIDIA Jetson Nano module with passive heatsink.

NVIDIA Jetson Nano is an embedded system-on-module (SoM) and developer kit from the NVIDIA Jetson

family, including an integrated 128-core Maxwell GPU, quad-core ARM A57 64-bit CPU, 4GB LPDDR4

memory, along with support for MIPI CSI-2 and PCIe Gen2 high-speed I/O. There is also the Jetson Nano 2GB

Developer Kit with 2GB memory and the same processing specs.

Here, a table comparing the main aspects of Nano and Nano 2GB developer kits is show, not only with the

purpose of reporting their main characteristics, but also to give the reader a quick reference to compare both of

them, in the case the 2GB option was preferred:

Table 3-2. Comparison between Nano and Nano 2GB development kits.

 Jetson Nano Developer Kit Jetson Nano 2GB Developer Kit

USB
(4x) USB 3.0 Type-A, USB

2.0 Micro-B

(1x) USB 3.0 Type-A, (2x) USB 2.0 Type-

A, USB 2.0 Micro-B

Camera

(2x) MIPI CSI-2 x2 (15-

position Camera Flex

Connector)

(1x) MIPI CSI-2 x2 (15-position Camera

Flex Connector)

Display HDMI 2.0, DisplayPort HDMI 2.0

Wireless M.2 Key-E (PCIe x1) 802.11ac USB dongle*

Ethernet Gigabit Ethernet (RJ45)

Storage MicroSD card slot

NVIDIA Jetson Nano

38

Other 40-pin Header - (3x) I2C, (2x) SPI, UART, I2S, GPIOs

Power
Micro-USB (5V⎓2.5A) or DC

barrel jack (5V⎓4A)
USB-C (5V⎓3A)

3.2 Getting started

What will be needed:

• Power Supply

o 5V⎓2.5A Micro-USB adapter.

o 5V⎓4A DC barrel jack adapter, 5.5mm OD x 2.1mm ID x 9.5mm length, centre-positive. The

one used in this project can be found in Amazon [4].

o See the Jetson Nano Supported Component List and Power Supplies documents for more

information. These documents can be found in the Jetson Download Center.

• MicroSD card (32GB UHS-1 recommended minimum).

• USB keyboard and mouse.

• Computer display (HDMI or DP).

• HDMI cable.

• USB Wi-Fi plug.

Regarding the power supply, it was initially chosen to use a micro-USB option. However, every time the Nano

was turned on, a warning appeared stating that the computer could not run in maximum power mode. In addition,

it also warned that the system was being throttled due to insufficient input voltage. Nevertheless, the micro-USB

to USB cable and the AC/DC converter (both taken from a mobile phone) met the specifications suggested by

NVIDIA in its website.

After this inconvenience, it was thought that a barrel jack power supply of 5 volts and 4 amperes would do the

job. However, power supplies suggested by NVIDIA’s official documentation were either expensive, American-

plugged or, in the case of European versions, sold out. Thankfully, a 5V 4A barrel jack power supply found in

Amazon worked, despite not having even one opinion. This power supply never gave a problem and the

warnings about thermal throttling never appeared again.

To configure the Jetson Nano Developer Kit, the following steps will be followed:

• Follow the getting started guide [5] to setup the devkit and format the MicroSD card.

• Plug in an HDMI display into Jetson, attach a USB keyboard & mouse, and apply power to boot it

up.

• Visit the Embedded Developer Zone [6] and Jetson Nano Developer Forum [7] to access the latest

documentation and downloads.

To follow the guide above, it has been considered useful to provide schematics of the Nano:

39 Implementation of a control algorithm for a self-balancing robot in Julia in a Jetson Nano

Figure 3-3. Developer kit module and carrier boards: front and rear views.

Figure 3-4. Developer kit carrier boards: rev A02 top view.

Figure 3-5. Developer kit module and carrier board: rev B01 top view.

The guide listed above is pretty straightforward and followed its instructions, the setup will be ready quite fast.

It has been considered not necessary to insert the whole guide in the text of this project but the links to it, as it

could change through time and leave the one written here useless.

NVIDIA Jetson Nano

40

All the latest documentation can be found in the Jetson Download Center [8]. There, there are included the

development kit user guide, the SD card image, etc. From the latest versions to the oldest ones, provided a new

development kit is released.

3.3 Configuration of the Jetson Nano

This project began with the idea of attaching the Nano to the Segway’s body and to make it stabilise. Sadly, the

global pandemic prevented us from doing so due to mobility restrictions and the impossibility of acquiring the

3d printing materials and going to the laboratories to make the printings.

Nonetheless, this was not known in the beginning of the project and some progresses were made right before

the pandemic restrictions exploded. In this section, those achievements are listed, as it is supposed that they will

be needed for further enhancements of the robot.

Firstly, Visual Studio Code will be installed to grant a quick and easy access to Julia, as it has been done in this

project’s development due to being more appealing to program from there instead of from Julia’s interactive

application.

Type the following commands in a terminal:

$ sudo apt-get update

$ sudo apt-get install curl

$ curl -L https://github.com/toolboc/vscode/releases/download/1.32.3/code-
oss_1.32.3-arm64.deb -o code-oss_1.32.3-arm64.deb

$ sudo dpkg -I code-oss_1.32.3-arm64.deb

After these commands, Visual Studio Code will be installed in the Jetson Nano.

To install Julia in the Nano, the following steps will be followed:

1. Go to Julia Downloads page [9].

2. Download the Generic Linux Binaries for ARM aarch64.

3. Follow platform instructions for Linux [10].

From that, the Julia extension can be installed as well. Be sure to follow Visual Studio Code’s instructions for

installing Julia [11].

After having successfully turned the Nano on for the first time, it was tried to connect the IMU (inertial

measurement unit) MPU6050 with the Jetson and make it read its values. The decision to use the MPU6050 was

based on the fact that it was the device used in the previous versions of the project.

The MPU6050 is a 6-DoF Accelerometer and Gyroscope. It features three 16-bit analogue-to-digital converters

(ADCs) for digitizing the gyroscope outputs and three 16-bit ADCs for digitizing the accelerometer outputs. For

precision tracking of both fast and slow motions, the parts feature a user-programmable gyroscope full-scale

range of ±250, ±500, ±1000, and ±2000°/sec (dps) and a user-programmable accelerometer full-scale range of

±2g, ±4g, ±8g, and ±16g. More information can be found inside its datasheet.

https://github.com/toolboc/vscode/releases/download/1.32.3/code-oss_1.32.3-arm64.deb%20-o%20code-oss_1.32.3-arm64.deb
https://github.com/toolboc/vscode/releases/download/1.32.3/code-oss_1.32.3-arm64.deb%20-o%20code-oss_1.32.3-arm64.deb

41 Implementation of a control algorithm for a self-balancing robot in Julia in a Jetson Nano

Figure 3-6. MPU-6050 detailed view.

It's easy to use the MPU6050 sensor with CircuitPython and the Adafruit CircuitPython MPU6050 library. This

library allows to easily write Python code that reads the acceleration and adjust the measurement settings. This

sensor can be used with any CircuitPython microcontroller board or with a Linux single board computer that

has GPIO and Python thanks to Adafruit_Blinka, the CircuitPython-for-Python compatibility library. But to

utilize it, Python must be installed on the Nano beforehand. To do this, open a terminal and execute the following

command:

$ sudo apt-get install python3-dev

Next, go to Visual Studio Code and install the Python extension. It is utterly straightforward.

Afterwards, open a Python session in Visual Studio. From the terminal, type the following command to install

the library:

$ sudo pip3 install adafruit-circuitpython-mpu6050

Additional information about Adafruit _CircuitPython_MPU6050 can be found in the Adafruit’s website [12].

And that is all, at least for now, because anyone could run a programme based on this library, but first, it would

be necessary to connect the MPU to the Jetson Nano. To do this, knowing the J41 header of the Jetson Nano

will be essential. Information about the header can be found in the user guide, however, for the sake of ease, in

[13] it has been developed a schematic of the pin arrangement, which is shown below:

NVIDIA Jetson Nano

42

Figure 3-7. J41 header pin layout.

43 Implementation of a control algorithm for a self-balancing robot in Julia in a Jetson Nano

The Jetson Nano has two UARTS, one on the J44 Serial Port header, and one on the J41 Expansion Header.

There are also provisions for Serial Peripheral Interface (SPI) ports. In the default Nano Image configuration,

the Jetson Nano does not have SPI port access. However, the device tree can be reconfigured for accessing SPI

through the J41 Expansion Header. In the Jetson Nano J41 Pinout, NVIDIA recommends placement for two SPI

ports.

You may also hear the J41 Expansion Header referred to as the GPIO Header. The two terms are

interchangeable.

The remaining serial ports are Inter-integrated Circuit (I2C). The Inter-integrated Circuit protocol is intended

for short distance communication within a single device. One of the reasons that it is popular with the maker

crowd is that it only requires two wires (the “data” and the “clock”) along with power and ground to get

functioning.

Nano and the IMU are connected by I2C, so these pins—extracted from the J41 layout—will be useful to

interconnect them:

• I2C Bus 1 SDA is on Pin 3.

• I2C Bus 1 SCL is on Pin 5.

• I2C Bus 0 SDA is on Pin 27.

• I2C Bus 0 SCL is on Pin 28.

Before wiring the Jetson, make sure that the power is disconnected. When the power is plugged in, the power

and ground rails on the headers are always live, even if the processor itself is off.

For our case, Bus 1 will be wired:

• J41 Pin 3 (SDA) → MPU6050 SDA.

• J41 Pin 5 (SCL) → MPU6050 SCL.

• J41 Pin 1 (3.3V) → MPU6050 VCC.

• J41 Pin 6 (GND) → MPU6050 GND.

After wiring the board, plug the Jetson in. Once the Nano is up and running, open a terminal and execute:

$ i2cdetect -y -r 1

The default address of the MPU6050 is 0x68. It should be seen an entry of ’68’ in the addresses listed. If the

entry is not displayed, then the wiring is probably incorrect. When the address does not show up, then it will not

be able to use the device.

Subsequently, it will be possible to read values from the IMU in Python. To demonstrate the usage of the sensor,

it will be initialized and the acceleration, rotation, and temperature measurements from the board's Python REPL

will be read.

Run the following code to import the necessary modules and initialize the I2C connection with the sensor:

$ import time
$ import board
$ import busio
$ import adafruit_mpu6050

$ i2c = busio.I2C(board.SCL, board.SDA)
$ mpu = adafruit_mpu6050.MPU6050(i2c)
Now everything is ready to read values from the sensor using these properties:

• acceleration - The acceleration forces in the X, Y, and Z axes in m/s 2

• gyro - The rotation measurement on the X, Y, and Z axes in degrees/sec

• temperature - The temperature of the sensor in degrees C

For example, to print out the acceleration, gyro, and temperature values every second:
$ while True:
$ print("Acceleration: X:%.2f, Y: %.2f, Z: %.2f m/s^2"%(mpu.acceleration))

NVIDIA Jetson Nano

44

$ print("Gyro X:%.2f, Y: %.2f, Z: %.2f degrees/s"%(mpu.gyro))
$ print("Temperature: %.2f C"%mpu.temperature)
$ print("")
$ time.sleep(1)

Now, the values stated above should be displayed through the monitor.

4 THE SYSTEM

o successfully develop a working QP controller, a model of the inverted pendulum must be known and

developed. In this chapter, the model of the system will be deduced based on the Lagrange equations.

4.1 Introduction

Our system is based on the inverted pendulum—or cart-pole—which is a system composed of a cart and an

inverted pendulum placed above it. An illustrative picture of it is shown here:

Figure 4-1. Inverted pendulum.

The whole system will move in the vertical plane, i.e. it is a two-dimensional problem, whose objective will be

to drive the cart-pole to a reference equilibrium point, which is traditionally chosen as the one with zero

horizontal speed and zero angle and angular speed.

Some other solutions can lead to different equilibrium points such as an analogue to the one above but with

horizontal speed; it could be also possible to take the system to a trajectory where the pendulum is balancing

constantly without falling, which would need the cart to follow an horizontally periodic trajectory, moving back

and forth from left to right, and by choosing its top speed it would be also feasible to control how much the

pole’s angle varies.

Nevertheless, the self-balancing robot has a few differences concerning the inverted pendulum. First, there is no

cart, but two wheels attached to the inverted pendulum sharing an axle; second, it is not possible to assume that

T

The system

46

the mass is all concentrated in one point, but instead distributed throughout the whole body of the robot. In this

picture, a schematic of the problem is shown:

Figure 4-2. Two-wheeled inverted pendulum example.

Even so, the goal of its control is the same as the inverted pendulum: to reach an equilibrium point around

vertical alignment of the body, being wheels speed a chosen parameter. Nevertheless, it must be taken into

consideration that not every wheel speed can be chosen, as the dynamics of the system and the constraints

imposed may result in an infeasible problem.

4.2 Equations of the system

This section is meant to clarify where do the system equations come from. The variables to be used in the

following procedures are the ones that appear in the diagram below:

Figure 4-3. Schematic of the robot.

The notation of these variables that can be beheld in the scheme and their values are listed in the following table,

47 Implementation of a control algorithm for a self-balancing robot in Julia in a Jetson Nano

alongside a brief description of their meaning (under the name of ‘parameter’):

Parameter Notation Value

Wheel mass 𝑚𝑟 0.044 𝑘𝑔

Wheel radium 𝑅 0.053 𝑚

Mass of the vehicle without wheels 𝑀 0.745 𝑘𝑔

Distance from the wheel axis and the centre of gravity L 0.0805 𝑚

Gravity 𝑔 9.81
𝑚

𝑠2

Tilt with respect to the vertical 𝜙

Centre of gravity deviation tilt 𝜙0 𝑛/𝑎

Corrected tilt 𝜙𝑐

To clarify, as it does not appear in the figure, 𝜙𝑐 is the sum of the tilt plus the deviation:

𝜙𝑐 = 𝜙 + 𝜙0

To deduce the relations that rule the system, the Lagrange equations, which are now recalled, will be used:

𝑑

𝑑𝑡
(
𝜕𝐿

𝜕𝑞̇𝑘
) −

𝜕𝐿

𝜕𝑞𝑘
= 𝑄𝑘

𝑛𝑐 Eq. 4-1

Where 𝐿 is the Lagrangian, 𝑞𝑘 the generalised coordinates and 𝑄𝑘
𝑛𝑐 the non-conservative generalised forces.

Having that in mind, the process to obtain the model equations is as follows:

Table 4-1. Mathematical development to obtain system's equations.

𝐿 = 𝑇 − 𝑉 = 𝑇𝑡𝑟𝑎𝑠 + 𝑇𝑟𝑜𝑡 − 𝑉 (1) Lagrangian

𝑇𝑡𝑟𝑎𝑠 = 2
1

2
𝑚𝑟(𝑥̇𝑟

2 + 𝑦̇𝑟
2) +

1

2
𝑀(𝑥̇𝑚

2 + 𝑦̇𝑚
2) (2) Translational kinetic energy

𝑥𝑟 = 𝑅𝜃

𝑥̇𝑟 = 𝑅𝜃̇

(3) Position and horizontal speed of the

wheels

𝑦𝑟 = 𝑅

𝑦̇𝑟 = 0

(4) Position and vertical speed of the

wheels

𝑥𝑚 = 𝑅𝜃 + 𝐿𝑠𝑖𝑛(𝜙 + 𝜙0)

𝑥̇𝑚 = 𝑅𝜃̇ + 𝐿𝜙̇ cos(𝜙 + 𝜙0)

(5) Position and horizontal speed of the

vehicle’s centre of gravity

𝑦𝑚 = 𝑅 + 𝐿𝑐𝑜𝑠(𝜙 + 𝜙0)

𝑦̇𝑚 = −𝐿𝜙̇ sin(𝜙 + 𝜙0)

(6) Position and vertical speed of the

vehicle’s centre of gravity

𝑇𝑡𝑟𝑎𝑠 = (𝑚𝑟 +
1

2
𝑀)𝑅2𝜃̇2 +

1

2
𝑀𝐿2𝜙̇2

+𝑀𝑅𝐿𝜃̇𝜙̇ cos(𝜙 + 𝜙0)
(7) Translational kinetic energy

The system

48

𝑇𝑟𝑜𝑡 =
1

2
𝑚𝑟𝑅

2𝜃̇2 +
1

2
𝑀𝐿2𝜙̇2

(8) Rotational kinetic energy (with

respect to an axis coincident with the

wheels one)

𝑉 = 𝑀𝑔𝐿𝑐𝑜𝑠(𝜙 + 𝜙0)
(9) Potential energy (with respect to a

height equal to the centre of the

wheels)

𝐿 = (
3

2
𝑚𝑟 +

1

2
𝑀)𝑅2𝜃̇2 +𝑀𝐿2𝜙̇2

+𝑀𝑅𝐿𝜃̇𝜙̇ cos(𝜙 + 𝜙0)
− 𝑀𝑔𝐿𝑐𝑜𝑠(𝜙 + 𝜙0)

(10) Lagrangian with substitutions

𝜕𝐿

𝜕𝜃
= 0

(11) Derivative of the lagrangian with

respect to the wheels angle

𝜕𝐿

𝜕𝜃̇
= 2𝜃̇ (

3

2
𝑚𝑟 +

1

2
𝑀)𝑅2 +𝑀𝑅𝐿𝜙̇ cos(𝜙 + 𝜙0)

(12) Derivative of the lagrangian with

respect to the wheels speed

𝑑

𝑑𝑡

𝜕𝐿

𝜕𝜃̇
= 𝜃̈(3𝑚𝑟 +𝑀)𝑅

2 +𝑀𝑅𝐿𝜙̈ cos(𝜙 + 𝜙0)

− 𝑀𝑅𝐿𝜙̇2 sin(𝜙 + 𝜙0)

(13) Derivative with respect to time of

(12)

𝜕𝐿

𝜕𝜙𝑐
= −𝑀𝑅𝐿𝜙̇𝜃̇ sin(𝜙 + 𝜙0) + 𝑀𝑔𝐿𝑠𝑖𝑛(𝜙 + 𝜙0)

(14) Derivative of the lagrangian with

respect to the tilt

𝜕𝐿

𝜕𝜙̇𝑐
== 2𝑀𝐿2𝜙𝑑𝑜𝑡 + 𝜃̇𝑀𝑅𝐿𝑐𝑜𝑠(𝜙 + 𝜙0)

(15) Derivative of the lagrangian with

respect to the tilt derivative

𝑑

𝑑𝑡

𝜕𝐿

𝜕𝜙̇𝑐
= 2𝑀𝐿2𝜙̈ + 𝜃̈𝑀𝑅𝐿𝑐𝑜𝑠(𝜙 + 𝜙0)

− 𝜃̇𝜙̇𝑀𝑅𝐿𝑠𝑖𝑛(𝜙 + 𝜙0)

(16) Derivative with respect to time of

(15)

𝑑

𝑑𝑡

𝜕𝐿

𝜕𝜃̇
−
𝜕𝐿

𝜕𝜃
= 𝜏

𝑑
𝑑𝑡
𝜕𝐿

𝜕𝜙̇𝑐
−
𝜕𝐿

𝜕𝜙𝑐
= −𝜏

(17) Lagrange equations particularized

in the general coordinates based on

the engine’s torque.

𝑑

𝑑𝑡

𝜕𝐿

𝜕𝜃̇
−
𝜕𝐿

𝜕𝜃
+
𝑑

𝑑𝑡

𝜕𝐿

𝜕𝜙̇𝑐
−−

𝜕𝐿

𝜕𝜙𝑐
= 0

(18) Result of summing equations from

(17)

From the substitution of equations (11), (13), (14) and (16) into (18), the system model is obtained:

(2𝑎 + 𝑐 · 𝑐𝑜𝑠(𝜙 + 𝜙0))𝜃̈ + (𝑐 · 𝑐𝑜𝑠(𝜙 + 𝜙0) + 2𝑏)𝜙̈ − 𝑐𝜙̇

2 𝑠𝑖𝑛(𝜙 + 𝜙0)

−𝑑𝑠𝑖𝑛(𝜙 + 𝜙0) = 0
Eq. 4-2

Being the constants:

𝑎 = (
3

2
𝑚𝑟 +

1

2
𝑀)𝑅2

𝑏 = 𝑀 · 𝐿2

𝑐 = 𝑀𝑅𝐿

Eq. 4-3

49 Implementation of a control algorithm for a self-balancing robot in Julia in a Jetson Nano

𝑑 = 𝑀𝑔𝐿

Namely, the system is defined by a second order nonlinear differential equation, which will be later transformed

into a system of first order nonlinear differential equations to simulate the model behaviour.

5 CONTROLLER DESIGN

his chapter was written to show the reader how the controller is deducted and designed based on the system

equations. It includes basic concepts of state-space models and a detailed deduction of how to transform

the system equations in others more suitable for our case study.

5.1 Basic concepts

The most general state-space representation of a time-invariant linear system with is written in the following

form:

𝑥̇(𝑡) = 𝐴𝑥(𝑡) + 𝐵𝑢(𝑡)

𝑦(𝑡) = 𝐶𝑥(𝑡) + 𝐷𝑢(𝑡)
Eq. 5-1

Despite this, the Jetson Nano is a discrete works in discrete time, so these equations will have to be discretized

to make them work in the device.

The discretization will be done based on the Euler method, and the system discrete time-invariant variant will

transform into:

𝑥𝑘+1 = 𝐴𝑥𝑘 + 𝐵𝑢𝑘

𝑦𝑘 = 𝐶𝑥𝑘 + 𝐷𝑢𝑘
Eq. 5-2

Nonetheless, in our case, the matrix D will be zero as there is no dependence from the input in the case of the

exit. This way, the model discrete time-invariant equations will eventually be:

𝑥𝑘+1 = 𝐴𝑥𝑘 + 𝐵𝑢𝑘

𝑦𝑘 = 𝐶𝑥𝑘
Eq. 5-3

In addition, this project focuses on reaching the setpoint as quick as possible and with no steady state error. In

other words, operating a dynamic system at minimum cost. A performance index of how near the system is from

the setpoint must be defined, i.e. a cost function.

Amongst the myriad of possible performance indices to choose from, it has been decided to draw on the

quadratic cost function commonly used in QR controllers:

 𝑉𝑁(𝑥𝐹 , 𝑢𝐹) = ∑[𝑥𝑘+𝑖
𝑡 𝑄𝑥𝑘+𝑖 + 𝑢𝑘+𝑖

𝑡 𝑅𝑢𝑘+𝑖] + 𝑥𝑁
𝑡 𝑃𝑥𝑁

𝑁−1

𝑖=0

 Eq. 5-4

Being Q, R and P matrices chosen by the designer of the controller.

T

Controller design

52

5.2 Mathematical development

5.2.1 Model transformation

As stated before, the intention of this project was to reduce computing time from previous versions of it, trying

to make a finer control. Due to that, there was the necessity of developing two versions of the controller: one in

Julia, the new version; the other, in another programming language. MATLAB was chosen to be the face-off

opponent to Julia, and to write the controller version in this language, the MATLAB function ‘quadprog’ was

utilized.

‘quadprog’ is a solver for quadratic objective functions with linear constraints. It finds a minimum for a problem

specified by:

𝑚𝑖𝑛
𝑥

1

2
𝑥𝑡𝐻𝑥 + 𝑓𝑡𝑥

𝑠. 𝑡. {
𝐴𝑥 ≤ 𝑏,

𝐴𝑒𝑞𝑥 = 𝑏𝑒𝑞,

𝑙𝑏 ≤ 𝑥 ≤ 𝑢𝑏.

Eq. 5-5

Being 𝑥 the states and the rest of the matrices and vectors are deducted from the model equations.

The intent in this section is to transform the given cost function and model equations into others in the form of

a quadratic programming problem. The mathematical development is shown along these lines.

Analysing the state equation:

𝑥𝑘+1 = 𝐴𝑥𝑘 + 𝐵𝑢𝑘

𝑥𝑘+2 = 𝐴𝑥𝑘+1 + 𝐵𝑢𝑘+1 = 𝐴
2𝑥𝑘 + 𝐴𝐵𝑢𝑘 + 𝐵𝑢𝑘+1

𝑥𝑘+3 = 𝐴𝑥𝑘+2 + 𝐵𝑢𝑘+2 = 𝐴
3𝑥𝑘 + 𝐴

2𝐵𝑢𝑘 + 𝐴𝐵𝑢𝑘+1 + 𝐵𝑢𝑘+2

𝑥𝑘+4 = 𝐴
4𝑥𝑘 +⋯

Eq. 5-6

And the output equation:

𝑦𝑘 = 𝐶𝑥𝑘

𝑦𝑘+1 = 𝐶𝑥𝑘+1 = 𝐶(𝐴𝑥𝑘 + 𝐵𝑢𝑘) = 𝐶𝐴𝑥𝑘 + 𝐶𝐵𝑢𝑘

𝑦𝑘+2 = 𝐶𝐴
2𝑥𝑘 +⋯

Eq. 5-7

Followed this development, it would be easily recognised that the vector of future (or predicted) states 𝑥𝐹—

made up of each state from the current one till the one at the end of the horizon 𝑁—can be expressed as:

𝑥𝐹 = [

𝑥𝑘
𝑥𝑘+1
⋮

𝑥𝑘+𝑁

] =

[

𝐼𝑛𝑥
𝐴
𝐴2

⋮
𝐴𝑁]

⏟
𝐺𝑥

𝑥𝑘 +

[

0 ⋯ ⋯ ⋯ ⋯ 0
𝐵 ⋯ ⋯ ⋯ ⋯ 0
𝐴𝐵 𝐵 0 ⋯ ⋯ ⋮
𝐴2𝐵 𝐴𝐵 𝐵 0 ⋯ ⋮
⋮ ⋮ ⋮ ⋮ ⋱ 0

𝐴𝑁−1𝐵 ⋯ ⋯ ⋯ ⋯ 𝐵]

⏟
𝐺𝑢

[

𝑢𝑘
⋮

𝑢𝑘+𝑁−1
]

⏟
𝑢𝐹

Eq. 5-8

Note that the vector of predicted control actions 𝑢𝐹 contains only till the 𝑘 + 𝑁 − 1𝑡ℎ sample, as the effect of a

control action is observed in the following sampling time. Therefore, there is no (𝑘 + 𝑁)𝑡ℎ predicted control

action.

Eventually, the system equations can be expressed as:

 𝑥𝐹 = 𝐺𝑥𝑥𝑘 + 𝐺𝑢𝑢𝐹 Eq. 5-9

For its side, the cost function can also be expressed as function of 𝑥𝐹 and 𝑢𝐹, as shown:

53 Implementation of a control algorithm for a self-balancing robot in Julia in a Jetson Nano

𝑉𝑁(𝑥𝐹 , 𝑢𝐹) = [𝑥𝑘 𝑥𝑘+𝑁]⏟
𝑥𝐹
𝑡

[

𝑄 0

0 𝑄 0

0
𝑄 0

0 𝑃]

⏟
𝑄𝑁

[

𝑥𝑘

𝑥𝑘+𝑁

]
⏟
𝑥𝐹

+ [𝑢𝑘 𝑢𝑘+𝑁−1]⏟
𝑢𝐹
𝑡

[

𝑅 0
0 𝑅 0

0
0

0 𝑅]

⏟
𝑅𝑁

[

𝑢𝑘

𝑢𝑘+𝑁−1

]
⏟

𝑢𝐹

Eq.

5-10

Finally, a proper cost function depending on future inputs and states has been obtained:

 𝑉𝑁(𝑥𝐹 , 𝑢𝐹) = 𝑥𝐹
𝑡𝑄𝑁𝑥𝐹 + 𝑢𝐹

𝑡𝑅𝑁𝑢𝐹
Eq.

5-11

By substituting the system equations into the cost function, we obtain:

𝑉𝑁 = (𝑢𝐹
𝑡𝐺𝑢

𝑡 + 𝑥𝑘
𝑡𝐺𝑥

𝑡)𝑄𝑁(𝐺𝑥𝑥𝑘 + 𝐺𝑢𝑢𝐹) + 𝑢𝐹
𝑡𝑅𝑁𝑢𝐹 =

= 𝑢𝐹
𝑡 [𝐺𝑢

𝑡𝑄𝑁(𝐺𝑥𝑥𝑘 + 𝐺𝑢𝑢𝐹) + 𝑅𝑁𝑢𝐹] + 𝑥𝑘
𝑡𝐺𝑥

𝑡𝑄𝑁(𝐺𝑥𝑥𝑘 + 𝐺𝑢𝑢𝐹) =

= 𝑢𝐹
𝑡 (𝐺𝑢

𝑡𝑄𝑁 · 𝐺𝑢 + 𝑅𝑁)𝑢𝐹 + 𝑢𝐹
𝑡𝐺𝑢

𝑡𝑄𝑁 · 𝐺𝑥𝑥𝑘 + 𝑥𝑘
𝑡𝐺𝑥

𝑡𝑄𝑁 · 𝐺𝑥𝑥𝑘⏟
𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝑤.𝑟.𝑡. 𝑢𝐹

+ 𝑥𝑘
𝑡𝐺𝑥

𝑡𝑄𝑁 · 𝐺𝑢𝑢𝐹

Eq.

5-12

As 𝑉𝑁 will be optimized with respect to future outputs, the third term, independent on 𝑢𝐹 can be omitted:

𝑉𝑁 = 𝑢𝐹

𝑡 (𝐺𝑢
𝑡 · 𝑄𝑁 · 𝐺𝑢 + 𝑅𝑁)⏟

1
2𝐻

𝑢𝐹 + 2𝑥𝑘
𝑡 · 𝐺𝑥

𝑡 · 𝑄𝑁 · 𝐺𝑢⏟
𝑓𝑡

𝑢𝐹 Eq.

5-13

Above, terms of this equation with the one given to ‘quadprog’ have been compared and hence, it can be seen

that:

 𝐻 = 2𝑢𝐹
𝑡 (𝐺𝑢

𝑡 · 𝑄𝑁 · 𝐺𝑢 + 𝑅𝑁)𝑢𝐹
Eq.

5-14

 𝑓 = 2 · 𝐺𝑢
𝑡 · 𝑄𝑁 · 𝐺𝑥 · 𝑥𝑘

Eq.

5-15

It can be noticed that the value of 𝑓𝑡 depends on 𝑥𝑘, namely, the current state, so this dependence must be taken

into consideration when developing the control algorithm, as it will vary each cicle.

With that, it has been finally achieved the transformation of the original cost function into a quadratic

programming shape:

 𝑉𝑁 =
1

2
𝑢𝐹
𝑡𝐻𝑢𝐹 + 𝑓

𝑡𝑢𝐹
Eq.

5-16

5.2.2 Dealing with constraints

In this subsection, the process of achieving properly shaped restrictions from the given equations is shown, but

for the sake of concision, this procedure will be exhibited by using a simplified example, where these

considerations are taken into account:

- the state vector will be composed of two variables (instead of three, in our case):

Controller design

54

𝑥𝑘 = [
𝑥1
𝑥2
],

- the output vector will be made up of one element,

- the input vector will be a scalar as well.

The specific values chosen in this project for the states and the control actions are the following. Take into

consideration that constraints in the outputs have the same values as the ones in the state owing to 𝐶 being an

identity matrix:

[
−
𝜋

4
−4
−60

] ≤ [

𝜙𝑐
𝜙̇𝑐
𝜃̇

] ≤ [

𝜋

4
4
60

] (
𝑟𝑎𝑑

𝑟𝑎𝑑 · 𝑠−1

𝑟𝑎𝑑 · 𝑠−1
)

−90 ≤ 𝑢 ≤ 90 (
𝑟𝑎𝑑

𝑠2
)

Eq.

5-17

5.2.2.1 Constraints in the states

[
1 0
0 1

] [
𝑥1
𝑥2
] ≤ [

𝑥1,max

𝑥2,max
]

[
1 0
0 1

] [
𝑥1
𝑥2
] ≥ [

𝑥1,min

𝑥2,min
] → [

−1 0
0 −1

] [
𝑥1
𝑥2
] ≤ [

−𝑥1,min

−𝑥2,min
]

Eq.

5-18

Therefore:

[
𝐼𝑛𝑥
−𝐼𝑛𝑥

]
⏟
𝐴𝑥

[
𝑥1
𝑥2
]

⏟
𝑥𝑘

≤ [

𝑥1,max

𝑥2,max

−𝑥1,min

−𝑥2,min

]

⏟
𝑏𝑥

[

𝐴𝑥 0

0 𝐴𝑥 0

0
0

0 𝐴𝑥]

⏟
𝐴𝑋

[

𝑥𝑘

𝑥𝑘+𝑁

]
⏟
𝑥𝐹

≤ [

𝑏𝑥

𝑏𝑥

]

⏟
𝑏𝑋

Eq.

5-19

Thus:

 𝐴𝑋 · 𝑥𝐹 ≤ 𝑏𝑋
Eq.

5-20

By substituting the model’s equations:

𝐴𝑋(𝐺𝑢𝑢𝐹 + 𝐺𝑥𝑥𝑘) ≤ 𝑏𝑋

𝐴𝑋 · 𝐺𝑢𝑢𝐹 + 𝐴𝑋 · 𝐺𝑥𝑥𝑘 ≤ 𝑏𝑋

𝐴𝑋 · 𝐺𝑢⏟
𝐴𝑞𝑝

𝑢𝐹⏟
𝑥𝑞𝑝

≤ 𝑏𝑋⏟
𝑏1𝑥

−𝐴𝑋 · 𝐺𝑥⏟
𝑏2𝑥

𝑥𝑘
⏟

𝑏𝑞𝑝

Eq.

5-21

Therefore:

 𝐴𝑋 · 𝐺𝑢 · 𝑢𝐹 ≤ 𝑏1𝑥 + 𝑏2𝑥 · 𝑥𝑘
Eq.

5-22

55 Implementation of a control algorithm for a self-balancing robot in Julia in a Jetson Nano

As a result, we have obtained equations in the form of a quadratic programming problem:

𝐴𝑞𝑝𝑥𝑞𝑝 ≤ 𝑏𝑞𝑝

Being the input 𝑢𝐹 the variable to be optimized, namely, the 𝑥 of the QP:

𝑢𝐹 = 𝑥𝑞𝑝

This procedure shall be executed similarly with the outputs and inputs subsequently.

5.2.2.2 Constraints in the outputs

𝑦 ≤ 𝑦max

𝑦 ≥ 𝑦min → −𝑦 ≤ −𝑦min

Eq.

5-23

Hence:

[
𝐼𝑛𝑦
−𝐼𝑛𝑦

]
⏟
𝐴𝑦

𝑦 ≤ [
𝑦max

−𝑦min
]

⏟
𝑏𝑦

[

𝐴𝑦 0

0 𝐴𝑦 0

0
0

0 𝐴𝑦]

⏟
𝐴𝑌

[

𝑦𝑘

𝑦𝑘+𝑁

]
⏟
𝑦𝐹

≤ [

𝑏𝑦

𝑏𝑦

]

⏟
𝑏𝑌

Eq.

5-24

To transform the output equations into equations in the states, we will use the second model equation:

 𝑦𝑘 = 𝐶𝑥𝑘
Eq.

5-25

Therefore:

[

𝑦𝑘

𝑦𝑘+𝑁

]
⏟
𝑦𝐹

=

[

𝐶 0
0 𝐶 0

0
0

0 𝐶]

⏟
𝑇

[

𝑥𝑘

𝑥𝑘+𝑁

]
⏟
𝑥𝐹

𝑦𝐹 = 𝑇𝑥𝐹

Eq.

5-26

Using both equations the following is finally obtained:

𝐴𝑌 · 𝑇 · 𝑥𝐹 ≤ 𝑏𝑌

𝐴𝑌 · 𝑇 · (𝐺𝑢 · 𝑢𝐹 + 𝐺𝑥 · 𝑥𝑘) ≤ 𝑏𝑌

𝐴𝑌 · 𝑇 · 𝐺𝑢⏟
𝐴𝑞𝑝

· 𝑢𝐹⏟
𝑥𝑞𝑝

≤ 𝑏𝑌⏟
𝑏1𝑦

−𝐴𝑌 · 𝑇 · 𝐺𝑥⏟
𝑏2𝑦

· 𝑥𝑘
⏟

𝑏𝑞𝑝

Eq.

5-27

Eventually:

 𝐴𝑌 · 𝑇 · 𝐺𝑢 · 𝑢𝐹 ≤ 𝑏1𝑦 + 𝑏2𝑦 · 𝑥𝑘
Eq.

5-28

Controller design

56

5.2.2.3 Constraints in the inputs

𝑢 ≤ 𝑢max

𝑢 ≥ 𝑢min → −𝑢 ≤ −𝑢min
} → [

𝐼𝑛𝑢
−𝐼𝑛𝑢

]
⏟
𝐴𝑢

𝑢 ≤ [
𝑢max

−𝑢min
]

⏟
𝑏𝑢

[

𝐴𝑢 0

0 𝐴𝑢 0

0
0

0 𝐴𝑢]

⏟
𝐴𝑈⏟
𝐴𝑞𝑝

[

𝑢𝑘

𝑢𝑘+𝑁−1

]
⏟

𝑢𝐹⏟
𝑥𝑞𝑝

≤ [

𝑏𝑢

𝑏𝑢

]

⏟
𝑏𝑈=𝑏1𝑢⏟
𝑏𝑞𝑝

Eq.

5-29

In the end:

 𝐴𝑈 · 𝑢𝐹 ≤ 𝑏1𝑢
Eq.

5-30

By adding all the equations of the restrictions, the matrices that will be given as an input to the QP solver can be

created (‘quadprog’ in MATLAB and the optimizer in Julia):

𝐴𝑞𝑝 = [𝐴𝑋 · 𝐺𝑢; 𝐴𝑌 · 𝑇 · 𝐺𝑢; 𝐴𝑈]

𝑏1𝑞𝑝 = [𝑏𝑋; 𝑏𝑌; 𝑏𝑈]

𝑏2𝑞𝑝 = [−𝐴𝑋 · 𝐺𝑥; −𝐴𝑌 · 𝑇 · 𝐺𝑥; 0]

Eq.

5-31

At last, the equation below is attained, in the intended QP shape:

𝐴𝑞𝑝𝑢𝐹 ≤ 𝑏1𝑞𝑝 + 𝑏2𝑞𝑝𝑥𝑘⏟

𝑏𝑞𝑝

 Eq.

5-32

The constraints vector (𝑏𝑞𝑝) has been split in two parts due to the dependence of the second term, 𝑏2𝑞𝑝𝑥𝑘, on

the current state 𝑥𝑘, which will be crucial to the further development of the optimisation algorithm.

5.2.3 Change to incremental model

Even so, it will be necessary for the robot to change its speed, and that will mean changing its wheel’s velocity,

subsequently symbolizing a change in the reference. This change can be implemented by using incremental

variables.

For the purpose of this project, only the reference of the wheels’ speed will be changed. However, equations and

code are also included in the case references in the inputs or the outputs (which would be the same changes as

those done in the states, due to matrix of the model 𝐶 being an identity matrix). In addition, changes in the state

of reference different from the wheels’ speed, such as the tilt or its velocity can be performed by simply typing

the new reference state.

In this way, the following lines display the model and the QP equations transformed into an incremental model:

New variables:

𝑥𝑘 = 𝑥𝑘 − 𝑥𝑟

𝑦̂𝑘 = 𝑦𝑘 − 𝑦𝑟

𝑢̂𝑘 = 𝑢𝑘 − 𝑢𝑟

Eq.

5-33

Being 𝑥𝑟 , 𝑦𝑟 and 𝑢𝑟 the reference values for the state, output, and input, respectively. In this particular case,

where 𝜃̇𝑟 is the reference for the speed of the wheels, these values will be:

57 Implementation of a control algorithm for a self-balancing robot in Julia in a Jetson Nano

𝑥𝑟 = [
0
0
𝜃̇𝑟

]

𝑦𝑟 = 𝐶𝑥𝑟 = 𝑥𝑟

𝑢𝑟 = 0

Eq.

5-34

Thus, the equations will be the following ones:

𝑥𝐹 = [

𝑥𝑘
𝑥𝑘+1
⋮

𝑥𝑘+𝑁

] =

[

𝐼𝑛𝑥
𝐴
𝐴2

⋮
𝐴𝑁]

⏟
𝐺𝑥

𝑥𝑘 +

[

0 ⋯ ⋯ ⋯ ⋯ 0
𝐵 ⋯ ⋯ ⋯ ⋯ 0
𝐴𝐵 𝐵 0 ⋯ ⋯ ⋮
𝐴2𝐵 𝐴𝐵 𝐵 0 ⋯ ⋮
⋮ ⋮ ⋮ ⋮ ⋱ 0

𝐴𝑁−1𝐵 ⋯ ⋯ ⋯ ⋯ 𝐵]

⏟
𝐺𝑢

[
𝑢̂𝑘
⋮

𝑢̂𝑘+𝑁−1

]

⏟
𝑢𝐹

 Eq.

5-35

Hence:

 𝑥𝐹 = 𝐺𝑥𝑥𝑘 + 𝐺𝑢𝑢̂𝐹
Eq.

5-36

Similarly, it can be demonstrated that the same results apply in the objective function’s case. Therefore:

 𝑉𝑁 = 𝑥𝐹
𝑡 · 𝑄𝑁 · 𝑥𝐹 + 𝑢̂𝐹

𝑡 · 𝑅𝑁 · 𝑢̂𝐹
Eq.

5-37

And, when making the development to adjust the cost function into a readable QP function, it can also be

demonstrated that it turns out to eventually be:

𝑉𝑁 = 𝑢̂𝐹

′ (𝐺𝑢
𝑡 · 𝑄𝑁 · 𝐺𝑢 + 𝑅𝑁)⏟

1
2𝐻

𝑢̂𝐹 + 2𝑥𝑘
𝑡 · 𝐺𝑥

𝑡 · 𝑄𝑁 · 𝐺𝑢⏟
𝑓𝑡

𝑢̂𝐹 Eq.

5-38

However, when turning to the QP problem scope, a little care must be taken, in the sense that the constraints part

of the equation turns slightly different, as shown here in the equations of the constraints in the states, specifically:

𝐴𝑥 · 𝑥𝑘 ≤ 𝑏𝑥

𝐴𝑥 · (𝑥𝑘 − 𝑥𝑟) ≤ 𝑏𝑥 − 𝐴𝑥 · 𝑥𝑟

𝐴𝑥 · 𝑥𝑘 ≤ 𝑏𝑥
′

Eq.

5-39

The same procedure applies when developing the outputs’ or the control action’s (input) constraints.

Hence, restrictions are dependent on reference variation and, as such, they will be changed every time any of the

references vary.

5.2.4 Model integration

This project is developed in simulation. As it has been considered not to implement it in the real world, a model

of the self-balancing robot will be programmed, and tests will be performed using this model.

To do so, there are two options: either use the linearised model given by:

 𝑥𝑘+1 = 𝐴𝑥𝑘 + 𝐵𝑢𝑘
Eq.

5-40

Or to use the nonlinear one. The code given by this work permits the usage of either of them, while it has been

considered better to use the nonlinear version.

Controller design

58

To implement the nonlinear model, the Euler method for solving the ordinary differential equations given by the

development of the model stated above is utilized.

The numerical procedure follows these steps. Let us define the variable:

 𝜙̇𝑐 = 𝑣
Eq.

5-41

Let us also recall the system model:

𝐹 = (2𝑎 + 𝑐 · 𝑐𝑜𝑠(𝜙 + 𝜙0))𝜃̈ + (𝑐 · 𝑐𝑜𝑠(𝜙 + 𝜙0) + 2𝑏)𝜙̈ − 𝑐𝜙̇

2 𝑠𝑖𝑛(𝜙 + 𝜙0)

−𝑑𝑠𝑖𝑛(𝜙 + 𝜙0) = 0

Eq.

5-42

Now, introducing the new variable:

𝐹 = (2𝑎 + 𝑐 · 𝑐𝑜𝑠𝜙𝑐)𝜃̈ + (𝑐 · 𝑐𝑜𝑠𝜙𝑐 + 2𝑏)𝑣̇ − 𝑐𝑣

2𝑠𝑖𝑛𝜙𝑐 − 𝑑𝑠𝑖𝑛𝜙𝑐 = 0

𝑣̇ = [𝑑𝑠𝑖𝑛𝜙𝑐 + 𝑐𝑣
2𝑠𝑖𝑛𝜙𝑐 − (2𝑎 + 𝑐 · 𝑐𝑜𝑠𝜙𝑐)𝜃̈](𝑐 · 𝑐𝑜𝑠𝜙𝑐 + 2𝑏)

−1

Eq.

5-43

Therefore, a system of two first order nonlinear differential equations has been attained:

 {
𝜙̇𝑐 = 𝑣

𝑣̇ = [𝑑𝑠𝑖𝑛𝜙𝑐 + 𝑐𝑣
2𝑠𝑖𝑛𝜙𝑐 − (2𝑎 + 𝑐 · 𝑐𝑜𝑠𝜙𝑐)𝜃̈](𝑐 · 𝑐𝑜𝑠𝜙𝑐 + 2𝑏)

−1
Eq.

5-44

On the other hand, the Euler method states that:

 𝑣̇ =
𝑣𝑘+1 − 𝑣𝑘

𝛿

Eq.

5-45

Being 𝛿 the step size.

Renaming 𝜙𝑐 to 𝜙 for the sake of concision and using the Euler method into the previous system of equations,

the following is obtained:

 {
𝑣𝑘+1 = 𝑣𝑘 + 𝛿[𝑑𝑠𝑖𝑛𝜙𝑐 + 𝑐𝑣

2𝑠𝑖𝑛𝜙𝑐 − (2𝑎 + 𝑐 · 𝑐𝑜𝑠𝜙𝑐)𝜃̈](𝑐 · 𝑐𝑜𝑠𝜙𝑐 + 2𝑏)
−1

𝜙𝑘+1 = 𝜙𝑘 + 𝛿𝑣𝑘

Eq.

5-46

In addition:

 𝜃̈𝑘 =
𝑑𝜃̇

𝑑𝑡
|
𝑘

→ 𝜃̇𝑘+1 = 𝜃̇𝑘 + 𝛿 𝜃̈𝑘⏟
𝑢𝑘

Eq.

5-47

Thus, the prediction of the state based on the nonlinear model are the following:

𝑥𝑘+1 = [

𝜙𝑘+1
𝜙̇𝑘+1
𝜃̇𝑘+1

] =

= [

𝜙𝑘 + 𝛿𝜙̇𝑘
𝜙𝑘 + 𝛿[𝑑𝑠𝑖𝑛𝜙𝑐 + 𝑐𝑣

2𝑠𝑖𝑛𝜙𝑐 − (2𝑎 + 𝑐 · 𝑐𝑜𝑠𝜙𝑐)𝜃̈](𝑐 · 𝑐𝑜𝑠𝜙𝑐 + 2𝑏)
−1

𝜃̇𝑘 + 𝛿𝑢𝑘

]

Eq.

5-48

These will be the preferred equations used when programming instead of those of the linearised model given

by:

59 Implementation of a control algorithm for a self-balancing robot in Julia in a Jetson Nano

 𝑥𝑘+1 = 𝐴𝑥𝑘 + 𝐵𝑢𝑘
Eq.

5-49

5.3 Particularization

On the basis of the development done previously, this section will treat the specific equations that will be leading

the self-balancing robot for its stabilization. The values here obtained for the matrices, vectors and scalars will

be the ones used for creating the programme.

The model equation is recalled here:

𝐹 = (2𝑎 + 𝑐 · 𝑐𝑜𝑠(𝜙 + 𝜙0))𝜃̈ + (𝑐 · 𝑐𝑜𝑠(𝜙 + 𝜙0) + 2𝑏)𝜙̈

−𝑐𝜙̇2 𝑠𝑖𝑛(𝜙 + 𝜙0) − 𝑑𝑠𝑖𝑛(𝜙 + 𝜙0) = 0

Eq.

5-50

Being the constants:

𝑎 = (
3

2
𝑚𝑟 +

1

2
𝑀)𝑅2

𝑏 = 𝑀 · 𝐿2

𝑐 = 𝑀𝑅𝐿

𝑑 = 𝑀𝑔𝐿

Eq.

5-51

The table of the system variables is recalled as well:

Parameter Notation Value

Wheel mass 𝑚𝑟 0.044 𝑘𝑔

Wheel radium 𝑅 0.053 𝑚

Mass of the vehicle without wheels 𝑀 0.745 𝑘𝑔

Distance from the wheel axis and the centre of gravity L 0.0805 𝑚

Gravity 𝑔 9.81
𝑚

𝑠2

Tilt with respect to the vertical 𝜙

Centre of gravity deviation tilt 𝜙0 𝑛/𝑎

Corrected tilt 𝜙𝑐

It is desired to perform a linearisation around the equilibrium point whose conditions are:

𝜙𝑐𝑒𝑞 = 0

𝜙̇𝑐𝑒𝑞 = 0

𝜙̈𝑐𝑒𝑞 = 0

cos (𝜙𝑐𝑒𝑞) ≈ 1

sin (𝜙𝑐𝑒𝑞) ≈ 𝜙𝑐𝑒𝑞

Eq.

5-52

Controller design

60

To linearise, the derivatives of 𝐹 with respect to each system variable are performed:

𝜕𝐹

𝜕𝜃̈
|
𝑒𝑞

= 2𝑎 + 𝑐
(1) Derivative of 𝐹 with respect to the angular

acceleration of the wheel

𝜕𝐹

𝜕𝜙𝑐
|
𝑒𝑞

= −𝑑 (2) Derivative of 𝐹 with respect to the corrected

tilt

𝜕𝐹

𝜕𝜙̇𝑐
|
𝑒𝑞

= 0 (3) Derivative of 𝐹 with respect to the corrected

tilt speed

𝜕𝐹

𝜕𝜙̈𝑐
|
𝑒𝑞

= 2𝑏 + 𝑐 (4) Derivative of 𝐹 with respect to the corrected

tilt acceleration

From the previous equations, the linearised model is obtained:

 𝐹𝑙𝑖𝑛 = (2𝑎 + 𝑐)𝜃̈ − 𝑑𝜙𝑐 + (2𝑏 + 𝑐)𝜙̈𝑐 = 0
Eq.

5-53

Renaming:

𝑒 = 2𝑎 + 𝑐

𝑓 = 2𝑏 + 𝑐

Eq.

5-54

Then:

 𝐹𝑙𝑖𝑛 = 𝑒 · 𝜃̈ + 𝑑 · 𝜙𝑐 + 𝑓 · 𝜙̈𝑐 = 0
Eq.

5-55

The state-space of the system can be obtained:

 [

𝜙̇𝑐
𝜙̈𝑐
𝜃̈

] = [

0 1 0
𝑑

𝑓
0 0

0 0 0

] [

𝜙𝑐
𝜙̇𝑐
𝜃̇

] + [

0

−
𝑒

𝑓
1

] 𝜃̈ ≡ 𝑥̇ = 𝐴𝑥 + 𝐵𝑢
Eq.

5-56

As the Jetson Nano works in discrete time and the previous system is continuous, it would be necessary to

discretize it. The sampling time used in this project has been 20 milliseconds, and that is the figure used for

discretisation, but it should be changed provided a different time is obtained when running the programme. The

following is obtained:

𝑥𝑘+1 = 𝐴𝑑𝑥𝑘 + 𝐵𝑑𝑢𝑘

𝑦𝑘 = 𝐶𝑑𝑥𝑘

Eq.

5-57

The following state weighting matrix, Q, and the control action one, R, have been chosen according to

experimental tests:

𝑄 = [

10 0 0
0 10 0
0 0 10

]

𝑅 = 1

Eq.

5-58

6 THE CODING

n this chapter, the code algorithm and the code itself will be explained. But previously, a section of

clarification about the mathematical developments shown in previous chapters is shown not only to make

the reader comprehend the programme, but to also serve as a recall. In addition, some aspects considered

necessary to the proper understanding of the code are told. Amongst these ones, JuMP language and Ipopt

optimizer most prominent features are stated and some of their coding complications are remarked.

6.1 Mathematical clarifications

The algorithm developed in MATLAB and Julia follows the mathematical procedure explained in chapter 6. To

sum it up, the pseudocode will be shown for easier comprehension. Later, the code itself will be shown, with

annotations:

Initialize variables

Discretize model matrices

Create Gu and Gx matrices

Calculate P

Create QN and RN matrices

Create QP matrices: Aqp, b1qp and b2qp

FOR i=1:simulation steps

 IF there is a change in the reference

 Update b1qp

 Update f(x_k)

 Optimize the QP problem

 Extract the first component of u_F

 Update the state with the model equations

Plot the results

So, basically, what the program does is to run a QP problem based on the equations developed in previous

chapters. Afterwards, it applies the control action, result of extracting the first component of the QP’s solution,

which will be the sequence of future outputs 𝑢𝐹. The rest of the planned outputs will be discarded as only the

first one will be applied (i.e. 𝑢𝑘). Then, the new model state is integrated by using its equations, i.e., these in the

case of choosing the nonlinear version:

𝑥𝑘+1 = [

𝜙𝑘+1
𝜙̇𝑘+1
𝜃̇𝑘+1

] =

= [

𝜙𝑘 + 𝛿𝜙̇𝑘
𝜙𝑘 + 𝛿[𝑑𝑠𝑖𝑛𝜙𝑐 + 𝑐𝑣

2𝑠𝑖𝑛𝜙𝑐 − (2𝑎 + 𝑐 · 𝑐𝑜𝑠𝜙𝑐)𝜃̈](𝑐 · 𝑐𝑜𝑠𝜙𝑐 + 2𝑏)
−1

𝜃̇𝑘 + 𝛿𝑢𝑘

]

Eq. 6-1

I

The coding

62

Being 𝛿 the step size of the Euler method, which should be, ideally, smaller than the sampling time chosen to

discretize the model’s nonlinear equations.

Or, in the case the model wanted to be integrated by using the linearised equations, these should be the ones

used in the programme:

 𝑥𝑘+1 = 𝐴𝑑𝑥𝑘 + 𝐵𝑑𝑢𝑘 Eq. 6-2

Being 𝐴𝑑 and 𝐵𝑑 the discrete version of the original matrices. i.e., given the linear time-invariant state-space

representation of the system:

[

𝜙̇𝑐
𝜙̈𝑐
𝜃̈

] = [

0 1 0
𝑑

𝑓
0 0

0 0 0

] [

𝜙𝑐
𝜙̇𝑐
𝜃̇

] + [

0

−
𝑒

𝑓
1

] 𝜃̈ ≡ 𝑥̇ = 𝐴𝑥 + 𝐵𝑢

𝐴 = [

0 1 0
𝑑

𝑓
0 0

0 0 0

]

𝐵 = [

0

−
𝑒

𝑓
1

]

Eq. 6-3

Euler method is used to represent the derivative in a discrete-time form:

𝑥𝑘+1 − 𝑥𝑘
𝛿

= 𝐴𝑥𝑘 + 𝐵𝑢𝑘

𝑥𝑘+1 = (𝛿𝐴 + 𝐼)𝑥𝑘 + 𝛿𝐵𝑢𝑘

𝑥𝑘+1 = 𝐴𝑑𝑥𝑘 + 𝐵𝑑𝑢𝑘

Eq. 6-4

Being, eventually:

𝐴𝑑 = 𝛿 · 𝐴 + 𝐼

𝐵𝑑 = 𝛿 · 𝐵
Eq. 6-5

The discrete-time version of the continuous-time matrices of the model. The subscript d stands for discrete.

However, if we pay close attention to the chapter’s six equations, it will be noticed that some of the variables

calculated in each optimization problem depend on the current state. These variables and their formulae are

developed subsequently.

Regarding the constraints, it was said previously that the right-side parts of the constraints’ equations were

divided into two: 𝑏1𝑞𝑝 and 𝑏2𝑞𝑝, as it can be seen here:

 𝐴𝑋 · 𝐺𝑢 · 𝑢𝐹 ≤ 𝑏1𝑥 + 𝑏2𝑥 · 𝑥𝑘 Eq. 6-6

Where:

𝑏1𝑞𝑝 = 𝑏1𝑥

𝑏2𝑞𝑝 = 𝑏2𝑥
Eq. 6-7

And the same applies to the constraints in the outputs and inputs (or control actions).

Therefore, it can be noticed that the right side of the inequality depends on 𝑥𝑘, i.e., the current state. Owing to

this fact, constraints will be necessarily changed every iteration of the loop, as the state will inevitably change

due to the integration of the model. Because of the nature of Julia’s optimizer, the model shall be reconfigured

63 Implementation of a control algorithm for a self-balancing robot in Julia in a Jetson Nano

each iteration.

In addition, let us recall the cost function:

 𝑉𝑁 =
1

2
𝑢𝐹
𝑡𝐻𝑢𝐹 + 𝑓

𝑡𝑢𝐹 Eq. 6-8

It includes a vector, 𝑓, which depends on the current state:

 𝑓 = 2 · 𝐺𝑢
𝑡 · 𝑄𝑁 · 𝐺𝑥 · 𝑥𝑘 Eq. 6-9

Hence, this vector will be included inside the loop to change its value every time the state changes, which will

occur mostly during the transient.

Apart from these two variables and the model’s state update, nothing will change during execution time, and the

remaining to be done will be to store the necessary variables into their respective vectors to be later plotted and

running the optimizer time after time to obtain the optimum.

Before showing the full programme, it is also necessary to recall that whenever there is a change in reference,

this—another change in the constraints—plays out:

𝐴𝑥 · (𝑥𝑘 − 𝑥𝑟) ≤ 𝑏𝑥 − 𝐴𝑥 · 𝑥𝑟

𝐴𝑥 · 𝑥𝑘 ≤ 𝑏𝑥
′

Eq.

6-10

Hence:

 [
𝐴𝑥

𝐴𝑥

] [

𝑥𝑘

𝑥𝑘+𝑁

] ≤ [

𝑏𝑥
′

𝑏𝑥
′
]

Eq.

6-11

Therefore:

 𝐴𝑋 · 𝑥𝐹 ≤ 𝑏𝑋′
Eq.

6-12

The same occurs in the case of outputs and inputs:

 [

𝐴𝑦

𝐴𝑦

] [

𝑦̂𝑘

𝑦̂𝑘+𝑁

] ≤ [

𝑏𝑦
′

𝑏𝑦
′
]

Eq.

6-13

Therefore:

 𝐴𝑌 · 𝑦̂𝐹 ≤ 𝑏𝑌′
Eq.

6-14

And finally:

 [
𝐴𝑢

𝐴𝑢

] [

𝑢̂𝑘

𝑢̂𝑘+𝑁−1

] ≤ [

𝑏𝑢
′

𝑏𝑢
′
]

Eq.

6-15

Therefore:

 𝐴𝑈 · 𝑢̂𝐹 ≤ 𝑏𝑈′
Eq.

6-16

Nonetheless, take into account that, for this project, only changes in the wheels’ speed have been considered,

The coding

64

meaning so that only the states will change their references. The outputs, being a direct transformation of the

states into themselves, will change their reference in the same way. Thus, it would be redundant to implement

both the states and outputs changes in reference, so only the former has been activated in the code.

Regarding the inputs, no reference setpoint was considered, though its implementation is also present in the

code, although neither activated. To do so, simply uncomment the respective lines.

It is important to take into consideration that not every setpoint combination of states, outputs—in the case matrix

𝐶 was different from the identity matrix—and control actions shall give a feasible solution.

Nevertheless, in the program, the updating of 𝑏𝑋′, 𝑏𝑌′ and 𝑏𝑈′matrices has been done in such a way that they

are the non-prime ones with their components updated.

Thus, the components of 𝑏1𝑞𝑝 change:

 𝑏1𝑞𝑝 = [𝑏𝑋′; 𝑏𝑌′; 𝑏𝑈′]
Eq.

6-17

Every time any of the references change.

Let us recall that the whole resources vector 𝑏𝑞𝑝 from a QP problem in the form:

 𝐴𝑞𝑝𝑢𝐹 ≤ 𝑏𝑞𝑝 = 𝑏1𝑞𝑝 + 𝑏2𝑞𝑝𝑥𝑘
Eq.

6-18

Already changed every iteration because of its dependence of the state 𝑥𝑘, which changes with each. It can now

be seen that this vector will change twice—first, from the state dependence and secondly, from the reference

change—whenever there is a change in any of the references.

6.2 Optimizer in Julia

6.2.1 JuMP

Figure 6-1. JuMP's logo.

JuMP is a package for Julia which depends on solvers to solve optimization problems. Most solvers are not

written in Julia, and some require commercial licenses to use, so installation is often more complex.

This domain-specific modelling language for mathematical optimization embedded in Julia currently supports

a number of open-source and commercial solvers—the term "solver" is used as a synonym for "optimizer". The

convention in code, however, is to always use "optimizer", e.g., Ipopt.Optimizer.—for a variety of problem

classes, including linear programming, mixed-integer programming, second-order conic programming,

semidefinite programming, and nonlinear programming. JuMP's features include:

65 Implementation of a control algorithm for a self-balancing robot in Julia in a Jetson Nano

• User friendliness

o Syntax that mimics natural mathematical expressions.

o Complete documentation.

• Speed

o Benchmarking has shown that JuMP can create problems at similar speeds to special-purpose

modelling languages such as AMPL.

o JuMP communicates with most solvers in memory, avoiding the need to write intermediary

files.

• Solver independence

o JuMP uses a generic solver-independent interface provided by the MathOptInterface package,

making it easy to change between a number of open-source and commercial optimization

software packages (‘solvers’).

o Currently supported solvers include Artelys Knitro, Bonmin, Cbc, Clp, Couenne, CPLEX,

ECOS, FICO Xpress, IPOPT, Gurobi, Ipopt, MOSEK, NLopt, and SCS.

• Access to advanced algorithmic techniques

o Including efficient LP re-solves which previously required using solver-specific and/or low-

level C++ libraries.

• Ease of embedding

o JuMP itself is written purely in Julia. Solvers are the only binary dependencies.

o Being embedded in a general-purpose programming language makes it easy to solve

optimization problems as part of a larger workflow (e.g., inside a simulation, behind a web

server, or as a subproblem in a decomposition algorithm).

▪ As a trade-off, JuMP's syntax is constrained by the syntax available in Julia.

o JuMP is MPL licensed, meaning that it can be embedded in commercial software that complies

with the terms of the license.

Although JuMP has not reached version 1.0 yet, the releases are stable enough for everyday use and are being

used in a number of research projects and neat applications by a growing community of users who are early

adopters. JuMP remains under active development.

More information can be found in [14], where all the functions used by JuMP and related to each solver are

explained in detail, but will not be covered inside this document.

The coding

66

6.2.2 Ipopt

Figure 6-2. COIN-OR's logo.

Ipopt (Interior Point OPTimizer, pronounced eye-pea-Opt) is a software package for large-scale nonlinear

optimization. It is written in Fortran and C and is released under the EPL (formerly CPL).

IPOPT implements a primal-dual interior point method and uses line searches based on Filter methods (Fletcher

and Leyffer). IPOPT can be called from various modelling environments and C.

IPOPT is part of the COIN-OR project, which is a project that aims to ‘create for mathematical software what

the open literature is for mathematical theory’.

It is designed to find (local) solutions of mathematical optimization problems of the form:

min
𝑥∈𝑅𝑛

𝑓(𝑥)

𝑠. 𝑡. {
𝑔𝐿 ≤ 𝑔(𝑥) ≤ 𝑔𝑈
𝑥𝐿 ≤ 𝑥 ≤ 𝑥𝑈

Where 𝑓(𝑥): 𝑅𝑛 → 𝑅 is the objective function, and 𝑔(𝑥): 𝑅𝑛 → 𝑅𝑚 are the constraint functions. The vectors

𝑔𝐿 and 𝑔𝑈 denote the lower and upper bounds on the constraints, and the vectors 𝑥𝐿 and 𝑥𝑈 are the bounds on

the variables 𝑥. The functions 𝑓(𝑥) and 𝑔(𝑥) can be nonlinear and nonconvex but should be twice continuously

differentiable. Note that equality constraints can be formulated in the above formulation by setting the

corresponding components of 𝑔𝐿 and 𝑔𝑈 to the same value.

Ipopt solves QP, LP and NLP problems and, as such, it is valid to solve our problem. Quadratic programming

(QP) is the process of solving a special type of mathematical optimization problem—specifically, a (linearly

constrained) quadratic optimization problem, that is, the problem of optimizing (minimizing or maximizing) a

quadratic function of several variables subject to linear constraints on these variables. Quadratic programming

is a particular type of nonlinear programming.

To install and use Ipopt, type the following in a Julia’s REPL:

import Pkg

Pkg.add("Ipopt")

using JuMP

using Ipopt

model=Model(Ipopt.Optimizer)

67 Implementation of a control algorithm for a self-balancing robot in Julia in a Jetson Nano

6.2.3 Optimization problem

Even though having stated before that no details will be given about JuMP’s and Ipopt’s programming, some

key issues must be covered to fully understand the programme in Julia, as it is considered to be not only a recent

language, but also a less-known than MATLAB one. Therefore, some explanation can be useful for the reader

in case they did not know the language previously. On the contrary, if you know how to use Julia and JuMP,

please skip this part. Follow these steps to create and solve a very simple optimization problem.

Models are created with the Model function. The optimizer can be set either in Model() or by calling

set_optimizer:

julia> model = Model(IPOPT.Optimizer)

A JuMP Model

Feasibility problem with:

Variables: 0

Model mode: AUTOMATIC

CachingOptimizer state: NO_OPTIMIZER

Solver name: IPOPT

equivalently,

julia> model = Model();

julia> set_optimizer(model, IPOPT.Optimizer);

julia> model

A JuMP Model

Feasibility problem with:

Variables: 0

Model mode: AUTOMATIC

CachingOptimizer state: NO_OPTIMIZER

Solver name: IPOPT

The following commands will create two variables, x, and y, with both lower and upper bounds. Note the first

argument is our model model. These variables (x and y) are associated with this model and cannot be used in

another model.

julia> @variable(model, 0 <= x <= 2)

x

julia> @variable(model, 0 <= y <= 30)

y

It is also possible to specify different combinations of bounds, i.e., only lower bounds, only upper bounds, or no

https://jump.dev/JuMP.jl/dev/solvers/#JuMP.Model-Tuple{}
https://jump.dev/JuMP.jl/dev/solvers/#JuMP.set_optimizer

The coding

68

bounds.

Next, the objective will be set. Note again the model, so it is known which model's objective is being set! The

objective sense, Max or Min, should be provided as the second argument. Note also that there is no multiplication

* symbol between 5 and the variable x—Julia is smart enough to not need it!—Feel free to use * if it makes you

feel more comfortable, as it has been done with 3 * y. (It has been intentionally inconsistent here to demonstrate

different syntax; however, it is good practice to pick one way or the other consistently in the code.)

julia> @objective(model, Max, 5x + 3 * y)

5 x + 3 y

Adding constraints is a lot like setting the objective. Here a less-than-or-equal-to constraint is created using <=,

but equality constraints can be created as well using == and greater-than-or-equal-to constraints with >=:

julia> @constraint(model, con, 1x + 5y <= 3)

con : x + 5 y <= 3.0

Note that in a similar manner to the @variable macro, the constraint has been named con. This will bind the

constraint to the Julia variable con for later analysis.

Models are solved with the JuMP.optimize! function:

julia> optimize!(model)

After the call to JuMP.optimize! has finished, it is needed to query what happened. The solve could terminate

for a number of reasons. First, the solver might have found the optimal solution or proved that the problem is

infeasible. However, it might also have run into numerical difficulties or terminated due to a setting such as a

time limit. It can be asked to the solver why it stopped using the JuMP.termination_status function:

julia> termination_status(model)

OPTIMAL::TerminationStatusCode = 1

In this case, IPOPT returned OPTIMAL, this means that it has found the optimal solution.

JuMP has support for general smooth nonlinear (convex and nonconvex) optimization problems. JuMP is able

to provide exact, sparse second-order derivatives to solvers. This information can improve solver accuracy and

performance.

Nonlinear objectives and constraints are specified by using the @NLobjective and @NLconstraint macros.

Due to having chosen a QP problem as the one to solve in our project, @NLobjective will be needed.

6.3 Code in Julia

There is nothing else that needs to be commented to understand the programme, which is shown below, with

inline comments to easier understanding of it. This is the Julia version against which the MATLAB’s one will

be compared. In addition, the plotting programme used—from where all the figures were drawn and which could

be useful for the reader to own—is shown as well. The programmes themselves are shown here.

6.3.1 Optimization

###

###############

packages #

###

###############

69 Implementation of a control algorithm for a self-balancing robot in Julia in a Jetson Nano

 using LinearAlgebra # for identity matrices I

 using ControlSystems # for 'dlqr'

 using JuMP

 using Ipopt

 using Plots

 using Printf

###

###############

problem parameters #

###

###############

 # model parameters

 m_r=.044;

 M=.745;

 r=.053;

 L=.0805;

 g=9.81;

 # model auxiliary variables

 a=(1.5*m_r+.5*M)*r^2;

 b=M*L^2;

 c=r*L*M;

 d=M*g*L;

 e=2*a+c;

 f=2*b+c;

 # continuous time model matrices

 A=[0 1 0; d/f 0 0; 0 0 0];

 B=[0 -e/f 1]';

 nx,nu=size(B);

 C=I; # no observer will be needed

 ny=nx;

 # valores límite

 xmax=[90*pi/180;4;60];

 xmin=-xmax;

 umax=90;

 umin=-umax;

 ymax=[90*pi/180;4;60];

 # ymax=C*xmax;

 ymin=-ymax;

 # discretization

 deltaT=0.020; # sampling time

 A=A*deltaT+I; # these are de A_d and B_d, though named likewise to

simplify

 B=B*deltaT;

The coding

70

 # MPC variables

 N=3; # prediction horizon

###

##############

matrices of the model to make it look like this: x_F=Gu·u_F+G_x·x_k #

###

##############

 Gx=zeros((N+1)*nx,nx);

 Gu=zeros((N+1)*nx,N*nu);

 for i=1:N+1

 Gx[(i-1)*nx+1:i*nx,:]=A^(i-1);

 end

 for i=2:N+1

 for j=1:i-1

 Gu[(i-1)*nx+1:(i)*nx,(j-1)*nu+1:j*nu]=A^(i-j-1)*B;

 end

 end

###

###############

matrices of the cost function to make it look like this: V = x_F^t·QN·x_F +

u_F^t·RN·u_F #

###

###############

 Q=10*Matrix(I,nx,nx);

 R=Matrix(I,nu,nu);

 QN=zeros(nx*(N+1),nx*(N+1));

 RN=zeros((nu*N),(nu*N));

 K=-dlqr(A,B,Q,R);

 AK=A+B*K;

 QK=Q+K'*R*K;

 P=dlyap(AK',QK);

 for i=1:N

 QN[(i-1)*nx+1:i*nx,(i-1)*nx+1:i*nx]=Q;

 end

 QN[N*nx+1:(N+1)*nx,N*nx+1:(N+1)*nx]=P;

 for i=1:N

 RN[(i-1)*nu+1:i*nu,(i-1)*nu+1:i*nu]=R;

 end

###

###############

71 Implementation of a control algorithm for a self-balancing robot in Julia in a Jetson Nano

constraints

###

###############

 # initial references

 xr=[0; 0; 0];

 # setpoints in y and u deactivated because of no changes in them during

simulation

 # activate the corresponding in case there were changes

 # yr=C*xr;

 # ur=0;

 # constraints in the states

 Ax=[Matrix(I,nx,nx);Matrix(-I,nx,nx)];

 bx=[xmax;-xmin]-Ax*xr;

 nrx=length(Ax[:,1]); # number of constraints

in x

 AX=zeros((N+1)*nrx,(N+1)*nx);

 bX=zeros((N+1)*nrx,1);

 for i=1:N+1

 AX[(i-1)*nrx+1:i*nrx,(i-1)*nx+1:i*nx]=Ax;

 bX[(i-1)*nrx+1:i*nrx,:]=bx;

 end

 # constraints in the outputs

 Ay=[Matrix(I,ny,ny);Matrix(-I,ny,ny)];

 by=[ymax;-ymin];

 # uncomment if reference changes in y or if C is different from identity

 # by=[ymax;-ymin]-Ay*yr;

 nry=length(Ay[:,1]);

 AY=zeros((N+1)*nry,(N+1)*ny);

 bY=zeros((N+1)*nry,1);

 T=zeros((N+1)*nx,(N+1)*nx);

 for i=1:N+1

 AY[(i-1)*nry+1:i*nry,(i-1)*ny+1:i*ny]=Ay;

 bY[(i-1)*nry+1:i*nry,:]=by;

 end

 # constraints in the control action

 Au=[Matrix(I,nu,nu);Matrix(-I,nu,nu)];

 bu=[umax;-umin];

 # uncomment if there are changes in u's reference

 # bu=[umax;-umin]-Au*ur;

 nru=length(Au[:,1]);

 AU=zeros(N*nru,(N)*nu);

 bU=zeros(N*nru,1);

 for i=1:N

 AU[(i-1)*nru+1:i*nru,(i-1)*nu+1:i*nu]=Au;

 bU[(i-1)*nru+1:i*nru,:]=bu;

 end

The coding

72

 # creation of the matrices being used in the QP problem

 Aqp=[AX*Gu;AY*T*Gu;AU];

 b1qp=[bX;bY;bU];

 b2qp=[-AX*Gx;-AY*T*Gx;zeros(N*nru,nx)];

 H=2*(Gu'*QN*Gu+RN);

###

###############

simulation #

###

###############

 pasoE=deltaT; # Euler method's integration step

 Nsteps=200

 xSim=[1:Nsteps];

 ySim1=zeros(Nsteps);

 ySim2=zeros(Nsteps);

 ySim3=zeros(Nsteps);

 ySim4=zeros(Nsteps);

 elapsed=zeros(Nsteps);

 ref=zeros(Nsteps);

 function MPC()

 global ySim1,ySim2,ySim3,xr,b1qp,ref;

 x0=[pi/180*48; 0; 0]; # initial state

 xk=x0;

 for i=1:Nsteps

 if i==201 # loop for reference change in simulation

 xr=[0; 0; 50];

 bx=[xmax;-xmin]-Ax*xr;

 for j=1:N+1

 bX[(j-1)*nrx+1:j*nrx,:]=bx;

 end

 b1qp=[bX;bY;bU];

 elseif i==401

 xr=[0; 0; 15];

 bx=[xmax;-xmin]-Ax*xr;

 for j=1:N+1

 bX[(j-1)*nrx+1:j*nrx,:]=bx;

 end

 b1qp=[bX;bY;bU];

 end

 ref[i]=xr[3];

 # solving the optimization problem

 f=(2*(xk-xr)'*Gx'*QN*Gu)';

73 Implementation of a control algorithm for a self-balancing robot in Julia in a Jetson Nano

model=Model(optimizer_with_attributes(Ipopt.Optimizer,"print_level"=>0));

 @variable(model,uF[1:N]);

 @NLobjective(model,Min,sum(0.5*H[i,j]*uF[i]*uF[j] for i=1:N,

j=1:N)+sum(f[i]*uF[i] for i=1:N));

 @constraint(model,Aqp*uF .<= b1qp+b2qp*(xk-xr));

 optimize!(model);

 elapsed[i]=solve_time(model);

 uk=value.(uF[1]);

 # nonlinear model

 phiC=xk[1];

 vk=xk[2];

 thetaDot=xk[3];

 xk[1]=phiC+pasoE*vk;

 xk[2]=vk+pasoE*(d*sin(phiC)-c*sin(phiC)*vk^2-

(2*a+c*cos(phiC))*uk)*(c*cos(phiC)+2*b)^-1;

 xk[3]=thetaDot+pasoE*uk;

 ySim1[i]=xk[1];

 ySim2[i]=xk[2];

 ySim3[i]=xk[3];

 ySim4[i]=uk;

 # linearised model

 # xk=A*xk+B*uk;

 ySim1[i]=xk[1];

 ySim2[i]=xk[2];

 ySim3[i]=xk[3];

 ySim4[i]=uk;

 end

 ySim1*=180/pi; # units change

 avg=0;

 # loop for measuring computing time

 for i=1:Nsteps

 avg=avg+elapsed[i]/Nsteps;

 end

 return @printf "%.6f seconds of average in solving the QP\n" avg

 end

6.3.2 Plotting

plotly()

xmaxRef=ones(length(xmax),Nsteps).*[xmax[1]*180/pi;xmax[2:end]];

umaxRef=ones(length(umax),Nsteps).*umax;

steady/ changing reference

pSim1=plot(xSim,[xmaxRef[1,:] -xmaxRef[1,:] ySim1

zeros(Nsteps)],label=["Upper value" "Lower value" "Tilt"

"Reference"],title="Tilt",ylabel="°",xlabel="Simulation cycles")

The coding

74

pSim2=plot(xSim,[xmaxRef[2,:] -xmaxRef[2,:] ySim2

zeros(Nsteps)],label=["Upper value" "Lower value" "Tilt's speed"

"Reference"],title="Tilt's speed",ylabel="rad·s⁻¹",xlabel="Simulation

cycles")

pSim3=plot(xSim,[xmaxRef[3,:] -xmaxRef[3,:] ySim3 ref],label=["Upper value"

"Lower value" "Wheels' speed" "Reference"],title="Wheels'

speed",ylabel="rad·s⁻¹",xlabel="Simulation cycles")

pSim4=plot(xSim,[umaxRef[:] -umaxRef[:] ySim4 zeros(Nsteps)],label=["Upper

value" "Lower value" "Control action" "Reference"],title="Control

action",ylabel="rad·s⁻²",xlabel="Simulation cycles")

savefig(pSim1,"pSim1.png")

savefig(pSim2,"pSim2.png")

savefig(pSim3,"pSim3.png")

savefig(pSim4,"pSim4.png")

linear vs. NL comparison

(ySim1NL,ySim2NL,ySim3NL,ySim4NL)=(ySim1,ySim2,ySim3,ySim4);

pSim1=plot(xSim,[xmaxRef[1,:] -xmaxRef[1,:] ySim1 ySim1NL

zeros(Nsteps)],label=["Upper value" "Lower value" "Linear" "Nonlinear"

"Reference"],title="Tilt",ylabel="°",xlabel="Simulation cycles")

pSim2=plot(xSim,[xmaxRef[2,:] -xmaxRef[2,:] ySim2 ySim2NL

zeros(Nsteps)],label=["Upper value" "Lower value" "Linear" "Nonlinear"

"Reference"],title="Tilt's speed",ylabel="rad·s⁻¹",xlabel="Simulation

cycles")

pSim3=plot(xSim,[xmaxRef[3,:] -xmaxRef[3,:] ySim3 ySim3NL ref],label=["Upper

value" "Lower value" "Linear" "Nonlinear" "Reference"],title="Wheels'

speed",ylabel="rad·s⁻¹",xlabel="Simulation cycles")

pSim4=plot(xSim,[umaxRef[:] -umaxRef[:] ySim4 ySim4NL

zeros(Nsteps)],label=["Upper value" "Lower value" "Linear" "Nonlinear"

"Reference"],title="Control action",ylabel="rad·s⁻²",xlabel="Simulation

cycles")

savefig(pSim1,"pSim1.png")

savefig(pSim2,"pSim2.png")

savefig(pSim3,"pSim3.png")

savefig(pSim4,"pSim4.png")

optimization time

avg=0;

 for i=1:Nsteps

 global avg

 avg=avg+elapsed[i]/Nsteps;

 end

plot(xSim,[elapsed ones(Nsteps)*avg],title="Optimization

time",label=["Absolute time" "Average time"],

ylabel="Seconds",xlabel="Simulation cycles");

savefig("timing.png")

75 Implementation of a control algorithm for a self-balancing robot in Julia in a Jetson Nano

6.4 Code in MATLAB

In MATLAB, an analogue programme was written. The only difference one can find is that the solver of the QP

problem is the MATLAB function ‘quadprog’.

6.4.1 Optimization

The programme is shown here, with inline explanatory comments:

%% variables initialisation

% model parameters

m_r=0.044;

M=0.745;

r=0.053;

L=0.0805;

g=9.81;

% model auxiliary variables

a=(1.5*m_r+.5*M)*r^2;

b=M*L^2;

c=r*L*M;

d=M*g*L;

e=(2*a+c);

f=(2*b+c);

% continuous time model matrices

A=[0 1 0; d/f 0 0; 0 0 0];

B=[0; -e/f; 1];

[nx,nu]=size(B);

C=eye(nx); % no observer needed

ny=length(C(:,1));

% limit values

xmax=[90*2*pi/360;4;60];

xmin=-xmax;

umax=90;

umin=-umax;

ymax=[90*2*pi/360;4;60];

% ymax=C*xmax; % in the case C was different from identity

ymin=-ymax;

% discretisation

deltaT=0.020; % sampling time

A=A*deltaT+eye(nx);

B=B*deltaT;

% MPC variables

N=3; % prediction horizon

% initial setpoint

xr=[0; 0; 0];

% yr=C*xr;

% ur=0;

%% model's matrices

Gx=zeros((N+1)*nx,nx);

Gu=zeros((N+1)*nx,N*nu);

for i=1:N+1

The coding

76

 Gx((i-1)*nx+1:i*nx,:)=A^(i-1);

end

for i=2:N+1

 for j=1:i-1

 Gu((i-1)*nx+1:(i)*nx,(j-1)*nu+1:j*nu)=A^(i-j-1)*B;

 end

end

%% cost function's matrices

Q=10*eye(nx);

R=1;

QN=zeros(nx*(N+1));

RN=zeros(nu*N);

K=-dlqr(A,B,Q,R);

AK=A+B*K;

QK=Q+K'*R*K;

P=dlyap(AK',QK);

for i=1:N

 QN((i-1)*nx+1:i*nx,(i-1)*nx+1:i*nx)=Q;

end

QN(N*nx+1:(N+1)*nx,N*nx+1:(N+1)*nx)=P;

for i=1:N

 RN((i-1)*nu+1:i*nu,(i-1)*nu+1:i*nu)=R;

end

%% constraints

% in the states

Ax=[eye(nx);-eye(nx)];

bx=[xmax;-xmin]-Ax*xr;

nrx=length(Ax(:,1)); % number of constraints in x

AX=zeros((N+1)*nrx,(N+1)*nx);

bX=zeros((N+1)*nrx,1);

for i=1:N+1

 AX((i-1)*nrx+1:i*nrx,(i-1)*nx+1:i*nx)=Ax;

 bX((i-1)*nrx+1:i*nrx,:)=bx;

end

% in the outputs

Ay=[eye(ny);-eye(ny)];

by=[ymax;-ymin];

% by=[ymax;-ymin]-Ay*yr;

nry=length(Ay(:,1));

AY=zeros((N+1)*nry,(N+1)*ny);

bY=zeros((N+1)*nry,1);

T=zeros((N+1)*nx);

for i=1:N+1

 AY((i-1)*nry+1:i*nry,(i-1)*ny+1:i*ny)=Ay;

 bY((i-1)*nry+1:i*nry,:)=by;

end

% in the control actions

Au=[eye(nu);-eye(nu)];

bu=[umax;-umin];

% bu=[umax;-umin]-Au*ur;

nru=length(Au(:,1));

AU=zeros(N*nru,(N)*nu);

77 Implementation of a control algorithm for a self-balancing robot in Julia in a Jetson Nano

bU=zeros(N*nru,1);

for i=1:N

 AU((i-1)*nru+1:i*nru,(i-1)*nu+1:i*nu)=Au;

 bU((i-1)*nru+1:i*nru,:)=bu;

end

% creation of the matrices used by quadprog

Aqp=[AX*Gu;AY*T*Gu;AU];

b1qp=[bX;bY;bU];

b2qp=[-AX*Gx;-AY*T*Gx;zeros(N*nru,nx)];

%% simulation

Nsteps=200;

% Nsteps=1/deltaT; % simulation steps

H=2*(Gu'*QN*Gu+RN);

x0=[pi/180*10; 0; 0]; % initial state

xk=x0;

r1=ones(1,Nsteps)*xr(3);

xSim=(1:Nsteps);

ySim1=zeros(1,Nsteps);

ySim2=zeros(1,Nsteps);

ySim3=zeros(1,Nsteps);

ySim4=zeros(1,Nsteps);

fvalSim=zeros(1,Nsteps);

elapsed=zeros(1,Nsteps);

ref=zeros(1,Nsteps);

pasoE=deltaT; % Euler method integration step

for i=1:Nsteps

 % setpoint change

 if i==201

 xr=[0; 0; 50];

 bx=[xmax;-xmin]-Ax*xr;

 for j=1:N+1

 bX((j-1)*nrx+1:j*nrx,:)=bx;

 end

 b1qp=[bX;bY;bU];

 r2=ones(1,Nsteps)*xr(3);

 elseif i==401

 xr=[0; 0; 15];

 bx=[xmax;-xmin]-Ax*xr;

 for j=1:N+1

 bX((j-1)*nrx+1:j*nrx,:)=bx;

 end

 b1qp=[bX;bY;bU];

 r3=ones(1,Nsteps)*xr(3);

 end

 ref(i)=xr(3);

 % QP constraints and f are updated

 f=(2*(xk-xr)'*Gx'*QN*Gu)';

 tic

 [uF,fval]=quadprog(H,f,Aqp,b1qp+b2qp*(xk-xr));

 elapsed(i)=toc;

 uk=uF(1);

% xk=A*xk+B*uk; % linearised model

 % nonlinear model

The coding

78

 phiC=xk(1); % previous phi_c

 vk=xk(2); % previous phi_cDot

 thetaDot=xk(3); % previous thetaDot

 xk(1)=phiC+pasoE*vk;

 xk(2)=vk+pasoE*(d*sin(phiC)-c*sin(phiC)*vk^2-

(2*a+c*cos(phiC))*uk)*(c*cos(phiC)+2*b)^-1;

 xk(3)=thetaDot+pasoE*uk;

 ySim1(i)=xk(1)*180/pi;

 ySim2(i)=xk(2);

 ySim3(i)=xk(3);

 ySim4(i)=uk;

 fvalSim(i)=fval;

end

6.4.2 Plotting

xmaxRef=ones(length(xmax),Nsteps).*[xmax(1)*180/pi;xmax(2:end)];

umaxRef=ones(length(umax),Nsteps).*umax;

%% steady/ changing reference

plot(xSim,xmaxRef(1,:),xSim,-

xmaxRef(1,:),xSim,ySim1,xSim,zeros(1,Nsteps))

title('Tilt')

xlabel('Simulation cycles')

ylabel('°')

legend('Upper value','Lower value','Tilt','Reference')

grid on

saveas(gcf,'pSim1.png')

plot(xSim,xmaxRef(2,:),xSim,-

xmaxRef(2,:),xSim,ySim2,xSim,zeros(1,Nsteps))

title("Tilt's speed")

xlabel('Simulation cycles')

ylabel('rad·s?¹')

legend('Upper value','Lower value',"Tilt's speed",'Reference')

grid on

saveas(gcf,'pSim2.png')

plot(xSim,xmaxRef(3,:),xSim,-xmaxRef(3,:),xSim,ySim3,xSim,ref)

title("Wheels' speed")

xlabel('Simulation cycles')

ylabel('rad·s?¹')

legend('Upper value','Lower value',"Wheels' speed",'Reference')

grid on

saveas(gcf,'pSim3.png')

plot(xSim,umaxRef(1,:),xSim,-

umaxRef(1,:),xSim,ySim4,xSim,zeros(1,Nsteps))

title('Control action')

xlabel('Simulation cycles')

ylabel('rad·s?²')

legend('Upper value','Lower value','Control action','Reference')

grid on

saveas(gcf,'pSim4.png')

%% linear vs. NL comparison

ySim1NL=ySim1;

79 Implementation of a control algorithm for a self-balancing robot in Julia in a Jetson Nano

ySim2NL=ySim2;

ySim3NL=ySim3;

ySim4NL=ySim4;

plot(xSim,xmaxRef(1,:),xSim,-

xmaxRef(1,:),xSim,ySim1,xSim,ySim1NL,xSim,zeros(1,Nsteps))

title('Tilt')

xlabel('Simulation cycles')

ylabel('°')

legend('Upper value','Lower value','Linear','Nonlinear','Reference')

grid on

saveas(gcf,'pSim1.png')

plot(xSim,xmaxRef(2,:),xSim,-

xmaxRef(2,:),xSim,ySim2,xSim,ySim2NL,xSim,zeros(1,Nsteps))

title("Tilt's speed")

xlabel('Simulation cycles')

ylabel('rad·s?¹')

legend('Upper value','Lower value','Linear','Nonlinear','Reference')

grid on

saveas(gcf,'pSim2.png')

plot(xSim,xmaxRef(3,:),xSim,-

xmaxRef(3,:),xSim,ySim3,xSim,ySim3NL,xSim,ref)

title("Wheels' speed")

xlabel('Simulation cycles')

ylabel('rad·s?¹')

legend('Upper value','Lower value','Linear','Nonlinear','Reference')

grid on

saveas(gcf,'pSim3.png')

plot(xSim,umaxRef(1,:),xSim,-

umaxRef(1,:),xSim,ySim4,xSim,ySim4NL,xSim,zeros(1,Nsteps))

title('Control action')

xlabel('Simulation cycles')

ylabel('rad·s?²')

legend('Upper value','Lower value','Linear','Nonlinear','Reference')

grid on

saveas(gcf,'pSim4.png')

%% computing time

avg=sum(elapsed)/Nsteps;

plot(xSim,elapsed,xSim,ones(1,Nsteps)*avg)

title("Optimization time")

ylabel('seconds')

xlabel('Simulation cycles')

grid on

7 RESULTS

his chapter includes the results obtained throughout the project. Even if the ‘results’ themselves could be

considered only the plots explaining the programme’s and code’s performance, the configuration and

information acquired about Julia and the Jetson Nano take part of the knowledge gained through the

development of this whole project.

7.1 PC specifications

Here, the specifications of the PC where some of the experiments were performed are introduced:

Table 7-1. PC characteristics.

Model Lenovo Y520-15IKBN

Processor Intel Core i7-7700HQ

CPU @ 2.80GHz 2.80GHz

RAM 8,00 GB

These characteristics will have to be considered when performing the experiments, as results obtained in the

computer will be compared with the ones obtained in the Nano, which is far less powerful and, as so, higher

computation time—in general, worst or slower results—will be obtained when testing the code in it. However,

they are also compared to show the reader the full potential of this device and its limitations.

7.2 Julia’s programme

In this section, the results presented in the PC and in the Jetson Nano running Julia’s programme are presented.

7.2.1 In the PC

To present the results, the Julia’s package plots will be used. To install it and make it run—as it could be seen

in the ‘packages’ section of the programme—the following commands shall be typed:

import Pkg

Pkg.add("Plots")

using plots

Plots.jl is not actually a plotting package! Plots.jl is a plotting metapackage: it is an interface over many different

plotting libraries. Thus, what Plots.jl is actually doing is interpreting commands and then generating the plots

using another plotting library. This plotting library in the background is referred to as the backend. The nice

thing about this is that this means many different plotting can be used libraries all with the Plots.jl syntax. In our

case, plotly is the chosen backend, as it permits easy modification and consulting of the given graphs, allowing

T

Results

82

us to zoom and acquire points’ coordinates easily.

7.2.1.1 Steady reference

Firstly, some tests were performed without changing the reference in the speed of the wheels. The robot had the

aim of reaching this reference:

𝑥𝑟 = [
0
0
0
]

𝑟𝑎𝑑
𝑟𝑎𝑑 · 𝑠−1

𝑟𝑎𝑑 · 𝑠−1

With a beginning state of:

𝑥0 = [
10 ·

𝜋

180
0
0

]
𝑟𝑎𝑑

𝑟𝑎𝑑 · 𝑠−1

𝑟𝑎𝑑 · 𝑠−1

i.e., 10 degrees far from the vertical equilibrium point.

In the following experiment, the system was driven from its starting state of 𝑥0 to the reference setpoint 𝑥𝑟,

which is, precisely, the upper equilibrium point. These were the resulting graphs:

Figure 7-1. Tilt (steady reference).

83 Implementation of a control algorithm for a self-balancing robot in Julia in a Jetson Nano

Figure 7-2.Tilt's speed (steady reference).

Figure 7-3. Wheels' speed (steady reference).

Results

84

Figure 7-4. Control action (steady reference).

These plots show how the tilt, its speed and the wheels’ velocity behave when the system is driven from its

starting point to the reference. It can be seen that all the references are reached without exceeding the constraints,

which are represented above and below the corresponding curve in blue and orange.

In addition, the computation time of solving the QP problem mas measured, and below a figure showing how it

does change throughout the experiment is inserted:

Figure 7-5. Julia's optimization time with steady reference.

85 Implementation of a control algorithm for a self-balancing robot in Julia in a Jetson Nano

With a measured average time of 0.00708 seconds.

If the execution time of two or more consecutive runs of MPC() is measured, it can be appreciated that Julia’s

first slower iteration characteristic is true. Please, observe this screenshot taken from three consecutive

executions of the MPC() function:

Figure 7-6. Julia's compiler behaviour.

From second iteration on, the time the programme spends doing calculations shall be similar to the second, but

always inferior to the first one. In addition, please note that the number of allocations in memory is reduced after

performing the first iteration and remains steady for the remaining ones. Under the average solving time, the

time of performing executing MPC wholly is shown for reference.

In the following experiment, while maintaining the reference of upper equilibrium point, the starting state was

chosen:

𝑥0 = [
45
0
0
]

𝑟𝑎𝑑
𝑟𝑎𝑑 · 𝑠−1

𝑟𝑎𝑑 · 𝑠−1

In case a more distant initial state is chosen, more abrupt results are obtained. Let us show the detailed view of

these figures:

Results

86

Figure 7-7. Tilt (distant starting point).

Figure 7-8. Tilt's speed (distant starting point).

87 Implementation of a control algorithm for a self-balancing robot in Julia in a Jetson Nano

Figure 7-9. Wheels' speed (distant starting point).

Figure 7-10. Control action (distant starting point).

Even so, it can be observed that constraints are neither surpassed. Please, pay attention to the control action’s

plot. It can be beheld that its constraint is reached but not exceeded.

It has been now demonstrated that even with a relatively distant from the reference initial state, the setpoint is

reached without overpassing the constraints.

Results

88

7.2.1.2 Changing reference

On the contrary, this subsection shows how the controller behaves when adding changes in the references.

Beginning from a reference state of:

𝑥𝑟 = [
0
0
45
]

𝑟𝑎𝑑
𝑟𝑎𝑑 · 𝑠−1

𝑟𝑎𝑑 · 𝑠−1

And an initial state of:

𝑥0 = [
45 ∗

𝜋

180
0
0

]
𝑟𝑎𝑑

𝑟𝑎𝑑 · 𝑠−1

𝑟𝑎𝑑 · 𝑠−1

e.g., 45° separated from the horizontal., two setpoint changes have been implemented:

• The first one, at the 200th simulation cycle, where the setpoint of the wheels’ speed moved to 50
𝒓𝒂𝒅

𝒔
:

𝑥𝑟 = [
0
0
50
]

𝑟𝑎𝑑
𝑟𝑎𝑑 · 𝑠−1

𝑟𝑎𝑑 · 𝑠−1

• The second and last one, done at the 400th simulation cycle, where the setpoint changed to 15
𝒓𝒂𝒅

𝒔
:

𝑥𝑟 = [
0
0
15
]

𝑟𝑎𝑑
𝑟𝑎𝑑 · 𝑠−1

𝑟𝑎𝑑 · 𝑠−1

It has been waited 200 cycles to let the model reach the steady state, every time the reference changed plus the

first time to reach the original reference, thus adding up to 600 simulation cycles.

Here, figures of the obtained results are shown to appreciate the detail:

Figure 7-11. Tilt (changing reference).

89 Implementation of a control algorithm for a self-balancing robot in Julia in a Jetson Nano

Figure 7-12. Tilt's speed (changing reference).

Figure 7-13. Wheels' speed (changing reference).

Results

90

Figure 7-14. Control action (changing reference).

In the plots above, the blue and orange lines are the upper and lower constraints, respectively. In addition, the

reference is shown in purple.

From the pictures, it can be observed that not only the reference is reached every time it changes, but also that

the tilt and its speed remain zero. In addition, it can be beheld that none of the components of the state surpass

their limits, meaning that the solver achieved to solve the QP problem each time.

Let us recall that a too sharp change in the wheels’ speed or any of the other components of the reference state

may lead to a non-feasible problem.

In addition, the solving time of the QP problem was measured and these results were obtained:

91 Implementation of a control algorithm for a self-balancing robot in Julia in a Jetson Nano

Figure 7-15. Optimization time.

With a measured average time of 0.00703 seconds, very close to the result obtained with the steady reference.

Figure 7-16. Solving time with changing setpoints.

7.2.1.3 Using linearised model

Results using the linearised model were very similar, as it was expected. However, the linearised model seems

to give a smoother response. The same experiments performed in the previous subsection were repeated to obtain

these plots. These are the computation time when performing two consecutive instances of the MPC function:

Figure 7-17. Solving time (linearised model).

Finally, some detailed views of the plots comparing both linear (in green) and nonlinear (in purple) responses

are shown below. Reference is shown in ochre:

Results

92

Figure 7-18. Linear vs. nonlinear tilt.

Figure 7-19 Linear vs. nonlinear tilt's speed.

93 Implementation of a control algorithm for a self-balancing robot in Julia in a Jetson Nano

Figure 7-20 Linear vs. nonlinear wheels' speed.

Figure 7-21 Linear vs. nonlinear control action.

As stated before, it can be appreciated that the linear response presents smoother results.

7.2.2 In Jetson Nano

The same tests performed in the PC were done in the Jetson Nano, obtaining the results that follow.

Results

94

Appreciate that the average computation time in the Jetson Nano is increased in the order of two to three times

that of the one obtained in the author’s computer, but being faster than the 20 milliseconds obtained in the

previous project, albeit suboptimal and hence, opening a new research direction to continue developing the

following robots.

On the other hand, it will be noticed that the reference tracking results are very similar to the ones obtained on

the PC. However, pay special attention to the performance when testing the models’ behaviour when starting

from a remote state; it can be observed that the response is sharper, and saturation is reached a larger number of

simulation cycles.

7.2.2.1 Steady reference

Figure 7-22. Tilt (steady reference).

95 Implementation of a control algorithm for a self-balancing robot in Julia in a Jetson Nano

Figure 7-23. Tilt's speed (steady reference).

Figure 7-24. Wheels' speed (steady reference).

Results

96

Figure 7-25. Control action (steady reference).

Figure 7-26. Julia's optimization time with steady reference (Jetson Nano).

97 Implementation of a control algorithm for a self-balancing robot in Julia in a Jetson Nano

Figure 7-27. Julia's compiler behaviour (Jetson Nano).

When testing the programme with far-flung starting state, these results were obtained:

Figure 7-28. Tilt (distant starting point).

Results

98

Figure 7-29. Tilt's speed (distant starting point).

Figure 7-30. Wheels' speed (distant starting point).

99 Implementation of a control algorithm for a self-balancing robot in Julia in a Jetson Nano

Figure 7-31. Control action (distant starting point).

It can be beheld that saturation is reached in every figure—specially in the case of the control action, something

that should be regarded in the future—but the tilt’s one.

Figure 7-32. Optimization time (distant starting point).

7.2.2.2 Changing reference

The experiments when changing the wheels’ speed reference are shown below:

Results

100

Figure 7-33. Tilt (changing reference).

Figure 7-34. Tilt's speed (changing reference).

101 Implementation of a control algorithm for a self-balancing robot in Julia in a Jetson Nano

Figure 7-35. Wheels' speed (changing reference).

Figure 7-36. Control action (changing reference).

Results

102

Figure 7-37. Optimization time.

Figure 7-38. Solving time with changing setpoints.

103 Implementation of a control algorithm for a self-balancing robot in Julia in a Jetson Nano

7.2.2.3 Using linearised model

Figure 7-39. Linear vs. nonlinear tilt.

Figure 7-40. Linear vs. nonlinear tilt's speed.

Results

104

Figure 7-41. Linear vs. nonlinear wheels' speed.

Figure 7-42. Linear vs. nonlinear control action.

7.3 MATLAB’s programme

The results given in MATLAB were better than the ones in Julia, as the robot reached the setpoints almost in

the same way but at a superior speed.

The experiments here performed are the same of those made in Julia, with the same changes in reference, same

105 Implementation of a control algorithm for a self-balancing robot in Julia in a Jetson Nano

initial states, etc.

7.3.1 Steady reference

Figure 7-43. Tilt (steady reference).

Figure 7-44. Tilt's speed (steady reference).

Results

106

Figure 7-45. Wheels' speed (steady reference).

Figure 7-46. Control action (steady reference).

107 Implementation of a control algorithm for a self-balancing robot in Julia in a Jetson Nano

Figure 7-47. MATLAB's optimization time with steady reference.

In this case, the average computation time is of 0.0036 seconds, approximately half of that obtained in Julia

7.3.2 Changing reference

When trying to replicate the experiment performed in Julia, with an initial state of:

𝑥𝑟 = [
45 ∗

𝜋

180
0
0

]
𝑟𝑎𝑑

𝑟𝑎𝑑 · 𝑠−1

𝑟𝑎𝑑 · 𝑠−1

The results were the following:

Results

108

Figure 7-48. Tilt (changing reference).

Figure 7-49. Tilt's speed (changing reference).

109 Implementation of a control algorithm for a self-balancing robot in Julia in a Jetson Nano

Figure 7-50. Wheels' speed (changing reference).

Figure 7-51. Control action (changing reference).

Here, a detailed image of the optimization time is shown:

Results

110

Figure 7-52. MATLAB's computation time.

With an average time of 0.0028seconds, similar to the results obtained in Julia’s version.

7.3.3 Using linearised model

This subsection shows the results obtained with the linearised model in MATLAB:

Figure 7-53. Linear vs. nonlinear tilt.

111 Implementation of a control algorithm for a self-balancing robot in Julia in a Jetson Nano

Figure 7-54. Linear vs. nonlinear tilt's speed.

Figure 7-55. Linear vs. nonlinear wheels' speed.

Results

112

Figure 7-56. Linear vs. nonlinear control action.

Similar to Julia’s version, linear approximation (yellow) is smoother than nonlinear one (purple).

8 CONCLUSIONS

his chapter is intended as the one including all the conclusions provided by the development of this project,

i.e., an overview of what has been worked about throughout the time in which this document was written

and a quick summary for the reader to extract the outputs easily.

8.1 Contributions

It has been said and demonstrated when talking about Julia that this language is faster than interpreted languages,

When observing the results given by the programme developed throughout this project that is slower than

MATLAB’s version, but not so much and as fast as previous versions of the programme.

What could be the cause of this apparently contradictory behaviour? Apart from the fact that one is run in a more

computationally powerful, it is thought that the programme has not been optimised as much as it could have

been done, but instead it was made in order to provide a preliminary programme with sufficient options to be

later modified with the goal of performance instead of versatility.

On the other side, it has been beheld that there is the possibility of implementing an MPC (model predictive

control) strategy by using the Jetson Nano and Julia, and its further development and guidance to the

programming optimization fields will be followed by the continuing projects. Julia and Jetson Nano have shown

(in other areas) that each of them, independently, has the power to surpass its direct competitors—i.e. Python

and Arduino, respectively—but it is indeed needed to explore more of the available coding options, such as other

optimizers different from Ipopt, code optimization strategies in Julia, etc.

This project has achieved, then, to create a programme from scratch, capable of implementing an MPC based

on the model equations of an inverted-pendulum-like robot, i.e., a Segway-type robot, whose model equations

have also been developed from zero and, based on them, all the subsequent mathematical development, aimed

to achieve a specific form given by the formulae used when solving a QP problem.

This programme can be easily modified by anyone to hold different types of systems and with a myriad of

constraints, as it has been designed with adaptability in mind. It is fairly straightforward to perform changes in

the programme and they will take effect automatically, as most of the code has been implemented in a referenced

way, i.e. using the least possible specific information to perform its calculations. One could implement another

model’s equations by simply introducing the appropriate matrices and updating the constraints’ relevant values.

To sum up, a highly adaptable MPC programme is provided for its further development or to perform any kind

of tests which are suitable in the MPC fashion.

In addition, the Jetson Nano suite and its possibilities have been explored and explained. It has been configured

T

That's one small step for man, one giant leap for

mankind.

- Neil Armstrong -

Conclusions

114

appropriately to hold the programmes developed as well.

However, the reader must be rather careful with respect to Julia, as it is a language not only very recent, but

under astonishingly quick development. Hence, the commands used in this project’s programmes may remain

useless when trying to improve what has been worked out in this text.

8.2 What is next?

Well, as commented throughout the text, the beginning goal for this project was to implement not only a

programme capable of running and solving an MPC problem in record time, but to also implement it in a real

robot.

Previous projects have been developed in this direction, but with Arduino, so it is a logical step to take the Jetson

Nano and put it in the place of where the Arduino was, i.e. develop a fully-working prototype with the Jetson

Nano attached to it and running the programme developed throughout this thesis or a newer—and possibly

faster—version of it.

In addition, as mentioned, some improvements could be done to lighten the programme’s computational burden.

Some of the performance tips that could be tried to do so are:

• Avoid global variables. A global variable might have its value, and therefore its type, change at any

point. This makes it difficult for the compiler to optimize code using global variables. Variables should

be local, or passed as arguments to functions, whenever possible. Any code that is performance critical

or being benchmarked should be inside a function.

We find that global names are frequently constants and declaring them as such greatly improves

performance. Uses of non-constant global variables can be optimized by annotating their types at the

point of use.

Passing arguments to functions is better style. It leads to more reusable code and clarifies what the inputs

and outputs are.

• Measure performance with @time and pay attention to memory allocation. A useful tool for

measuring performance is the @time macro. On the first call functions get compiled. (if @time has not

yet been used in this session, it will also compile functions needed for timing.) The results of this run

should not be taken seriously. For the second run, note that in addition to reporting the time, it will also

be indicated that a significant amount of memory will be allocated.

Unexpected memory allocation is almost always a sign of some problem with the code, usually a

problem with type-stability or creating many small temporary arrays. Consequently, in addition to the

allocation itself, it is very likely that the code generated for the function is far from optimal. Take such

indications seriously.

• Type declarations. In many languages with optional type declarations, adding declarations is the

principal way to make code run faster. This is not the case in Julia. In Julia, the compiler generally

knows the types of all function arguments, local variables, and expressions.

• Write type-stable functions. When possible, it helps to ensure that a function always returns a value

of the same type.

• Avoid changing the type of a variable.

Those are the main enhancements that could be applied to the current code, but there is a whole world about

code optimisation that can be explored either in the Julia’s official webpage, GitHub, forums, etc. It is highly

encouraged to drive the following projects into that direction to eventually obtain the optimum code.

https://docs.julialang.org/en/v1/manual/performance-tips/#Measure-performance-with-[@time](@ref)-and-pay-attention-to-memory-allocation
https://docs.julialang.org/en/v1/base/base/#Base.@time
https://docs.julialang.org/en/v1/base/base/#Base.@time
https://docs.julialang.org/en/v1/base/base/#Base.@time

9 REFERENCES

[1] [Online]. Available: https://docs.julialang.org/en/v1/manual/performance-tips/.

[2] Regier et al., “Cataloging the visible universe through Bayesian inference in Julia at petascale,” Journal

of Parallel and Distributed Computing, vol. 127, pp. 89-104, 2019.

[3] [Online]. Available: https://julialang.org/packages/#julia_packages.

[4] [Online]. Available: https://www.amazon.es/dp/B01M0XSI6L?ref=ppx_pop_mob_ap_share.

[5] [Online]. Available: https://developer.nvidia.com/embedded/learn/get-started-jetson-Nano-devkit.

[6] [Online]. Available: https://developer.nvidia.com/embedded-computing.

[7] [Online]. Available: https://devtalk.nvidia.com/default/board/371/jetson-Nano/.

[8] [Online]. Available: https://developer.nvidia.com/embedded/downloads.

[9] [Online]. Available: https://julialang.org/downloads/.

[10] [Online]. Available: https://julialang.org/downloads/platform/.

[11] [Online]. Available: https://www.julia-vscode.org/.

[12] [Online]. Available: https://github.com/adafruit/Adafruit_CircuitPython_MPU6050.

[13] [Online]. Available: https://www.jetsonhacks.com/.

[14] [Online]. Available: https://jump.dev/JuMP.jl/dev/.

