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Abstract

This PhD dissertation focuses on the study of Mixed Integer Nonlinear Programming
(MINLP) problems [34] for two important and current applications: competitive loca-
tion on networks [59, 64] and Support Vector Machines (SVM) [56, 152, 153].

Location problems on a network in a competitive environment were first introduced
in [82]. They have been deeply studied in operations research and applied in problems
such as market area analysis [122], demand estimation [123], or location of retail centres
[78].

The SVM has proved to be one of the state-of-the-art methods for Supervised
Classification [2, 6, 85, 160]. Successful applications of the SVM are found, for instance,
in health care [22, 46, 81], fraud detection [43], credit scoring [113] and cancellations
forecasting [138].

In its general form, an MINLP problem can be represented as:

min f(x1, x2)

s.t.

gi(x1, x2) ≤ 0 ∀i = 1, . . . , I
x1 ∈ Zn1

x2 ∈ Rn2 ,

where n1 is the number of integer variables, n2 is the number of continuous variables, I is
the number of constraints and f, gi are arbitrary functions such that f, gi : Zn1×Rn2 →
R. The general class of MINLP problems is composed by particular cases such as
Mixed Integer Linear Programming (MILP) problems, when f, gi ∀i = 1, . . . , I are
linear functions, Mixed Integer Quadratic Programming (MIQP) problems, when f is
quadratic or Quadratically Constrained Quadratic Programming (QCQP) problems,
when f, gi are quadratic functions.

There are two main lines of research to solve this kind of problems: to develop
packages for general MINLP problems [32, 55] or to exploit the specific structure of the
problem. In this PhD dissertation we focus on the latter.

Concerning the first application, we study the problem of locating one or several
facilities on a competitive environment in order to maximize the market share. We
study the single and p-facility Huff location model on a network and the single Huff
origin-destination trip model [95]. Both models are formulated as MINLP problems and
solved by a specialized branch and bound, where bounding rules are designed using DC
(difference of convex) and Interval Analysis tools.
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In relation to the second application, we present three different SVM-type classi-
fiers, focused either on robustness or interpretability. In order to build the classifier,
different approaches are proposed based on the solution of MINLP problems, or partic-
ular cases of it such as MILP, MIQP or QCQP problems, and globally optimized using
a commercial branch and bound solver [55, 100, 101].
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Chapter 1

Location Analysis on Networks
and the Huff Problem

1.1 An introduction to location analysis

Facility location problems [64, 84] aim at finding the optimal location of one or more
facilities inside a region satisfying the demand from users, usually represented as points
of a certain space. Classical examples of location applications are found in the private
and public sectors. For example, industry must locate warehouses, production plants
and retail outlets, while governments need to determine the location of hospitals, am-
bulances or fire stations.

Location problems can be classified based on two main components: the location
search space (continuous, discrete or on networks) and the objective that determines
the location of the facility (attraction, repulsion or a combination of them).

Let us focus on the first component, the location search space. A number of different
spaces have been employed in the literature. In the continuous case, users and facilities
are located in the d-dimensional space Rd, usually considering d = 2 [110, 129]. In the
discrete case, the set of feasible locations for the facilities is a finite set [59, 118, 134],
and in network location problems, users are usually identified with the nodes of the
network, and facilities are located in any node or edge of the network [12, 59]. In this
part of the dissertation, Part I, we focus on location problems on networks.

Concerning the second component, there are two main opposite objectives: attrac-
tion and repulsion. Users may either try to attract desirable facilities closer to them,
or repel undesirable facilities from them. The class of attractive objectives are based
on the assumption that the facility or facilities to be located are desirable. As a result,
the users demanding a service obtain as larger benefit as closer the facility is located.
Examples such as schools, shopping or leisure centers are considered as desirable fa-
cilities. Attractive location problems are often based on minimizing a function of the
facility-user distance. Classic problems in this class are the minisum, minimax and
covering problems [50, 54, 82, 87, 148, 157].

On the contrary, some facilities are considered undesirable when the lower the dis-
tance to the users, the more threat causes to them. Examples such as waste sites,
nuclear reactors or water purification plants are considered obnoxious facilities, and
therefore, the decision maker would try to locate the facility in order to maximize
the distance from the users to it. When the location problem involves locating an

2



1.2. Location on networks 3

undesirable facility, the problem is considered a repulsive problem [49, 69, 68, 119].
In the case the new facility to be located has both desirable and undesirable effects,

the problem is considered a semi-obnoxious or semi-repulsive problem [24, 41, 47, 116,
121, 137]. On one hand, the facilities are beneficial for a set of users, which want to
have the facilities as close as possible, so that transportation cost minimization is the
main objective. On the other hand, the installation of the new facilities has undesirable
effects, such as the environmental impact, which makes users want to have the facilities
as far as possible. When both transportation costs and environmental impact are
present, the semi-obnoxious facilities should be located at points optimizing a certain
compromise measure between these two conflicting criteria. The traditional approach
in the literature for semi-obnoxious location problems has been the aggregation of both
objectives into a single one [41, 47].

One branch of location theory deals with the location of retail and other commercial
facilities which operate in a competitive environment [61, 62, 67, 83, 130]. These are
a particular case of attractive problems, where the facilities compete for users and
market share, with a profit maximization objective. A location problem is said to be
competitive when it explicitly incorporates the fact that other facilities are already
present in the market and that the new facility will have to compete with them for
its market share. In this part of the dissertation, we focus on competitive location
problems.

1.2 Location on networks

Many datasets in real systems from fields such as sociology, health care or computer
science can be represented as a network. The Internet, the World Wide Web, highways
and neural, protein, citation, airline or social networks are just a few examples [13, 31,
75].

Network optimization problems [21] are widely used in practice due to their method-
ological aspects and intuitive formulations. They arise naturally in the context of
assignment, flow, transportation or location problems among others [3, 112]. For a
comprehensive introduction to location problems on networks see [103, 146].

Formally, we denote as N = (V,E) a network, where V is a finite set whose elements
are called vertices or nodes, and E is a subset of V ×V , whose elements are called arcs
or edges. In network optimization problems, the users are usually represented as the
nodes of the network, and the communication between users takes place through the
edges. The length of the edge e ∈ E is given, and it is denoted by le. The distance
between two nodes vi, vj is calculated as the shortest path [103] from vi to vj . For each
e ∈ E, with end nodes vi, vj , we identify each x ∈ [0, le] with the point in the edge e at
distance x from vi and distance le−x from vj . This way, we obtain that, for any vertex
vk ∈ V , the distance d(x, vk) from x to vk is, as a function of x, a concave piecewise
linear function, given by:

d(x, vk) = min{fik(x), fjk(x)}, (1.1)

with fik(x) = x+ d(vi, vk), fjk(x) = (le − x) + d(vj , vk).
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Facility location problems on networks deal with the problem of selecting one or
more points of a network as facility locations in order to optimize some criterion. Users
are taken to be at the nodes of the network as a rule, and the problem is then to locate
the facilities in some optimal way over the network such that the demand from users
is satisfied.

1.2.1 The Huff location problem on networks

Competitive location problems [67, 130] were originally introduced by Hotelling in [93],
considering the location of two competing facilities on a linear market. In the seminal
work of Hotelling, users patronize the facility closest to them. In contrast with this
all·or·nothing assumption, it was introduced the Huff location problem [95], in which
the probability that a user patronizes a facility is proportional to its attractiveness
and inversely proportional to a power of the distance to it. The Huff location problem
has been extensively studied in the field of continuous location [25, 63, 72, 95, 96]
and successfully applied in the marketing field, in problems such as location of petrol
stations, shopping centers or restaurants [78, 122, 124]. The problem was extended
by [122] on networks with the shortest-path distance and has been also addressed in
[18, 30]. In [127], a modified Huff problem is proposed, namely the Pareto-Huff problem,
based on the assumption that a user will patronize a further facility only if that facility
is more attractive. In [136], metaheuristics are proposed for the p-facility case.

In the Huff location problem on networks, the finite set V of vertices of the network
represents users, asking for a certain service. Each user v ∈ V has a demand ωv > 0,
that is patronized by different existing facilities, located at points y1, . . . , yr on the
network. The demand captured by facility at yi from user v is inversely proportional
to a positive nondecreasing function of the distance d(v, yi), namely, 1/ϕv(d(v, yi)) is
used as the utility or attraction function of yi. Therefore, the demand captured by the
facility at yi from the user at v is given by

ωv
1/ϕv(d(v, yi))
r∑
j=1

1/ϕv(d(v, yj))
. (1.2)

Here ϕv is assumed to be nonnegative and nondecreasing. The usual choice for
each ϕv has the form ϕv(d) = dλv . When λv = 2 for all v ∈ V, we have the so-called
gravitational model.

Expression (1.2) must be carefully considered when ϕv(0) = 0. Indeed, in such a
case, if some yj exists with yj = v ∈ V , then the overall demand of v will be captured
by yj . Hence, such v will not be taken into account, and thus we assume in what follows
without loss of generality that yj /∈ V, j = 1, . . . , r.

A new firm is entering the market, by locating p new facilities at some points
x1, . . . , xp on the network. This perturbs how the market is shared, since the new
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facilities will capture part of the demand from v ∈ V ,

ωv

p∑
j=1

1/ϕv(d(v, xj))

p∑
j=1

1/ϕv(d(v, xj)) +
r∑
j=1

1/ϕv(d(v, yj))
. (1.3)

Our goal is the maximization of the market share of the entering firm. Thus, the
problem we need to solve can be formulated as

max
x1∈[0,le1 ],...,xp∈[0,lep ]

e1,...,ep∈E

∑
v∈V

ωv

p∑
j=1

1/ϕv(d(v, xj))

p∑
j=1

1/ϕv(d(v, xj)) +
r∑
j=1

1/ϕv(d(v, yj))
. (1.4)

Let us denote the total attraction of the existing facilities for each v ∈ V by the
positive constant

βv =
r∑
j=1

1
ϕv(d(v, yj))

. (1.5)

It follows that Problem (1.4) can be rewritten as the following Mixed Integer Nonlinear
Programming (MINLP) problem

max
x1∈[0,le1 ],...,xp∈[0,lep ]

e1,...,ep∈E

F (x1, . . . , xp) (1.6)

with F defined as

F (x1, . . . , xp) =
∑
v∈V

ωv
1

1 + βv
p∑
j=1

1
ϕv(d(v, xj))

. (1.7)

In this part of the dissertation, we focus on the MINLP problem (1.6). This prob-
lem is formed by a combinatorial and a continuous part. First, we need to solve the
combinatorial problem of choosing a set of p edges to locate the facilities, and then solve
a continuous location problem on the edges. Hence, (1.6) includes, as subproblems, a
hard combinatorial problem and a continuous multimodal optimization problem, yield-
ing a challenging MINLP.

1.2.2 The Huff origin-destination trip problem

Many location problems implicitly assume that users wishing to obtain a service are
travelling to the facility to obtain the service [47, 65, 82, 157]. This assumption makes
the problem unsuitable for many types of facilities that rely on capturing users travelling
to another destination, such as cash machines or gas stations. In [20, 90], a problem was
introduced assuming that users are travelling on pre-planned trips between some origin
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and destination (for example, on the daily route to and from work) and may consume a
service if they pass through one of the facilities. This is the so-called origin-destination
(OD) trip problem.

In the OD trip problem, the facility attraction is a function of the length of the
shortest path from the origin to the destination through the facility. In this problem on
networks, we have the set {{u, v} : u, v ∈ V }, of origin-destination pairs. Consumers
in their way from origin u to destination v will stop at one facility, and the trip from
u to v will imply a demand ωuv > 0.

In this part of the dissertation, we particularize the OD trip problem to the Huff
location problem on networks. In the Huff OD trip problem, inspired by [19, 20], users
travelling from origin u to destination v will stop at one facility; they choose among the
r existing facilities, y1, . . . , yr, and the new facilities at x1, . . . , xp as in problem (1.6):
the demand from users in their way from u to v captured by each facility is inversely
proportional to a positive nondecreasing function of the length of the path from the
origin to the destination via the facility.

In other words, the demand captured by new facilities from users in their trip from
origin u to destination v is given by

ωuv

p∑
j=1

1/ϕuv(d(u, xj) + d(xj , v))

p∑
j=1

1/ϕuv(d(u, xj) + d(xj , v)) +
r∑
j=1

1/ϕuv(d(u, yj) + d(yj , v))
. (1.8)

As in (1.4), the goal of the entering firm is the maximization of its market share.
This is written as the following optimization problem:

max
x1∈[0,le1 ],...,xp∈[0,lep ]

e1,...,ep∈E

∑
u,v∈V

ωuv

p∑
j=1

1/ϕuv(d(u, xj) + d(xj , v))

p∑
j=1

1/ϕuv(d(u, xj) + d(xj , v)) +
r∑
j=1

1/ϕuv(d(u, yj) + d(yj , v))
.

(1.9)

Defining for each u, v ∈ V the positive constant βuv,

βuv =
r∑
j=1

1
ϕuv(d(u, yj) + d(yj , v)) ,

it follows that Problem (1.9) can be rewritten as

max
x1∈[0,le1 ],...,xp∈[0,lep ]

e1,...,ep∈E

F (x1, . . . , xp) (1.10)
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with F defined as

F (x1, . . . , xp) =
∑
u,v∈V

ωuv
1

1 + βuv
p∑
j=1

1
ϕuv(d(u, xj) + d(xj , v))

. (1.11)

1.3 Outline of Part I
In this part of the dissertation, Part I, we address two competitive location problems on
networks. Chapter 2 studies the location of a single facility while the core of Chapter
3 is the location of multiple facilities.

In Chapter 2, the single-facility case of the Huff location problems on networks
described in Sections 1.2.1 and 1.2.2 is addressed, by considering that users go directly
to the facility or they visit the facility in their way to a destination respectively. Since
the problems are multimodal, a branch and bound algorithm is proposed, in which two
different bounding strategies, based on DC (difference of convex) and Interval Analysis
(IA) tools, are used and compared. Computational results are given at the end of
Chapter 2 for the two bounding procedures, showing that problems of rather realistic
size can be solved in reasonable time.

In Chapter 3, we study the p-facility Huff location problem on networks. We propose
two approaches for the initialization and division of subproblems in the branch and
bound method used for its resolution. The first one is based on the straightforward
idea of enumerating every possible combination of p edges of the network as possible
locations, thus a direct extension of the method described in Chapter 2 for the single-
facility case. The second one is based on defining new structures that exploit the
combinatorial and continuous part of the problem. Bounding rules are designed using
DC and IA tools. In the computational study reported at the end of Chapter 3, we
compare the approaches on a battery of 21 networks and show that both approaches
can handle problems for p ≤ 4 in reasonable computing time.

1.4 Datasets for Part I
The problems described in Sections 1.2.1 and 1.2.2 are tested in Chapters 2 and 3 on a
battery of real-life and artificial networks, whose characteristics are reported in Table
1.1. The first three columns of Table 1.1 report the network name, number of nodes
and number of edges. The fourth and fifth columns show if the network is used in
Chapters 2 and 3 respectively.

The first 9 networks are artificial networks generated as described in [9]. The
following network is the 55-node and 134-edge Swain’s network [112, 143], see Table
1.2 for a detailed structure of the network. It is used as a toy-example for testing
the problems from Chapter 2. The following 5 networks are proposed for p-median
problems in [14] and also used in [18]. Finally, the last 43 networks are from [53, 133].

Each problem solved in Chapters 2 and 3 is obtained by randomly and independently
generating the demands and the location of the existing facilities. Each vertex of the
network is assumed to have a demand uniformly distributed in the interval (0, 1) and
in (0, 20) for the artificial networks from [9]. To generate the locations of the existing
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facilities, r edges are randomly chosen with replacement; then, on each edge, the facility
location is generated following a uniform distribution.
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Table 1.1: Properties of the networks taken from [9, 14, 53, 133].
Network nodes edges Chapter 2 Chapter 3
art1 20 38 4
art2 20 43 4
art3 20 51 4
art4 30 56 4
art5 30 71 4
art6 30 84 4
art7 40 74 4
art8 40 95 4
art9 40 115 4
Swain 55 134 4
pmed1 100 196 4
pmed2 100 191 4
pmed3 100 196 4
pmed4 100 194 4
pmed5 100 194 4
KROB150G 150 296 4 4
KROA150G 150 297 4 4
PR152G 152 296 4 4
RAT195G 195 336 4 4
KROB200G 200 386 4 4
KROA200G 200 392 4 4
TS225G 225 306 4 4
UR532 298 597 4
UR542 343 862 4
UR552 388 1135 4
UR562 416 1403 4
UR732 452 915 4
UR535 458 812 4
UR545 476 1104 4
UR555 490 1305 4
UR537 493 868 4
UR565 496 1513 4
UR547 498 1112 4
UR557 498 1310 4
UR567 499 1426 4
UR742 538 1325 4
UR752 580 1735 4
UR762 593 2089 4
UR132 605 1122 4
UR735 662 1200 4
UR142 709 1815 4
UR745 713 1616 4
UR755 724 1966 4
UR765 741 2278 4
UR737 744 1315 4
UR747 745 1659 4
UR757 748 1969 4
UR767 749 2314 4
UR152 766 2390 4
UR162 802 2897 4
UR135 892 1619 4
UR145 929 2117 4
UR155 975 2680 4
UR137 980 1744 4
UR165 980 3068 4
UR147 996 2254 4
UR157 1000 2690 4
UR167 1000 3083 4
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Table 1.2: The Swain dataset, [112, 143].

Initial Final Edge Initial Final Edge Initial Final Edge
node node length node node length node node length

1 2 3.1623 13 47 4.4721 25 49 7.0000
1 5 2.0000 14 16 10.2956 26 36 8.6023
1 8 4.4721 14 22 12.0416 27 38 9.2195
1 13 2.2361 14 27 9.8489 27 54 7.2111
1 43 10.0000 15 18 6.4031 29 31 3.6056
1 44 4.1231 15 25 7.2801 30 33 4.0000
2 3 4.4721 15 31 7.0000 30 45 5.0000
2 4 3.0000 15 36 6.7082 32 33 5.0000
2 8 3.1623 15 41 6.3246 32 38 4.4721
2 42 2.8284 15 42 6.3246 32 45 4.0000
3 7 4.2426 16 22 6.7082 34 43 6.0828
3 8 3.1623 16 27 6.4031 34 45 3.0000
3 19 6.4031 16 32 6.3246 35 36 7.6158
3 30 5.0000 16 33 6.7082 35 48 7.6158
3 31 6.0828 16 38 7.2111 36 48 6.0000
3 34 5.3852 17 22 5.0990 37 47 10.0499
4 5 3.0000 17 23 5.3852 37 50 10.4403
4 9 2.0000 17 28 7.0000 37 53 7.8102
4 42 2.2361 18 23 9.0000 38 43 8.2462
5 11 1.4142 18 26 7.0711 38 45 7.2111
5 13 2.2361 18 29 5.3852 38 54 6.4031
6 9 3.6056 18 31 4.4721 38 55 7.8102
6 10 5.0000 18 36 8.2462 39 40 11.7047
6 15 5.8310 19 22 8.2462 39 54 6.0828
6 41 4.2426 19 23 5.3852 39 55 9.8489
6 42 5.0990 19 29 3.6056 40 46 8.9443
7 15 5.8310 19 30 5.0990 40 55 8.2462
7 31 3.6056 19 31 5.0990 43 44 7.2801
7 42 4.2426 20 21 4.4721 43 45 6.3246
8 34 3.6056 20 25 9.2195 43 46 5.0000
9 10 6.0000 20 41 8.2462 43 55 5.0000
9 11 4.1231 20 49 6.0000 44 46 7.2111
9 42 3.6056 20 51 9.2195 44 47 6.0000
10 20 8.0623 21 37 7.2111 46 47 11.6619
10 21 9.0000 21 51 7.2801 46 52 15.6205
10 37 7.8102 22 33 4.2426 46 55 6.0000
10 41 6.0828 23 26 12.2066 47 52 16.1245
10 47 8.6023 23 28 7.0711 47 53 5.6569
11 13 2.2361 23 29 4.4721 48 49 6.4031
11 47 3.6056 24 26 7.2111 49 51 12.0416
12 14 10.6301 24 35 4.4721 50 52 8.6023
12 17 6.3246 24 36 9.0554 50 53 5.8310
12 22 8.6023 25 36 5.6569 52 53 12.1655
12 28 7.8102 25 41 4.1231 54 55 10.1980
13 44 2.8284 25 48 4.4721





Chapter 2

Single-Facility Huff Location
Problems on Networks

In this chapter [30] two Huff location problems on networks are addressed, by consid-
ering that users go directly to the facility or they visit the facility in their way to a
destination. This chapter contributes to location analysis by proposing a branch and
bound algorithm in which two different bounding strategies, based on IA tools and DC
optimization, are used and compared.

2.1 Introduction

In this chapter we study the single-facility case of the two competitive location problems
on networks presented in Chapter 1. The first problem is the classic Huff location
problem, (1.6)-(1.7), in which customers perceive the facility attractiveness in terms of
their distance to the facility, while the second problem is the Huff OD trip problem
(1.10)-(1.11). In the OD trip problem the facility attraction is a function of the length
of the shortest path from the origin to the destination through the facility.

We can see that both the location and the OD trip problems yield an optimization
problem of the same form, namely, (1.6) or (1.10), with a rather similar function F ,
as given by (1.7) and (1.11) respectively. For the single-facility case, both functions F
can be written in the form

F (x) =
∑
δ∈∆

ωδ
1

1 + βδϕδ(dδ(x)) , (2.1)

where
∆ = V and, for δ ∈ ∆, dδ(x) = d(δ, x)

for the location problem, and

∆ = {{u, v} : u, v ∈ V } and, for δ ∈ ∆, dδ(x) = d(u, x) + d(x, v)

for the OD trip problem.
The remainder of this chapter is structured as follows. In Section 2.2 a branch and

bound algorithm is designed to solve both problems and two different procedures to
obtain bounds are presented. Computational results are given in Section 2.3, comparing

12
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the two bounding strategies implemented. Finally, some conclusions are presented in
Section 2.4.

2.2 Solving the problems

2.2.1 Multimodality

The optimization problems described in Sections 1.2.1 and 1.2.2 are, in general, mul-
timodal, and standard optimization methods get stuck at local optima. This can be
seen in simple examples, even when the network is a segment and is illustrated in the
following examples for the Huff location problem (1.6)-(1.7).

First, data for one problem with 2 users and 1 facility on a segment was randomly
generated. The objective function F of such instance is plotted in Figure 2.1 (left).
One can see that the problem is bimodal. 100 runs of a local search procedure starting
with a random point were performed.

In Figure 2.1 (right) one can see the histogram of the objective values provided
by the optimizer: below a 50% of the runs yielded the global optimum, whereas the
remaining runs stopped at the local not globally optimal solution.

Another instance, with 500 users and 100 facilities was also generated. In Figure
2.2 the problem is shown to be multimodal, and just below a 14% of the runs solved
with the optimizer yielded the global optimum.

In the right part of Figures 2.1-2.2 the x axis is normalized, so that 1 corresponds
to the best found objective value, z∗, and a bar at x ∈ [0, 1] indicates that an objective
value x · z∗ was found.
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Figure 2.1: Example for card(V ) = 2, r = 1, λv = 1 ∀v ∈ V .

Since multimodality appears even in the simplest cases, and local search procedures
can get stuck at very bad local optima, global optimization tools are needed if the
global optimum is sought.

2.2.2 Algorithm

We will use a branch and bound algorithm [66, 87, 104, 128] to solve the problems under
consideration. We first outline the algorithm that finds an optimal solution within a
relative accuracy of ε, and later give the details on the bounding process, which will
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Figure 2.2: Example for card(V ) = 500, r = 100, λv = 20 ∀v ∈ V .

exploit monotonicity properties or the fact that the objective function is DC on each
edge, [26, 92, 150, 151]. We remind the reader that a function h is DC if it can be
written as h = h+ − h−, where h+, h− are both convex. The expression h+ − h− is
called a DC decomposition of h. In the description of the algorithm, we have ∆ = V for
the Huff location problem and ∆ = {{u, v} : u, v ∈ V } for the Huff OD trip problem.

• Phase 1: Initialization

– Fix the required accuracy ε > 0.
– Initialize the lower bound (LB), LB = 0.
– Compute the all-pairs distance matrix.
– Calculate βδ, ∀δ ∈ ∆.
– Set the list H of remaining segments as empty.

• Phase 2: Prepare the list of segments

– Consider the edge e as segment with its nodes as the segment vertices.
– The value of the objective function is evaluated at the segment midpoint.

If the value is greater than LB, then LB is updated to such value and the
midpoint stored as incumbent.

– Calculate an upper bound (UB) for the segment e, UB(e).
– In case UB(e) ≥ LB · (1 + ε), insert e into H.

• Phase 3: Branch and bound process.
Repeat as long as no stop is reached:

– Select from H the highest upper bound, UBmax, with LB as ε-optimal value
and the incumbent as an ε-optimal solution.
If UBmax ≤ LB · (1 + ε), stop the algorithm with LB as the optimal value.

– The segment with the highest upper bound, UBmax, is selected for a split
at its midpoint into two smaller segments.
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– The value of the objective function at the midpoint of the two small segments
is calculated.
If any of these values is greater than LB, then LB is updated and all seg-
ments from H whose upper bound is lower than LB are discarded.

– An upper bound for each small segment is calculated.
– All segments whose upper bound is greater than LB · (1 + ε) are added to
H.

In the algorithm above, the segment midpoint yielding the best upper bound is
given as ε-optimal solution. Observe that the full list of segments in H contain all
ε-optimal solutions, and can thus be used in a two-phase process, as suggested in the
GBSSS algorithm, [128].

Let us detail the algorithm steps previously outlined. To calculate the all-pairs
distance matrix we use the Floyd algorithm [21], which uses the edge length matrix to
build recursively the distance matrix.

The computation of bounds requires more detail. The algorithm needs the calcula-
tion of an upper bound, UB(s), for each segment s. We present two procedures, one
based on IA tools, and the other on properties of DC functions.

2.2.3 Interval analysis bound

When the distance dδ(x) decreases, the market share as given by the objective function
(2.1) increases. Hence we obtain an upper bound on the market share F (x) for any
location x on a segment s = [x0, x1] ⊂ e ∈ E by replacing dδ(x) by the lowest possible
of these distances on the segment. Defining therefore such lowest distance for the
location problem as in [18] dδ(s) = min{d(v, x0), d(v, x1)} for δ = v, and for the OD
trip problem as dδ(s) = min{d(u, x0) + d(v, x0), d(u, x1) + d(v, x1)} for δ = {u, v}, we
obtain the IA bound

UBIA(s) =
∑
δ∈∆

ωδ
1

1 + βδϕδ(dδ(s))
. (2.2)

2.2.4 DC bound

An upper bound obtained by making use of the fact that the objective function is DC
on each edge exploits the following properties:

Proposition 2.1. Let I ⊂ R be an interval. Let d : I → R be a concave function on
I, and let g : R→ R be DC, with a DC decomposition given by g(x) = g+(x)− g−(x),
with both g+ and g− nonincreasing functions. Then, the function f : I → R defined as
f(x) = g(d(x)) is DC on I and a DC decomposition is given by f(x) = f+(x)− f−(x),
where f+(x) = g+(d(x)) and f−(x) = g−(d(x)).

Proof: The proof follows directly from the fact that the compositions g+(d(x)) and
g−(d(x)) are also convex functions. �
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Remark 2.2. Proposition 2.1 makes use of a function g which can be written as the
difference of two convex functions, g+ and g−. Since such convex functions are also
nonincreasing, it turns out that g belongs to a subclass of DC functions, namely DCM
functions, as introduced in [25], which are those functions expressed as the difference
of two convex monotonic functions, as g+, g− are. See [25] for further properties.

We are now in position to give a bound for F on an edge exploiting the fact that
F is DC. Let dδ(x) be the concave function given in (1.1). Assuming ϕδ(d) = dλδ , (2.1)
can be rewritten as

F (x) =
∑
δ∈∆

ωδ
1

1 + βδd
λ
δ (x)

. (2.3)

Let us define a simpler function:

g(t) = 1
1 + βtλ

. (2.4)

The following DC decomposition [15] is available for function g, g(t) = g+(t)−g−(t)
where:

g+(t) =
{
g(c) + g′(c)(t− c) if t ≤ c
g(t) if t > c

g−(t) =
{
g(c) + g′(c)(t− c)− g(t) if t ≤ c
0 if t > c

c =
(

λ− 1
(λ+ 1)β

)1/λ
.

Applying Proposition 2.1 we have that a DC decomposition for F as defined in (2.3)
is:

F (x) =
∑
δ∈∆

F+
δ (x)−

∑
δ∈∆

F−δ (x) =
∑
δ∈∆

(F+
δ (x)− F−δ (x)) (2.5)

where:

F+
δ (x) = ωδ g

+(dδ(x)),

F−δ (x) = ωδ g
−(dδ(x)).

To construct an upper bound, UBDC , first we obtain a convex minorant of F−δ (x)
as in [25]:

F−δ (x) ≥ F−δ (x0) + ξδ(x− x0)

F (x) ≤
∑
δ∈∆

(F+
δ (x)− F−δ (x0)− ξδ(x− x0)) for ξδ ∈ ∂F−δ (x0), (2.6)
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where ∂F−δ (x0) denotes the set of subgradients (subdifferential) of F−δ at x0 [150].

Define for each δ ∈ ∆ the function from (2.6):

U(x) =
∑
δ∈∆

(F+
δ (x)− F−δ (x0)− ξδ(x− x0)) for ξδ ∈ ∂F−δ (x0). (2.7)

Since U is convex, an upper bound for a segment s is obtained:

UBDC(s) = max{U(v1), U(v2)}, (2.8)

v1, v2 being vertices of s.

2.3 Computational results
The algorithm described in Section 2.2 was programmed in an Intel Fortran Compiler
XE 12.0 and executed using an Intel Core i7 computer with 8.00 Gb of RAM memory at
2.8 Ghz. The solutions were found within an accuracy of 10−10 and for λv = 2, ∀v ∈ V .

The Huff location problem was first tested on the 55-node and 134-edge Swain’s
network [143, 112], see Table 1.2, with both bounding strategies.

Several instances of the problem were generated using different values for the num-
ber r of existing facilities, ranging from low-saturated markets (r = 10% of the number
of edges of the network, card(E)) to high-saturated markets (r = 90%card(E)). For
each value of r, 10 different problems were solved. The results are shown in Table 2.1.
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The percentage r of existing facilities is shown in the first column. Then, it is
reported the minimum, maximum, mean and standard deviation (std) for the number
of iterations (iter), i.e., the number of executions of Phase 3, the maximum size of the
branch and bound tree (MaxList) during execution and the CPU time in seconds. In
all cases, the best solution is found in less than 0.02 seconds for DC bound, and 0.75
seconds for IA bound. It is remarkable that DC bound leads to a very stable procedure,
as can be seen for all values of r, in memory requirements as well as computational
time. On the other hand, when using IA bound one can see very extreme cases. There
is always a huge difference between the minimum and maximum for the number of
iterations, branch and bound list size and time. This means that in the ten runs
that are solved for each value of r, IA bound is quite erratic for problems of the same
difficulty. Therefore, we have an algorithm that when using DC bound spends the same
resources (computing time) than when using IA bound, but is much more stable and
reliable.

Afterwards the algorithm was tested for both problems on a battery of test instances
of larger dimensions (up to 1000 nodes and 3083 edges) to analyze the dependence of
running time and memory requirements with respect to the size of the network and the
number of facilities for both bounding strategies.

To attain this end, the problems were tested on 43 networks obtained from [1, 53,
133], see Table 1.1. For r = 10%card(E) and r = 90%card(E) of existing facilities,
10 instances of the problem were solved. Results for the comparison between the two
methods for obtaining bounds are shown in the following tables. Results for the Huff
location problem are shown in Tables 2.2 and 2.3 comparing both bounding procedures
applied in Phase 2 and Phase 3 of the algorithm. Results for the Huff OD trip problem
are shown in Tables 2.4 and 2.5. Results from Swain’s network, summarized in Table
2.1, show that DC bound seems to be sharper than IA bound but more computationally
expensive; therefore, it seems desirable to delete segments in the initialization (Phase
2 of the algorithm) using easy bound (IA), and then use DC bound for the rest of the
segments (Phase 3). Hence, let us note that for the OD trip problem, IA bound is used
always in Phase 2 of the algorithm, and then, in Phase 3, the two different bounding
procedures are compared. This strategy was also tested for the Huff location problem
with no improvement and therefore not used.
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22 Chapter 2. Single-Facility Huff Location Problems on Networks
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The name of the network is reported in the first column of Tables 2.2-2.5. The
remaining columns have the same meaning than those in Table 2.1. In Table 2.2, when
dealing with r = 10%card(E) facilities in the Huff location problem, both bounding
methods are comparable, but when dealing with a saturated market, Table 2.3, DC
bound clearly outperforms IA bound. This is due to the simplicity of IA bound and
because DC bound is sharper. One can see that, when using DC bound, the MaxList
size and the number of iterations is much smaller than with the other bound, which
means that DC bound is harder to calculate, but sharper.

For the Huff OD trip problem, as the number of computations of the bounds in-
creases, both methods become comparable, as there is an equilibrium between the
computational cost of bounds and how sharp they are.

One can see that, although the OD trip problem is, in terms of computing time,
much harder to solve than the location problem, the number of iterations is relatively
smaller, while the size of the branch and bound tree is comparable for most networks.
Note that the relevant increase of the computing time for the OD trip problem with
respect to the Huff location problem is due to the complexity of the objective function,
which involves evaluating many more terms. In both cases all problems can be solved
in reasonable time.

2.4 Conclusions
In this chapter we have addressed two Huff problems on a network, by considering that
users choose the facility according to the distance from their location (Huff location
problem, [18]) or according to the length of the shortest path from the origin to the
destination visiting the facility (Huff OD trip problem), which is a new problem. Since
these problems are shown to be multimodal, in order to obtain a global optimum, a
branch and bound algorithm based on two different bounding procedures, IA and DC
optimization, is proposed.

The computational experience reported shows that large networks can be success-
fully handled with both bounding procedures where the DC procedure seems to be
more stable in both time and memory requirements.





Chapter 3

p-Facility Huff Location Problem
on Networks

In this chapter [29] we extend to the p-facility case the Huff location problem on net-
works addressed in Chapter 2. This chapter contributes to location analysis by propos-
ing two approaches for the initialization and division of subproblems in the branch and
bound method, solving problems for p ≤ 4 in reasonable computing time.

3.1 Introduction

In this chapter, we study the p-facility Huff location problem on networks (1.6)-(1.7)
presented in Chapter 1. In this case, we will study the gravitational model, i.e.,
λv = 2,∀v ∈ V . Hence, we aim at solving the following Mixed Integer Nonlinear
Programming (MINLP) problem:

max
x1∈[0,le1 ],...,xp∈[0,lep ]

e1,...,ep∈E

F (x1, . . . , xp) (3.1)

where F is defined as

F (x1, . . . , xp) =
∑
v∈V

ωv
1

1 + βv
p∑
j=1

1
(d(v, xj))2

. (3.2)

The MINLP problem (3.1) is formed by a combinatorial and a continuous part.
First, we need to solve the combinatorial problem of choosing a set of p edges to locate
the facilities, and then solve a continuous location problem on the edges.

The remainder of this chapter is organized as follows. In Section 3.2, a branch and
bound method with different initialization and branching rules is described. Section
3.3 is devoted to procedures for calculating lower and upper bounds. Computational
results are reported in Section 3.4, where the p-facility Huff location problem is solved
using the different branching and bounding rules for 12 real-life and 9 artificial networks.
Finally, Section 3.5 contains a brief summary, final conclusions and some lines for future
research.

26
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3.2 The methodology

The natural way to solve the MINLP formulation of the p-facility Huff location problem
is to use a branch and bound method. In these methods we differenciate two main
phases: the initialization phase and the branch and bound phase. In the initialization
phase the initial exploration tree is prepared. In the branch and bound phase, an
element of the list is selected iteratively (until the termination rule is fulfilled) according
to a selection criterion, and then is divided into new elements that are included into
the list if they cannot be eliminated by their bounds. In this phase, division, bounding,
selection, elimination and termination rules are required.

In this chapter we propose different approaches for the initialization phase, division
and bounding rules. As selection, elimination and termination rules, we always apply
the usual ones from the literature [18]: the element to be evaluated is selected as the one
with the largest upper bound, elements whose upper bound are lower than the current
lower bound are eliminated, and the optimization is terminated when the relative error
between the largest upper bound and the current lower bound is less than a fixed
tolerance. This section is aimed at describing two types of initialization and division
rules. Bounding rules will be discussed in Section 3.3.

3.2.1 Total enumeration

The straightforward way of solving Problem (3.2) is to separate the combinatorial and
the continuous part of the problem: we first fix a set of p edges to locate the facilities,
and then solve a continuous location problem on the edges. This means the branch
and bound approach starts with a partition of the search space formed by the cartesian
product of p-uples, thus a direct extension of the method described in Chapter 2. The
p-uples are formed by every possible combination of p-edges, taking into account that
several facilities can be located at the same edge, i.e., repetitions of the same edge are
allowed in the elements of the partition. But obviously, permutations of the p-uples are
not taken into account.

We denote by s = (s1, . . . , sk) an element of the partition, where each component
si is a (sub)edge that has a multiplicity m(si), i.e., the number of facilities located at
si is m(si). Hence, m(s1) + . . .+m(sk) = p. To avoid symmetric sets, for any element
of the partition s = (s1, . . . , sk), and any si = [l, u] ⊆ [0, le], e ∈ E, si ∈ s, the cartesian
product Πm(si)

j=1 si is replaced by {l ≤ x1 ≤ . . . ≤ xm(si) ≤ u}.
The subdivision of each element of the partition is done by splitting each (sub)edge

by its midpoint, obtaining two new smaller segments for each (sub)edge, namely lower
and upper segments. Then, the new elements of the partition are built by replacing
each (sub)edge si by either its lower or upper segment, sLi , sUi respectively. In the
case of (sub)edges with multiplicity greater than 1, the above-described method is used
to avoid symmetric sets. For instance, Figure 3.1 depicts the subdivision process for
p = 2, of the element s = (s1), with m(s1) = 2, identified with the coloured area of the
big square. Then, the subdivision of s leads to three new elements, identified with the
coloured area of the small squares.
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s 1

s
L 1

s
U 1

s1
sL1 sU1

Figure 3.1: Subdivision process of s = (s1) with m(s1) = 2.

3.2.2 Superset

A more sophisticated data structure for location problems on networks has been pro-
posed in [28], exploiting together the structure of the combinatorial and continuous
part of a covering problem on networks.

In order to avoid the enumeration of every possible combination of p edges, [28]
proposes to construct clusters of (sub)edges, called hereafter edgesets, and define a
subproblem of (3.1) over a collection of edgesets called a superset.

To be precise, an edgeset is a finite collection of (sub)edges of E; a superset S is
any uple of the form (E1, p1; . . . ;Ek, pk), where E1, . . . , Ek are disjoint edgesets, and pj
are strictly positive integer numbers with

k∑
j=1

pj = p,

indicating, for each j = 1, . . . , k, that exactly pj facilities are to be located within the
(sub)edges in Ej .

For this data structure, the subproblem to be solved at this stage on superset S has
the form

max
(x1,...,xp)∈S

F (x1, . . . , xp)

with F defined as in (3.2), and (x1, . . . , xp) ∈ S understood as x1, . . . , xp1 ∈ E1; xp1+1, . . . ,
xp1+p2 ∈ E2; . . . ; xp−pk+1, . . . , xp ∈ Ek.

Supersets will be identified with nodes in the branch and bound tree. The root
node of the branch and bound tree is the original superset S0 = (E, p). E is first
subdivided into a given partition E(1), . . . , E(p) of E: we add to the branch and
bound exploration tree the

(2p−1
p

)
supersets of the form (E1, p1; . . . ;Ek, pk), where

{E1, . . . , Ek} ⊂ {E(1), . . . , E(p)} and p1 + . . .+ pk = p.
First, we need to define how the edges of the network conforming S0, are split
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into the partition of p edgesets E(1), . . . , E(p). In the first step, E is divided into 2
edgesets by a distance criterion, namely the diameter of the edgeset, defined as the
maximum of the minimal distance between each pair of nodes. Then, the nodes giving
the diameter are selected as centres of the two new (sub)edgesets. Each edge of the
edgeset is assigned to the closest (sub)edgeset, where the distance from an edge to
an (sub)edgeset is measured as the distance from the edge to the (sub)edgeset centre.
Then, we will repeat the process until obtaining p edgesets, selecting the largest edgeset
to be subdivided at each step, where the size of the edgeset is understood as the sum
of the (sub)edgelengths.

The subdivision of a superset S = (E1, p1; . . . ;Ek, pk) during the branch and bound
is done by partitioning the largest edgeset Ei. If Ei contains only one (sub)edge,
the subdivision is done by bisecting the (sub)edge at its midpoint, otherwise Ei is
partitioned to edgesets Ei1 , Ei2 by its diameter as done in the initial subdivision of S0.
Thus, the following supersets substitute S:

Sj = (E1, p1; . . . ;Ei−1, pi−1;Eij , pi;Ei+1, pi+1; . . . ;Ek, pk), j = 1, 2

and additionally if 1 < pi, for j = 1, . . . , pi − 1

S2+j = (E1, p1; . . . ;Ei−1, pi−1;Ei1 , j;Ei2 , pi − j;Ei+1, pi+1; . . . ;Ek, pk).

This means, that in each step pi + 1 new supersets are created.

3.3 Lower and upper bounds
A branch and bound algorithm requires the calculation of tight upper and lower
bounds. In this section we present different bounding approaches for the branch and
bound used to solve (3.1). We propose two upper bounds and two lower bounds: IA
bound and DC bound as upper bounds, Huff discrete bound (HuffDisc) and midpoint
bound (MidPoint) as lower bounds. Note that when a superset contains edgesets with
card(Ej) = 1 ∀j, it corresponds to a p-uple of (sub)edges. Each p-uple of (sub)edges has
its unique superset correspondance. Thus, the following bounds are valid for p-uples of
edges as well, i.e., for the enumeration approach in Section 3.2.1.

3.3.1 Upper bounds

The IA bound considers only endpoints of (sub)edges as possible location of facilities.
This bound is the extension to the p-facility case of the IA bound addressed in Section
2.2.3. For a superset S = (E1, p1; . . . ;Ek, pk) we obtain the IA bound by replacing in
(3.2) d(v, xj) by the distance from v to the closest vertex of the (sub)edges that belong
to Ej , i.e., by

d(v,Ej) = min
e=[u1,u2],e∈Ej

{d(v, u1), d(v, u2)}.

For any x ∈ Ej it holds that d(v,Ej) ≤ d(v, x) ∀j = 1, . . . , p. Hence, the following
is a valid upper bound for (3.2):

UBIA(S) :=
∑
v∈V

ωv
1

1 + βv∑p

j=1
pj

(d(v,Ej))2

.
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The second upper bound approach is based on the DC bound (2.8) of the single
facility Huff location problem on networks,

max
x∈[0,le], e∈E

Fsingle(x),

with Fsingle(x) = ∑
v∈V ωv

1
1+βv(d(v,x))2 , a particular case of (3.2) for p = 1, the prob-

lem addressed in Section 1.2.1. First, for a given edge e of the network, Fsingle(x)
is expressed as a difference of convex functions, Fsingle(x) = ∑

v∈V (F+
v (x) − F−v (x)),

namely, its DC decomposition. Then, an upper bound UBDC
single(e) for any edge e ∈ E

with u1, u2 being endpoints of e is defined as

UBDC
single(e) = max

e=[u1,u2],e∈E
{U(u1), U(u2)}

with
U(x) =

∑
v∈V

(F+
v (x)− F−v (x0)− ξv(x− x0))

for ξv ∈ ∂F−v (x0) where ∂F−v (x0) denotes the set of subgradients of F−v at x0 [150].
Therefore, it holds that

UBDC
single(e) ≥ Fsingle(x), ∀x ∈ [0, le], e ∈ E. (3.3)

A DC bound over an edgeset Ej is defined as the maximum DC bound of the edges
from Ej , i.e.,

UBDC(Ej) := max
e∈Ej

UBDC
single(e) ≥ Fsingle(x),∀x ∈ [0, le], ∀e ∈ Ej .

Given a superset S = (E1, p1; . . . ;Ek, pk), a DC bound of (3.2) is calculated as

UBDC(S) :=
k∑
j=1

pj · UBDC(Ej). (3.4)

This DC bound is a valid upper bound since it holds that for any feasible point
(x1, . . . , xp)

p∑
j=1

Fsingle(xj) =
p∑
j=1

∑
v∈V

ωv
1

1 + βv(d(v, xj))2 . (3.5)

Since 1
(d(v,xj))2 ≤

∑p
j=1

1
(d(v,xj))2 , we have:

(3.5) =
p∑
j=1

∑
v∈V

ωv
1/(d(v, xj))2

1/(d(v, xj))2 + βv
≥

p∑
j=1

∑
v∈V

ωv
1/(d(v, xj))2∑p

i=1 1/(d(v, xi))2 + βv
=

=
∑
v∈V

ωv

∑p
j=1 1/(d(v, xj))2∑p

i=1 1/(d(v, xi))2 + βv
=
∑
v∈V

ωv
1

1 + βv∑p

j=1
1

(d(v,xj))2

= F (x1, . . . , xp).
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3.3.2 Lower bounds

Given a superset S, both of our lower bounding approaches are based on the calculation
of the objective function at a feasible solution (x̃1, . . . , x̃p) ∈ S. Then, a valid lower
bound is given by

LB(S) := F (x̃1, . . . , x̃p) ≤ max
(x1,...,xp)∈S

F (x1, . . . , xp).

Let us now focus on possible feasible solutions. The first lower bound, namely Huff
discrete bound (LBHuffDisc), is a greedy procedure based on solving iteratively p times
the single facility Huff location problem at the vertices of the edges of the superset.
For a given superset S = (E1, p1; . . . ;Ek, pk), let x̃1 be the optimal solution of a single
facility Huff location problem on the vertices of the (sub)edges of E1. In the next step,
we will consider that a facility is already located at x̃1, and will locate x̃2 solving the
single facility Huff location problem at the vertices of the edges of the corresponding
edgeset. In the last step, we will choose location x̃p as the optimal solution of the
single facility Huff location problem on the vertices of the edges of Ek, considering that
p − 1 facilities are already located at x̃1, . . . , x̃p−1. Since only vertices are considered
as candidates, each step of the greedy procedure is executed by complete enumeration
of the candidate points.

The second lower bound, namely the midpoint bound LBMidPoint, is calculated by
randomly choosing an edge from an edgeset Ej , and locating pj facilities at its midpoint
∀j ≤ k.

3.4 Computational results

The approaches described in Sections 3.2 and 3.3 were implemented in Fortran and
executed on an Intel Core i7 computer with 16.00 Gb of RAM memory. The solutions
were found within an accuracy of 10−3.

We tested the approaches on a battery of 21 networks, whose characteristics are
shown in Table 1.1. The number r of existing facilities is set as r = 10% of the number
of edges of the network, card(E).

Tables 3.1-3.8 show a comparison between the two branching rules, total enumera-
tion (Section 3.2.1) and superset (Section 3.2.2), and the different bounding approaches:
IA bound, IA bound with DC bound (IA+DC), midpoint evaluation (MidPoint) and
Huff discrete bound (HuffDisc). The bounding approach IA+DC consists of using IA
bound in the initialization phase of the algorithm, and then, using DC bound during
the branch and bound phase. Results for DC bound as the only upper bound are not
reported because they were systematically outperformed by the results in Tables 3.1-
3.8. The results for the combinations of upper and lower bounds are shown in four
blocks of columns. The first column shows the maximum size of the branch and bound
tree (MaxList) during execution. The sign “×” in the MaxList column means that the
size limit (108) was exceeded so the method was stopped. The second column reports
the CPU time in seconds. Time limit is set to 6 hours (21600 seconds) and when it is
exceeded, it is denoted with “×”. In such case, the third column shows the gap in %
achieved by the approach, measured as Upper bound−Lower bound

Lower bound 100%.
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We start with the analysis of p = 2, in Tables 3.1 and 3.2. All strategies are able
to solve the problem on the 21 networks in less than an average time of 2 seconds.
For both approaches, the best upper and lower bound choice is IA+DC and MidPoint
respectively, with superset being the fastest approach and enumeration achieving the
best MaxList size.

For p = 3, using supersets we achieve the best computing time, while using enumer-
ation we achieve the best Maxlist result. For the superset approach, the choice of lower
bound affects the behaviour of computing times, with an average improvement of about
200 seconds for MidPoint bound compared to HuffDisc bound. In the case of the enu-
meration approach, the choice of upper bound affects the MaxList size. Using IA+DC
bound halves the MaxList size compared to using only IA bound. For both approaches,
the best upper and lower bound choice is IA+DC and MidPoint respectively.

Tables 3.5 and 3.6 report results for p = 4. Using enumeration with HuffDisc bound
solves 15 networks regardless of the upper bound used, while with MidPoint it solves
17 with IA bound and 18 if using IA+DC bound. Supersets with HuffDisc bound
solves 15 networks regardless of the upper bound used, while with MidPoint we achieve
successful results for 20 out of 21 networks. The RAT195G network is not solved by
any of the approaches. Using enumeration, its gap reduces from 32.24% to 17.67%
if IA+DC bound is used. Using supersets with IA+DC bound its gap reduces from
15.94% to 8.24% when HuffDisc bound is used and from 12.57% to 9.93% for MidPoint
bound. In terms of time, the best choice is to use MidPoint as lower bound, while
the choice of upper bound does not make big difference for the superset approach, but
for the enumeration approach, IA bound is the best choice. If we compare the results
only for art1 − art9 networks, which are very small, see Table 1.1, the enumeration
approach becomes the best in terms of all criteria. However, when the size of the
network increases, the superset approach outperforms the enumeration one. For the
enumeration approach, the difference between the bounding approaches in terms of
MaxList size is hardly noticeable, being the best choice IA+DC as upper bound and
MidPoint as lower bound. For the superset approach, slightly better MaxList sizes are
achieved when using HuffDisc bound.

Finally, we analyze results for p = 5, Tables 3.7 and 3.8. Using enumeration we
are able to solve the problem on 8 networks while with supersets on 7 networks. Us-
ing enumeration, there is a big outperformance in terms of gap achieved by IA bound
over IA+DC bound. In terms of computing time, lower bound makes a small differ-
ence, MidPoint bound being the fastest one. In terms of MaxList size, there is no
big difference between the bounding approaches. Using supersets, the choice of lower
bound makes a big difference in terms of MaxList size and time. There is an average
improvement of more than 3 hours of MidPoint bound over HuffDisc bound. On the
contrary, in terms of MaxList size, HuffDisc bound outperforms MidPoint bound, the
MaxList size of the latter being about the double of HuffDisc MaxList size. These big
differences in the behaviour when changing lower bound are due to HuffDisc bound
being computationally expensive, which makes the approach stop due to time limit,
and MidPoint bound less efficient, which explodes the size of the MaxList tree. Better
gaps are achieved using IA+DC bound. For the enumeration approach, we achieve
better results when using IA bound with HuffDisc bound. For the superset approach,
the best lower bound choice is using MidPoint bound while the choice of upper bound
is irrelevant.
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In summary, we can say that both approaches are comparable for p = 2, 3 while for
p = 4, 5 the superset approach outperforms the enumeration approach. When faced
with the choice of the best upper bound, using IA+DC bound as upper bound is the
best choice for both approaches and all values of p, except for p = 5 for the enumeration
approach. In terms of lower bound, we observe that using MidPoint as lower bound is,
in general, the best choice, except for p = 5 for the enumeration approach.

Table 3.1: Maximum branch and bound tree size and running times for p = 2 for the
enumeration approach.

enumeration
Upper bound IA IA+DC
Lower bound HuffDisc MidPoint HuffDisc MidPoint
Network MaxList time MaxList time MaxList time MaxList time
art1 535 0.00 642 0.00 682 0.00 798 0.02
art2 320 0.02 346 0.00 664 0.00 664 0.02
art3 378 0.02 382 0.00 478 0.02 478 0.00
art4 377 0.02 390 0.00 861 0.03 861 0.00
art5 1256 0.02 1346 0.00 1301 0.03 1302 0.02
art6 1351 0.03 1362 0.03 1145 0.03 1145 0.02
art7 1594 0.03 1612 0.03 931 0.02 934 0.00
art8 1417 0.03 1512 0.03 922 0.03 938 0.03
art9 1497 0.06 1538 0.03 1636 0.08 1640 0.03
pmed1 1094 0.25 1130 0.16 425 0.19 429 0.17
pmed2 2747 0.22 2796 0.17 805 0.16 809 0.17
pmed3 1184 0.22 1184 0.16 334 0.17 334 0.17
pmed4 675 0.20 677 0.16 175 0.17 175 0.17
pmed5 3323 0.31 3365 0.17 1164 0.20 1164 0.17
KROB150G 4143 1.53 4561 0.61 381 0.76 451 0.58
KROA150G 4897 1.70 5003 0.66 1039 0.95 1039 0.61
PR152G 712 0.95 1014 0.56 494 0.87 586 0.61
RAT195G 17877 7.13 17916 1.51 2149 1.84 2149 1.09
KROB200G 3489 2.76 3792 1.31 1237 2.22 1315 1.40
KROA200G 2675 2.36 2828 1.28 546 1.93 546 1.40
TS225G 3822 1.61 3843 0.90 1325 1.20 1325 0.97
Average 2636 0.93 2725 0.37 890 0.52 908 0.36

Table 3.2: Maximum branch and bound tree size and running times for p = 2 for the
superset approach.

superset
Upper bound IA IA+DC
Lower bound HuffDisc MidPoint HuffDisc MidPoint
Network MaxList time MaxList time MaxList time MaxList time
art1 298 0.03 324 0.02 298 0.02 324 0.02
art2 920 0.03 1087 0.03 920 0.03 1087 0.02
art3 569 0.03 1602 0.02 466 0.03 1336 0.00
art4 580 0.03 835 0.02 580 0.03 835 0.00
art5 1310 0.09 2106 0.03 1185 0.08 1895 0.02
art6 1299 0.09 1884 0.03 1299 0.09 1884 0.02
art7 1641 0.11 1972 0.03 1605 0.12 1969 0.03
art8 2370 0.22 2432 0.05 2370 0.23 2426 0.06
art9 3367 0.31 4709 0.06 2425 0.30 4184 0.06
pmed1 3423 1.22 3738 0.20 3260 1.20 3380 0.20
pmed2 2371 0.80 3703 0.14 2137 0.80 3706 0.14
pmed3 1950 0.64 2286 0.11 1854 0.61 2247 0.11
pmed4 5883 1.54 8262 0.27 5682 1.51 8273 0.27
pmed5 3466 1.08 4045 0.17 2050 1.08 3046 0.19
KROB150G 5373 3.07 6482 0.37 3006 2.64 5055 0.30
KROA150G 5070 3.06 6113 0.37 4432 2.54 4970 0.33
PR152G 465 0.67 638 0.08 381 0.39 533 0.05
RAT195G 21719 13.73 25581 1.61 11951 13.56 15576 1.51
KROB200G 4529 5.02 5499 0.51 2477 2.54 3018 0.28
KROA200G 3548 4.49 4687 0.47 1624 4.07 2134 0.39
TS225G 4336 3.81 5733 0.42 3887 3.78 5135 0.42
Average 3547 1.91 4463 0.24 2566 1.70 3477 0.21

3.5 Conclusions
In this chapter we have addressed the p-facility case of the Huff location problem on
networks, Section 1.2.1. We propose two branch and bound based approaches and show
results for p ≤ 5. Computational results show that both division approaches are able
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Table 3.3: Maximum branch and bound tree size and running times for p = 3 for the
enumeration approach.

enumeration
Upper bound IA IA+DC
Lower bound HuffDisc MidPoint HuffDisc MidPoint
Network MaxList time MaxList time MaxList time MaxList time
art1 8267 0.11 9910 0.09 9866 0.39 15477 0.23
art2 6188 0.08 7800 0.08 13756 0.55 13922 0.23
art3 10584 0.36 11793 0.17 18592 0.62 20144 0.31
art4 7916 0.41 9198 0.23 28851 1.90 29185 0.73
art5 40940 0.90 41153 0.51 59592 3.56 59663 1.29
art6 41664 1.47 43088 0.80 71196 3.67 71751 1.51
art7 45641 1.25 45862 0.84 57556 2.56 57750 1.14
art8 58719 1.54 59989 0.97 98178 3.39 98979 1.75
art9 52667 3.84 53788 1.73 135925 13.17 135925 4.04
pmed1 69966 18.99 70310 13.28 58693 22.95 58923 16.94
pmed2 156224 16.99 156992 13.10 93928 17.33 93952 15.10
pmed3 55064 19.06 55064 13.24 36455 19.83 36455 16.58
pmed4 46950 17.11 47374 12.76 22048 18.19 22048 15.91
pmed5 201832 34.30 205948 16.05 116076 24.74 116218 17.25
KROB150G 336291 268.09 353294 86.27 48164 112.79 48164 84.57
KROA150G 379461 324.26 385955 90.07 137050 194.86 137050 93.49
PR152G 50488 131.56 51722 69.84 66332 159.98 66332 90.03
RAT195G 1822569 1306.57 1823360 231.01 249618 280.55 249618 167.53
KROB200G 390512 597.89 399780 217.18 223063 513.26 223063 262.47
KROA200G 207484 324.93 208160 203.71 58563 290.55 58563 254.16
TS225G 270334 216.11 270894 115.80 123379 191.80 124312 141.23
Average 202846 156.47 205306 51.80 82232 89.36 82738 56.50

Table 3.4: Maximum branch and bound tree size and running times for p = 3 for the
superset approach.

superset
Upper bound IA IA+DC
Lower bound HuffDisc MidPoint HuffDisc MidPoint
Network MaxList time MaxList time MaxList time MaxList time
art1 3880 0.39 5397 0.09 3880 0.39 5397 0.09
art2 16975 1.05 27467 0.27 16975 1.06 27467 0.28
art3 24193 2.17 53640 0.53 23876 2.17 53525 0.51
art4 9803 0.92 18388 0.22 9803 0.94 18388 0.20
art5 41377 4.07 66646 0.94 41148 4.07 66605 0.95
art6 58757 6.12 75996 1.19 58757 6.16 75996 1.23
art7 67579 7.69 73556 1.61 67579 7.74 73556 1.65
art8 88324 11.62 117422 2.18 88324 11.65 117422 2.26
art9 139697 18.83 227709 3.29 139596 18.84 227624 3.31
pmed1 271844 169.71 288840 21.76 271947 167.11 288840 21.90
pmed2 222849 111.34 378409 14.59 222851 110.09 378514 14.63
pmed3 135698 64.88 187136 8.22 135370 63.82 186754 8.30
pmed4 418453 167.26 631093 21.82 409319 165.45 621040 21.81
pmed5 223885 106.75 264197 13.65 219336 105.53 260945 13.65
KROB150G 494950 394.23 593159 39.98 438955 368.16 522850 36.40
KROA150G 478892 410.13 578185 42.04 470628 408.25 568164 41.04
PR152G 58848 81.81 68886 8.03 61306 78.16 67491 7.88
RAT195G 2190021 2026.48 2768940 189.42 1242889 1877.61 1687197 166.50
KROB200G 436217 647.47 549967 54.12 340731 479.09 429621 38.58
KROA200G 262735 435.37 341576 35.07 214576 397.79 290266 30.37
TS225G 315713 379.91 399584 36.02 306847 376.56 388696 34.24
Average 283842 240.39 367438 23.57 227843 221.46 302684 21.23
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to solve problems of rather realistic size up to p = 4 facilities while for p = 5 only small
problems are solved. For small values of p, both approaches are comparable, and when
the number of facilities increases, the superset approach outperforms the enumeration
approach. We conclude with three promising extensions.

As shown in Section 3.4, for high values of p and for both approaches, some problems
remain unsolved because the MaxList size limit is reached. It could be interesting to
design a heuristic approach able to reduce the number of elements of the partition, and
exploit the benefits of the branch and bound tree evolution.

As second extension, both approaches could be applied to different p-facility location
problems on networks, such as the p-median problem with continuous demand on a
network [27].

Finally, parallelization techniques deserve further study. Parallelizing the approach
can solve the problem of reaching the MaxList size limit and may reduce the computa-
tional cost linearly, which will definitely lead to solving the problem for higher values
of p.
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Table 3.5: Maximum branch and bound tree size, running times and achieved gaps for
p = 4 for the enumeration approach.

enumeration
Upper bound IA IA+DC
Lower bound HuffDisc MidPoint HuffDisc MidPoint
Network MaxList time gap MaxList time gap MaxList time gap MaxList time gap
art1 87598 1.68 − 117441 1.22 − 101277 8.63 − 198557 4.29 −
art2 74095 1.23 − 101784 1.58 − 163003 15.16 − 167512 5.40 −
art3 177508 8.55 − 293743 4.43 − 307426 29.08 − 490398 12.36 −
art4 159413 8.46 − 185915 5.24 − 454552 68.27 − 459312 21.04 −
art5 873673 39.11 − 881711 16.61 − 1150102 199.56 − 1177881 59.86 −
art6 975158 51.75 − 984445 23.57 − 2080085 327.80 − 2129849 84.52 −
art7 1028331 58.73 − 1036206 24.90 − 1347049 268.88 − 1406366 71.64 −
art8 1616556 92.37 − 1651432 40.20 − 3423277 659.45 − 3426785 158.54 −
art9 1100215 141.68 − 1111150 63.32 − 5890324 1527.42 − 5890324 322.58 −
pmed1 3920397 1314.92 − 3927269 851.34 − 6667549 3020.66 − 6667781 1292.31 −
pmed2 7644966 959.14 − 7646396 763.20 − 9792019 1369.41 − 9792181 1027.34 −
pmed3 2342677 1217.93 − 2344253 832.70 − 4280821 2344.15 − 4280821 1212.02 −
pmed4 2652444 1252.69 − 2685214 817.60 − 2767490 1840.00 − 2767490 1100.93 −
pmed5 8830603 2538.98 − 8979523 1041.57 − 9393530 3119.91 − 9398491 1350.89 −
KROB150G 27979117 × 0.04 29666987 9798.09 − 8609286 20606.66 − 8609286 9043.41 −
KROA150G × 5256.88 34.17 × 5348.99 34.17 24167062 × 0.03 24203649 11270.48 −
PR152G 2993638 13190.67 − 3099354 6683.47 − 8203867 × 0.01 8203867 9327.78 −
RAT195G × 2956.78 32.24 × 3000.29 32.24 × 12331.88 17.67 × 12191.70 17.67
KROB200G × 21119.03 26.10 × 20559.01 26.10 × 20059.76 27.89 24150000 × 0.27
KROA200G 22110803 × 0.18 22149983 × 0.23 8670000 × 0.26 8670000 × 0.26
TS225G 22200741 × 0.02 22243742 12332.64 − 18379844 × 0.04 18379844 15321.28 −
Average 19369901 5476.69 4.42 19481264 3990.95 4.42 15040407 7342.70 2.19 11450971 5098.97 0.87

Table 3.6: Maximum branch and bound tree size, running times and achieved gaps for
p = 4 for the superset approach.

superset
Upper bound IA IA+DC
Lower bound HuffDisc MidPoint HuffDisc MidPoint
Network MaxList time gap MaxList time gap MaxList time gap MaxList time gap
art1 157141 19.22 − 152898 4.23 − 157141 20.22 − 152898 4.35 −
art2 181037 17.05 − 326290 3.81 − 181037 17.89 − 326290 3.87 −
art3 1093070 156.98 − 2659877 34.73 − 1093070 165.64 − 2659878 36.05 −
art4 101627 13.63 − 248993 2.65 − 101627 14.23 − 248998 2.70 −
art5 784382 109.43 − 1730167 21.61 − 784350 114.36 − 1730170 21.96 −
art6 1346499 196.92 − 1845530 33.52 − 1346499 202.04 − 1845530 34.68 −
art7 1415772 222.43 − 1581166 39.30 − 1415772 225.20 − 1581166 40.17 −
art8 3459070 702.52 − 5218221 116.56 − 3459070 708.77 − 5218221 120.68 −
art9 4195351 802.08 − 7068510 125.58 − 4195351 809.40 − 7068510 125.33 −
pmed1 10765649 7786.70 − 12980089 859.97 − 10765649 7677.53 − 12980089 857.10 −
pmed2 11143314 7410.62 − 19962438 834.42 − 10984446 7273.61 − 19944050 819.15 −
pmed3 6524060 4148.35 − 9334140 464.82 − 6522592 4116.63 − 9332340 458.92 −
pmed4 16174587 9091.02 − 24213155 1031.35 − 16174587 9017.36 − 24213155 1023.01 −
pmed5 8687562 5509.46 − 10884353 604.88 − 8687776 5464.92 − 10884353 599.86 −
KROB150G 35348181 × 3.26 42047737 3354.30 − 35289997 × 3.24 41974612 3347.03 −
KROA150G 31579343 × 2.44 38836554 3146.35 − 31579345 × 2.43 38836554 3172.58 −
PR152G 2879248 5482.97 − 3759971 460.70 − 2796219 5290.21 − 3657358 450.09 −
RAT195G 39163633 × 15.94 × 3893.07 12.57 40806156 × 8.27 × 3779.84 9.93
KROB200G 27205462 × 4.64 38996783 4209.31 − 25044941 × 3.44 36820724 3896.58 −
KROA200G 18774302 × 3.08 24445462 2700.81 − 16949758 × 2.43 22853487 2503.93 −
TS225G 22020591 × 2.73 28041441 2878.48 − 22020758 × 2.73 28041441 2869.51 −
Average 11571423 8155.68 1.53 17825418 1181.93 0.60 11445531 8129.43 1.07 17636658 1150.83 0.47
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Table 3.7: Maximum branch and bound tree size, running times and achieved gaps for
p = 5 for the enumeration approach.

enumeration
Upper bound IA IA+DC
Lower bound HuffDisc MidPoint HuffDisc MidPoint
Network MaxList time gap MaxList time gap MaxList time gap MaxList time gap
art1 761505 22.62 − 954269 14.45 − 850668 164.28 − 2884315 70.31 −
art2 833806 15.69 − 937528 11.62 − 1533922 324.22 − 1655465 102.99 −
art3 2218569 200.29 − 5398052 101.84 − 3472626 799.30 − 8899181 296.18 −
art4 2072133 210.15 − 2228330 81.31 − 5461464 1934.30 − 5461464 509.90 −
art5 13916512 1285.29 − 13942105 433.95 − 17259376 7172.07 − 18616932 1732.50 −
art6 17322753 1884.49 − 17534221 681.16 − 39108015 17341.40 − × 763.47 83.84
art7 17115252 1830.39 − 21231438 685.81 − 21110879 11568.02 − 25765937 3450.06 −
art8 × 286.62 28.17 × 388.10 34.34 × 416.04 80.16 × 509.84 91.73
art9 17510258 3538.34 − 17525808 1663.44 − × 443.31 99.23 × 590.92 99.23
pmed1 × 5610.09 34.84 × 5318.60 34.84 × 2075.53 73.16 × 2099.87 73.16
pmed2 × 2043.19 40.74 × 1877.88 40.74 × 1071.52 48.64 × 1089.60 48.64
pmed3 × 3195.31 32.60 × 5224.86 33.86 × 2865.89 53.84 × 2843.13 53.84
pmed4 × 1703.33 27.98 × 5537.69 28.46 × 3068.20 53.54 × 3033.74 53.54
pmed5 × 6864.04 35.36 × 1704.56 39.75 × 1733.62 52.25 × 1713.50 52.25
KROB150G × 3326.66 31.34 × 3234.95 31.34 × 8541.38 26.04 × 8453.09 26.04
KROA150G × 4453.25 28.90 × 4371.62 28.90 × 2252.59 31.32 × 2242.95 31.32
PR152G 17820377 × 0.17 17968869 × 0.20 × 13184.08 45.96 × 13009.80 45.96
RAT195G × 2947.69 28.09 × 2885.96 28.09 × 3035.05 23.54 × 3019.45 23.54
KROB200G × 12617.27 26.03 × 12737.00 26.03 × 6584.91 32.84 × 6603.30 32.84
KROA200G × 3645.04 40.16 × 3671.02 40.16 × 8926.33 43.28 × 8845.65 43.28
TS225G × 9715.15 26.58 × 9851.17 26.58 × 8832.73 37.19 × 8742.36 37.19
Average 61408150 4142.61 18.14 61796220 3908.43 18.73 70895092 4873.08 33.38 74442061.62 3320.12 37.92

Table 3.8: Maximum branch and bound tree size, running times and achieved gaps for
p = 5 for the superset approach.

superset
Upper bound IA IA+DC
Lower bound HuffDisc MidPoint HuffDisc MidPoint
Network MaxList time gap MaxList time gap MaxList time gap MaxList time gap
art1 1452057 310.71 − 1451329 58.63 − 1452056 307.24 − 1451328 59.09 −
art2 1994545 270.01 − 3696608 55.65 − 1994543 270.26 − 3696616 55.88 −
art3 36610591 6922.33 − 92922451 1502.35 − 36610591 6910.81 − 92922451 1490.92 −
art4 1228104 235.41 − 2984440 43.12 − 1228104 235.27 − 2984440 44.16 −
art5 20255341 4142.36 − 45869245 785.61 − 20255346 4144.18 − 45869251 799.97 −
art6 22539544 4639.56 − 29757712 727.59 − 22539545 4643.0 − 29757713 733.52 −
art7 25822697 5571.06 − 31479371 896.23 − 25822697 5580.98 − 31479371 897.07 −
art8 × 9939.57 4.60 × 1094.05 8.10 × 9937.81 4.60 × 1088.79 8.10
art9 × 10181.58 8.96 × 1058.50 24.56 × 10103.78 8.96 × 1049.59 24.56
pmed1 68661960 × 18.38 × 2901.09 19.27 68470552 × 18.40 × 2839.00 19.27
pmed2 70797011 × 19.05 × 2774.52 22.43 70727962 × 18.98 × 2738.64 22.35
pmed3 68662438 × 15.47 × 2865.02 19.57 68029779 × 15.54 × 2893.29 19.57
pmed4 70145377 × 23.65 × 2827.24 26.15 71493389 × 22.38 × 2727.99 27.76
pmed5 69754129 × 18.18 × 2756.32 17.42 69989853 × 18.08 × 2780.73 17.41
KROB150G 31327042 × 26.10 × 4152.59 24.74 36024130 × 21.09 × 3880.06 20.15
KROA150G 32557892 × 24.46 × 4095.34 21.55 35501051 × 20.57 × 3957.60 20.96
PR152G 34521048 × 6.92 × 4522.50 4.34 35281520 × 5.57 × 4524.22 4.13
RAT195G 20016605 × 48.90 × 5492.69 44.99 27657715 × 20.40 × 4631.51 24.53
KROB200G 17064415 × 29.03 × 5865.73 20.12 22428893 × 15.32 × 5085.60 15.25
KROA200G 16281856 × 29.79 × 5778.46 22.11 20716500 × 15.35 × 5165.29 14.37
TS225G 18788148 × 30.97 × 6013.59 23.07 21635793 × 21.94 × 5668.51 20.94
Average 39451467 14352.98 14.50 76579103 2679.37 14.21 40850477 14349.60 10.82 76579103 2529.12 12.35
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Chapter 4

Supervised Classification and
Support Vector Machines

4.1 An introduction to Supervised Classification

The Hubble Space Telescope transmits about 120 gigabytes of data every week [74, 94].
This is just a fact that illustrates how the evolution of the digital world and the storage
technology has lead to the growth of available data [85]. Data acquisition is the first
step to exploit the power of learning. Predictions of the type “this person is likely to
develop a cancer disease”, “this product is likely to be a success” or “this client is not
likely to return the loan” can be performed if one can derive patterns from data, such
as clusters; or models, such as linear equations that classify data according to features
we aim to study. Therefore, the interest in extracting valuable information from data
is increasing constantly [135, 140, 145].

Data mining is the science of extracting useful information from large datasets
[85]. The aim of data mining is to obtain and analyze information from datasets and
transform it into understandable output for the user. Data mining algorithms are able
to discover existing relationships between data or different level of representativeness
of the data, such as predicting future country occupations or ranking patient features
for medical diagnosis. It is a science attracting lots of research due to its increasing
applicability, such as in the hot topic of social media [7, 10, 131].

One of the most important tasks in data mining is Supervised Classification [2, 6,
85, 160], in which we are given a set of objects Ω partitioned into classes and the aim
is to build a procedure for classifying new objects. In its simplest form, each object
i ∈ Ω has associated a pair (xi, yi), where the feature vector xi takes values on a set
X ⊆ Rd and yi ∈ {−1,+1} is the class membership of object i, also known as the label
of object i, see Figure 4.1. In Part II, we will refer to the negative class as that in which
yi = −1, and to the positive class as that in which yi = +1. Class membership is only
known in a subset of Ω, the training sample. Supervised Classification aims at finding
a classification rule that predicts class membership for the remaining objects, that is,
a function f : X → {−1,+1} which assigns class f(x) ∈ {−1,+1} to feature vector x.

Supervised Classification plays an important role in many fields. Notable examples
are found in health care, such as drug efficacy [89]; in demography, such as census
income predictions [5]; in security, such as nuclear terrorism prevention [163]; or in
computer vision, such as surveillance [71]. In the context of business applications

40
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Class +1

Class −1

Figure 4.1: Objects from two classes, represented with different colors: objects with
label −1 in red and with label +1 in green. The black line represents one possible
classification rule. Objects below the line are classified into class −1 and into class +1
objects above it.

there are many typical examples, such as credit scoring [11], fraud detection [43] and
customer targeting [8, 57]. For instance, it is a common business task to classify
customers based on a number of features available to a company. In the case of credit
scoring, the positive class is identified with customers with good credit risk, while the
negative class with customers with bad credit risk. If we take as an example the german
credit scoring dataset [23], widely used in the context of Supervised Classification and
interpretability, such as in [11], each object i represents a customer asking for a loan.
For each customer, we know several characteristics such as “credit history”, “purpose”
(purpose for asking the loan, for instance, to buy a car or a television), or “housing”
(for instance, if the customer owns, rents or has free housing), that compose the feature
vector xi. It is essential for the company to extract information from the dataset and
build a procedure to decide if a given customer would pay back the loan, which means
yi = +1, or on the contrary would not pay back, i.e., yi = −1.

The remainder of this chapter is organized as follows. In Section 4.2 we introduce
Support Vector Machines. In Section 4.3 we define the criteria to measure the quality
of a given classifier, and in Section 4.4 we discuss the cost of building it. In Section
4.5 we briefly discuss the contribution of each chapter in Part II. We end the chapter
in Section 4.6 presenting the datasets used in this part of the dissertation.
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4.2 Support Vector Machines
Support Vector Machines (SVM) [56, 152, 153] have proved to be one of the state-of-
the-art methods for Supervised Classification [2, 6, 85, 160]. The SVM is a learning
algorithm that, given a training sample with labeled objects, aims at separating classes
by means of a classifier defined by a hyperplane, ω>x+b = 0, see Figure 4.2. See [42] for
a recent review on Mathematical Optimization and the SVM. Successful applications
of the SVM are found, for instance, in health care [22, 46, 81], fraud detection [43],
credit scoring [113] and cancellations forecasting [138].

ω>x+b=0

Figure 4.2: Training sample and the corresponding SVM classifier, where the discon-
tinuous lines ω>x+ b = 1 and ω>x+ b = −1 define the margin boundary.

The SVM, in its typical form, finds the hyperplane ω>x+ b = 0 by minimizing the
sum of the squared L2 norm of the score vector ω and the so-called hinge loss function
[42]. The SVM classifier is obtained by solving the following Quadratic Programming
(QP) formulation with linear constraints:

min
ω, b, ξ

1
2

d∑
j=1

ω2
j + C

n

n∑
i=1

ξi (4.1)

s.t. (SVM)

yi(ω>xi + b) ≥ 1− ξi ∀i = 1, . . . , n (4.2)
ξi ≥ 0 ∀i = 1, . . . , n (4.3)
ω ∈ Rd (4.4)
b ∈ R, (4.5)
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where n is the size of the training sample, C is a nonnegative tradeoff parameter and
ξ = (ξi) is the vector of deviation variables.

The classifier obtained by solving the SVM, like any linear classifier, provides valu-
able information on the role of each feature in the classifier. Indeed, the set of features
can be partitioned into three clusters, namely those with positive ωj , those with neg-
ative ωj , and the ones with ωj equal to zero. We can say that features with positive
(or negative) ωj point towards the positive (negative) class, and thus have a positive
(negative) contribution in the classifier, i.e., contribute to make sign(ω>xi+b) equal to
+1 (−1). Features with ωj = 0 have no contribution in the classifier and are therefore
irrelevant.

Many datasets are composed by continuous and categorical features. A given fea-
ture is designated categorical if it takes on a number of distinct values such as feature
“continent” with categories “Africa”, “America”, “Asia”, “Europe”, “Oceania” and
“Antarctica”. For instance, the categorical feature “property” from the german dataset
is composed by four categories, namely, “real estate”, “building society savings agree-
ment/life insurance”, “car or other” and “unknown/no property”. We denote with J ′
the number of categorical features in the dataset, and withKj′ the number of categories
of feature j′. In the presence of both continuous and categorical features, an object
i ∈ Ω, is represented by the vector (xi, x′i, yi) where the feature vector x′i is associated
with categorical features, that are binarized by splitting each feature into a series of 0-1
dummy features, one for each category, and takes values on a set X ′ ⊆ {0, 1}

∑J′

j′=1Kj′ .
Then, the corresponding classifier is denoted by (ω)>x + (ω′)>x′ + b = 0, where ω is
associated with the continuous features and ω′ is associated with the categorical fea-
tures. For the sake of simplicity, we will only use the notation ω′ to refer to the scores
of the categorical features when it is relevant to the methodology, i.e., in Chapter 6.
In the rest of the chapters in Part II, we will assume that the categorical features are
already incorporated into x.

4.3 Quality of the classifier

The quality of a classifier on a given dataset is measured by the classification accuracy.
Given an object i, it is classified in the positive or the negative class according to
the value of the score function, sign(ω>xi + b), while for the case ω>xi + b = 0, the
object is classified randomly. The classification accuracy is defined as the percentage
of objects correctly classified by the classifier on such dataset. In the presence of
outliers, misclassified objects that affect the performance of the algorithm and damage
the classification accuracy, we say that the classifier is sensible to outliers and therefore
the robustness of the classifier could be improved.

There are two other quality criteria that can be measured for a given classifier:
sparsity and complexity. Sparsity is measured as the percentage of features with zero
score, i.e., the sparsity of the SVM classifier is given by

card({ωj = 0})
d

· 100%. (4.6)

Higher sparsity leads to cheaper classification cost as it reduces the number of features
to be evaluated in the score function to compute the label of new objects. A desirable
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property such as for gene expression [81] or credit scoring [11] datasets. The second
criterion, complexity, is defined as the complement of sparsity; it quantifies (in per-
centage) the fraction of relevant features of the score vector, i.e., the complexity of the
SVM classifier is given by

card({ωj 6= 0})
d

· 100%. (4.7)

In the presence of different types of features, one can also measure the complexity
for each type separately. It is interesting to measure the complexity of a classifier with
respect to the categorical features, namely categorical complexity. It quantifies (in
percentage) the fraction of relevant dummy features of the score vector associated with
the categorical features, i.e., the categorical complexity of the SVM classifier is given
by

card({ω′j′,k 6= 0})∑J ′
j′=1Kj′

· 100%, (4.8)

where Kj′ is the number of categories of categorical feature j′. Straightforward im-
plementations of the SVM could lead to undesirable high values of the complexity for
categorical features due to unexploiting the structure properties of categorical features.
If we take as an example the german dataset, the SVM classifier leads to a complex-
ity of 95.08% and to a categorical complexity of 94.23%. The low difference between
the overall and the categorical complexity and the fact that the dataset is composed
by 17% of continuous features and 83% of dummy features, means that reducing the
categorical complexity of the classifier will benefit dramatically the overall complexity.
Thanks to measuring the categorical complexity, we are able to discover that the high
complexity values are due to the categorical features.

4.4 Building the classifier

The cost of classification is directly related to the cost of tuning parameters and building
the classifier [37, 42]. As customary in Supervised Classification, the optimization of
the SVM calls for tuning the tradeoff parameter C [37, 42] by inspecting a grid of
values. In the optimization of the SVM-based formulations of Chapter 5, the tuning is
also performed for a vector of parameters (c1, . . . , cS). To perform the tuning process,
the corresponding dataset is split into three sets, the so-called, training, testing and
validation sets.

For each vector of parameters, the mathematical programming formulation is run
on the training set. The different classifiers built in this way are compared according to
their accuracy on the testing set. The vector of parameters with the highest accuracy
on the testing set is chosen, and its accuracy on the validation set is reported, see
Figure 4.3.

Tuning efficiently the parameters is a necessary and challenging problem [37], as
shown in Figure 4.4, where the accuracy evolution in % is shown for a given grid of C
for the careval dataset solved by the SVM. The careval dataset [23], see Table 4.1,
is a car evaluation dataset that evaluates the car acceptability according to 21 features
that measure the car price, technical characteristics, comfort and safety.

Building the classifier, in the case of the SVM, becomes an easy task as it involves
solving a QP formulation. In this part of the dissertation, Part II, the cost of building
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Step 1. For each value of the parameter vector (C, c1, . . . , cS) in the
grid,

(i) Obtain the corresponding classifier ω>x+ b using the
training set.

(ii) Let πtest(C, c1, . . . , cS) be the accuracy of ω>x+ b in the
testing set.

Step 2. Let (C∗, c∗1, . . . , c∗S) ∈ arg max(C,c1,...,cS) π
test(C, c1, . . . , cS) and (ω∗)>x+b∗

be the corresponding classifier.

(i) Report the quality of (ω∗)>x+ b∗ in the validation set.

Figure 4.3: Pseudocode of the tuning procedure of the tradeoff parameter C as well
as of a vector of S parameters, (c1, . . . , cS).
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Figure 4.4: Accuracy evolution for different values of C for the careval dataset solved
by the SVM.

the classifier becomes a more complex task, as Chapters 5, 6 and 7 involve Mixed Integer
Linear Programming (MILP), Mixed Integer Nonlinear Programming (MINLP), Mixed
Integer Quadratic Programming (MIQP) and Quadratically Constrained Quadratic
Programming (QCQP) formulations. Different quality criteria benefit from that: in
Chapter 5, the use of the SVM-type classifiers obtained from these programming for-
mulations benefits sparsity, in Chapter 6 categorical complexity is improved, while in
the model addressed in Chapters 7 and 8 there is an increase in robustness.
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4.5 Outline of Part II

In this part of the dissertation, Part II, we present four different works based on the
SVM. Interpretability is the core of Chapters 5 and 6 while robustness is the main focus
of the model addressed in Chapters 7 and 8. We will briefly discuss the contribution of
each chapter in Part II.

In linear classifiers, such as the SVM, a score is associated with each feature and
objects are assigned to classes based on the linear combination of the scores and the
values of the features. The size of the score values associated with features is a valu-
able information that can be analyzed to obtain an interpretable classifier. Building
interpretable classifiers is a desirable property that can be exploited in fields such as in
health care or business. In Chapter 5, inspired by discrete psychometric scales, which
measure the extent to which a factor is in agreement with a statement, we propose
the Discrete Level Support Vector Machines (DILSVM) where the feature scores can
only take on a discrete number of values, defined by the so-called feature rating levels.
The DILSVM classifier benefits from interpretability as it can be seen as a collection
of Likert scales, one for each feature, where we rate the level of agreement with the
positive class. To build the DILSVM classifier, we propose an MILP approach, as well
as a collection of strategies to reduce the building times. The computational experience
reported at the end of Chapter 5, shows that the 3-point and the 5-point DILSVM clas-
sifiers have comparable accuracy to the SVM with a substantial gain in interpretability
and sparsity, thanks to the appropriate choice of the feature rating levels.

The standard approach to handle datasets in the presence of categorical features
is to binarize the categories into dummy features, disregarding its potential structure.
Exploiting the structure of categorical features can benefit the process of building the
classifier, obtaining less complex classifiers, a desirable property in health care and
business applications. In Chapter 6, a methodology is proposed with the aim of re-
ducing the categorical complexity of the SVM classifier in the presence of categorical
features, the Cluster Support Vector Machines (CLSVM). The CLSVM methodology
lets categories cluster around their peers and builds an SVM classifier using the clus-
tered dataset. Four strategies for building the CLSVM classifier are presented based
on solving: the original SVM formulation, a QCQP formulation, and an MIQP formu-
lation as well as its continuous relaxation. The computational study reported at the
end of Chapter 6, illustrates the quality of the CLSVM classifier using two clusters. In
the tested datasets the CLSVM methodology achieves comparable accuracy to that of
the SVM with original data but with a dramatic decrease in categorical complexity.

The SVM in its most popular form penalizes misclassified objects with the convex
hinge loss function, ∑n

i=1 ξi, see Figure 4.5 (left). The hinge loss function measures
the sum of the losses at the different objects as a continuous function, yielding smooth
convex optimization problems, in fact, convex quadratic. These convex problems have
been addressed in the literature by a collection of competitive algorithms and lead to
computationally easy optimization problems but with an increased sensitivity to outlier
observations. On the contrary, we have nonconvex loss functions such as the ramp loss,
Figure 4.5 (right). In this case, the SVM formulation becomes an MIQP formulation
and the optimization task becomes NP-hard but delivers a more robust classifier, see
Figure 4.6, which makes the SVM with the ramp loss (RLM) an attractive model from
the computational point of view. Chapters 7 and 8 are devoted to study of the RLM
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model from two different viewpoints.
Chapter 7 proposes two heuristics to obtain the RLM classifier, the first one based

on solving the continuous relaxation of an MINLP formulation of the RLM and the
second one based on the training of an SVM classifier on a reduced dataset identified
by an integer linear problem. The computational results reported at the end of Chapter
7, illustrate the ability of our heuristics to handle datasets of much larger size than those
previously addressed in the literature of the RLM.

On the other hand, Chapter 8 focuses on solving the RLM to optimality by means
of an MINLP reformulation. MILP models are commonly used to model indicator
constraints, which either hold or are relaxed depending on the value of a binary variable.
The RLMmodel is an important application of such models. MINLP models are usually
dismissed because they cannot be solved as efficiently. However, the computational
experience reported in Chapter 8 shows that the RLM model can be solved much
more efficiently by an MINLP formulation with nonconvex constraints. This calls for
a reconsideration of the modeling of these indicator constraints.
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Figure 4.5: Hinge loss and ramp loss functions. Objects well classified have 0 loss
for both functions: the case y = +1 with ω>x + b ≥ 1 and the case y = −1 with
ω>x + b ≤ −1. When objects are misclassified, the hinge loss has an unbounded
continuous loss while the ramp loss has a maximum loss of 2.

4.6 Datasets for Part II

To illustrate the performance of the strategies from Chapter 5, 6, 7 and 8, we use 15 real-
life datasets and 2 synthetic datasets, see Table 4.1. Real-life datasets are first obtained
from the StatLib repository [154], the LIBSVM repository [45], and the UCI repository
[23], and then normalized. Synthetic datasets are obtained using the so-called TypeA
and TypeB generators (for d equal to 2, 5 and 10) from [33]. Datasets containing cat-
egorical features are transformed splitting the categories into binary dummy features.
Regression datasets are transformed into 2-class datasets using the median, and multi-
class datasets are transformed into 2-class, treating the largest class as class +1 and
the remaining classes as class −1.

A description of these datasets can be found in Table 4.1, whose first four columns
report the dataset name, full name given in the repository, total size of the dataset
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Figure 4.6: TypeA dataset [33] of 50 objects for d = 2, C = 24. The SVM with the
hinge loss classifier (top) leads to a classification accuracy of 44% due to its sensivity
to outliers. The SVM with the ramp loss yields a more robust classifier (bottom) with
a classification accuracy of 78%.
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(|Ω|) and number of features (d). Columns 5, 6, 7 and 8 report the size of the training
set (n) used in Chapters 5, 6, 7 and 8 respectively, where “−” means the dataset is not
used. The remaining records in the dataset are equally split between the testing and
validation sets. Finally, the last column of Table 4.1 reports the class split in % in the
dataset.

To obtain sharp estimates for the quality criteria, repeated random subsampling
validation is used, where ten instances are run for each dataset. For synthetic datasets,
the ten instances differ in the seed used to generate random data, whereas for real-life
datasets, the seed is used to shuffle the set and then obtain different training, testing
and validation sets.



50 Chapter 4. Supervised Classification and Support Vector Machines

Ta
bl
e
4.
1:

R
ea
l-l
ife

an
d
sy
nt
he

tic
da

ta
se
ts
.

T
he

y
ap

pe
ar

in
in
cr
ea
sin

g
or
de

r
w
ith

re
sp
ec
t
to

th
e
siz

e
of

th
e
da

ta
se
t
|Ω
|.

Sy
nt
he

tic
da

ta
se
ts

ar
e
pl
ac
ed

at
th
e
bo

tt
om

of
th
e
ta
bl
e.

N
am

e
N

am
e

in
R

ep
os

it
or

y
|Ω
|

d
n

C
la

ss
sp

lit
C

ha
pt

er
5

C
ha

pt
er

6
C

ha
pt

er
7

C
ha

pt
er

8
ce

ns
us

in
co

me
C

en
su

s-
In

co
m

e
(K

D
D

)
D

at
as

et
95

13
0

50
0

-
50

00
-

-
94

/6
co

d-
rn

a
co

d-
rn

a
59

53
5

8
30

00
0

-
20

00
0

-
33

/6
7

sh
ut

tl
e

St
at

lo
g

(S
hu

tt
le

)
58

00
0

9
30

00
0

-
-

-
20

/8
0

ij
cn

n1
ijc

nn
1

35
00

0
22

20
00

0
-

20
00

0
-

9/
91

ad
ul

t
A

du
lt

30
95

6
12

0
15

00
0

50
00

15
00

0
-

24
/7

6
ca

lh
ou

s
C

al
ifo

rn
ia

H
ou

si
ng

20
46

0
8

10
00

0
-

-
-

50
/5

0
ga

mm
a

M
A

G
IC

G
am

m
a

Te
le

sc
op

e
19

02
0

10
10

00
0

-
10

00
0

-
32

/6
8

mu
sh

ro
om

s
M

us
hr

oo
m

s
81

24
11

5
40

00
50

00
-

-
48

/5
2

co
il

20
00

In
su

ra
nc

e
C

om
pa

ny
B

en
ch

m
ar

k
(C

O
IL

20
00

)
58

22
15

7
-

39
00

-
-

94
/6

ab
al

on
e

A
ba

lo
ne

41
77

10
20

00
28

00
-

-
50

/5
0

mo
le

cu
la

r
M

ol
ec

ul
ar

B
io

lo
gy

(S
pl

ic
e-

ju
nc

ti
on

G
en

e
Se

qu
en

ce
s)

31
90

48
0

-
22

00
-

-
52

/5
8

ca
re

va
l

C
ar

E
va

lu
at

io
n

17
28

21
10

00
12

00
-

-
30

/7
0

so
la

r-
c

So
la

r
F

la
re

D
at

as
et

10
66

28
-

80
0

-
-

83
/1

7
ge

rm
an

St
at

lo
g

(G
er

m
an

C
re

di
t

D
at

a)
10

00
61

50
0

70
0

-
-

30
/7

0
au

st
ra

li
an

St
at

lo
g

(A
us

tr
al

ia
n

C
re

di
t

A
pp

ro
va

l)
69

0
39

-
50

0
-

-
56

/4
4

Ty
pe

A
-

15
00

0
2,

5,
10

-
-

50
00

-
50

/5
0

Ty
pe

B
-

15
00

0
2,

5,
10

-
-

50
00

10
0

50
/5

0





Chapter 5

Strongly Agree or Strongly
Disagree?: Rating Features in
Support Vector Machines

In this chapter [38] we propose an SVM-type classifier where feature scores can only take
on a discrete number of values. By adding parameters at the right place we improve the
sparsity of the classifier and thus interpretability. Therefore, the classifier can be seen
as a (small) collection of Likert scales, easy to understand for nonexperts. This chapter
contributes to the literature on SVM, but more generally, on data mining, because
it significantly improves interpretability of learning methods and their visualization,
without comprising accuracy.

5.1 Introduction

There are several desirable managerial properties in Supervised Classification meth-
ods. Incorporating domain knowledge at the time of building the classifier is a very
appealing property [43]. One may also like to keep the costs of learning the classifier
low, where these costs arise from retrieving the features [35, 149], obtaining feature
information from the classifier [141], or refreshing the classifier to include new data
[71]. Another desirable property is the comprehensibility/interpretability of the classi-
fier. Since conciseness of the classifier is closely related with its interpretability, much
effort has been devoted to increasing its sparsity, i.e., to reducing the number of ac-
tive features in the classifier [81], discretizing the features to detect active ranges of
the features [108, 138] or relevant thresholds for the features [36]. When trading off
between accuracy and interpretability, another popular approach has been to extract
easy–to–understand structures, such as if–then rules, decision trees and decision tables,
from powerful black–box type classifiers [11, 44, 113, 114, 125, 126]. Yet another way
of achieving interpretability is by building discrete linear classifiers [48, 79]. Classifier
interpretability is a major challenge in datasets that contain a huge number of features,
where most of these are irrelevant. To address this issue, models have been proposed
aimed at increasing the sparsity of the classifier, as is done with the Lasso, see [106]
and [139].

In Supervised Classification, linear classifiers are based on score functions. For

52
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instance, the CHADS2 score [77, 105] is widely used in medicine to predict the risk of
stroke in patients with atrial fibrillation based on five different symptoms of the patient,
whereas the extended CHA2DS2–VASc score [107] includes three additional risk factors.
A score is associated with each feature, and objects are assigned to classes based on the
linear combination of the scores and the values of the features. The role each feature
plays in the classifier is related to the magnitude of the corresponding score, while the
sign gives information on how the feature points towards a given class.

Inspired by discrete psychometric scales, which measure the extent to which a factor
is in agreement with a statement, [102], and by linear classifiers in which the weights are
allowed to take values on a discrete set, [48, 79], we propose the Discrete Level Support
Vector Machines (DILSVM) where the feature scores can only take on a discrete number
of levels, defined by the so-called feature rating levels. The DILSVM classifier benefits
from interpretability, as it can be seen as a collection of Likert scales, one for each
feature, where we rate the level of agreement with the positive class.

We formulate the DILSVM as a Mixed Integer Linear Programming (MILP) prob-
lem. The parameters of our model, namely, the tradeoff parameter C and the rating
levels, may heavily influence the quality of the DILSVM and, therefore, have to be
carefully chosen. Thus, building the DILSVM classifier involves solving a series of
MILP problems, which, if solved to optimality, may make the overall computational
cost high for large datasets. For this reason we propose three strategies to alleviate
the computational burden, with different tradeoffs between quality and reduction in
computational cost. Such strategies use the guidance of related but simpler optimiza-
tion models, and reduce the computational cost associated with each parameter vector
and/or the number of parameter vectors to be inspected.

In our computational experience, we compare the DILSVM against the SVM clas-
sifier in terms of two quality criteria, namely accuracy and sparsity. We show that the
3-point and 5-point DILSVM classifiers, built using the MILP approach, have compa-
rable accuracy to the SVM, with a substantial gain in sparsity. Moreover, by the very
nature of our procedure (only a few levels, to be interpreted as intensities, are allowed),
interpretability is definitely improved allowing us to visualize the classification process
via Likert scales. The tests illustrating the quality of the reduction strategies reveal a
clear competitiveness in terms of sparsity, while the accuracy depends on the magnitude
of the reduction, being close to the SVM accuracies. In our computational experience,
we also compare the DILSVM against the 3-point DILSVM classifier with fixed pa-
rameters using ten real-life datasets. The 3-point DILSVM with fixed parameters is
inspired by the model in [48]. The results illustrate the relevance of tuning parameters
to ensure that accuracy and sparsity are not compromised.

The remainder of this chapter is organized as follows. In Section 5.2 we introduce
the DILSVM classifier. In Section 5.3 we discuss procedures for building the DILSVM
classifier. In Section 5.4 we report our computational results using real-life datasets.
We end the chapter in Section 5.5 with some conclusions and directions for future
research.

5.2 The DILSVM classifier

The Discrete Level Support Vector Machines (DILSVM) is a variant of the SVM classi-
fier where for each feature j, the score ωj can only take on a discrete number of values.
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Let A ⊂ R be a finite set that includes the value 0, which models the marginal impact
of the feature on the classifier. We can formulate the DILSVM as the following Discrete
Quadratic Programming problem:

min
ω, b, ξ

1
2

d∑
j=1

ω2
j + C

n

n∑
i=1

ξi (5.1)

s.t.

yi(ω>xi + b) ≥ 1− ξi ∀i = 1, . . . , n (5.2)
ξi ≥ 0 ∀i = 1, . . . , n (5.3)

ωj ∈ A ∀j = 1, . . . , d (5.4)
b ∈ R. (5.5)

For adequate choices of A , this model gains in interpretability and visualization.
For instance, let us consider A = {−a, 0, a}, a > 0. In the DILSVM classifier, some of
the ωj will be equal to a or −a, while the rest will be equal to zero. Features for which
ωj = a will have a positive impact on the classifier and therefore will point towards the
positive class, those for which ωj = −a will point towards the negative class, while the
rest have no impact. We can view this in an alternative way: for a given rating level a,
the DILSVM detects those features which strongly agree with the positive class, those
which strongly disagree (and therefore strongly agree with the negative class), and those
which are irrelevant to the classifier. This DILSVM classifier can be represented as a
collection of 3-point Likert scales, one for each feature, measuring the extent to which
the feature is in agreement with the positive class. When looking for more granularity
of the scale, we can increase the size of A . For A = {−a1,−a2, 0, a2, a1}, a1 > a2 > 0,
the DILSVM classifier can be seen as a collection of 5-point Likert scales where features
j with ωj = a1 are seen to strongly agree with the positive class, those with ωj = a2
agree (but not so strongly), while ωj = −a1 (−a2) strongly disagree (disagree).

As an illustration, let us consider the german dataset introduced in Chapter 4,
which is one of the datasets used in in our computational tests in Section 5.4, with
61 features in total. Table 5.4 displays the DILSVM classifier with A = {−1, 0, 1}
and C/n = 106 as a collection of 3-point Likert scales. Let us focus on three of the
features, namely “having no debtor”, “having a co-applicant” and ‘having a guarantor’.
The only relevant feature is “having a guarantor”, strongly contributing to the positive
class, while for the other two features the score is equal to zero. This is a pattern
that can be extended to the overall classifier, where more than half of the features are
irrelevant (41 out 61). The remaining features are roughly equally split between the
left and right side of the scale. Thus, in addition to the gain in interpretability, this
DILSVM classifier gains in sparsity too, see equation (4.6). The 5-point Likert scale
representation of the DILSVM classifier with A = {−1,−1/2, 0, 1/2, 1} and C/n = 106

is given in Table 5.5. The feature “having a guarantor” still strongly contributes to
the positive class, but “having a co-applicant” now contributes negatively (but not
strongly), while “having no debtor” is still irrelevant. Similarly to the 3-point Likert
scale classifier, the split between the left and right side of the scale is balanced, but the
number of irrelevant features is about a third (27 out of 61).

Apart from the gain in interpretability and sparsity, once the DILSVM classifier



5.3. Constructing the DILSVM classifier 55

has been obtained, its evaluation (i.e., classifying new objects) is as inexpensive as for
the SVM. However, these advantages come with an increased computational burden,
related to the choice of the set A , to build the classifier. We analyze this issue in the
next section.

5.3 Constructing the DILSVM classifier

Inspired by Likert scales, we assume that the set A is symmetric and defined as A =
{−a1, . . . ,−aK , 0, aK , . . . , a1}, where a1 > . . . > aK > 0 are the so-called rating levels
telling us about the extent to which each feature is in agreement with the positive
class. We denote this model by DILSVM(K). Please note that A could be considered
asymmetric without loss of generality.

Our model involves K + 1 parameters, namely the K rating levels as well as the
tradeoff parameter C. In the following, we formulate the DILSVM(K), when the K + 1
parameters are fixed, as an MILP problem. As pointed in Section 4.4, we will illustrate
in Section 5.4, that tuning efficiently the parameters is a necessary and challenging
problem, [37]. In order to alleviate this computational burden, a collection of strategies
is proposed.

5.3.1 An MILP formulation

In this section we formulate (5.1)–(5.5) with A = {−a1, . . . ,−aK , 0, aK , . . . , a1} as an
MILP problem. For each feature j and each rating level ak, let αjk be equal to either
−1, 1 or 0, indicating whether ωj is equal to −ak, ak or none of these two. For each
feature j, at most one αjk variable can be different from zero. We can now rewrite

ωj =
K∑
k=1

akαjk

d∑
j=1

ω2
j =

d∑
j=1

K∑
k=1

a2
kα

2
jk =

d∑
j=1

K∑
k=1

a2
k|αjk|,

where the latter follows from the fact that αjkαjk′ = 0 for k 6= k′. It is straightforward
to see that by making these substitutions in (5.1)–(5.5) and adding the constraints
relating to αjk, the DILSVM(K) can be formulated as:

min
α,b,ξ

1
2

d∑
j=1

K∑
k=1

a2
k|αjk|+

C

n

n∑
i=1

ξi
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s.t.

yi

 d∑
j=1

K∑
k=1

akαjkxij + b

 ≥ 1− ξi ∀i = 1, . . . , n

ξi ≥ 0 ∀i = 1, . . . , n
K∑
k=1
|αjk| ≤ 1 ∀j = 1, . . . , d

αjk ∈ {−1, 0, 1} ∀j = 1, . . . , d, ∀k = 1, . . . ,K
b ∈ R.

Using the usual trick to transform an absolute value into linear constraints, i.e., αjk =
α+
jk − α−jk, and |αjk| = α+

jk + α−jk, with α+
jk, α

−
jk ∈ {0, 1}, we can reformulate the

DILSVM(K) as an MILP problem:

min
α+,α−,b,ξ

1
2

d∑
j=1

K∑
k=1

a2
k(α+

jk + α−jk) + C

n

n∑
i=1

ξi (5.6)

s.t. (DILSVM(K))

yi

 d∑
j=1

K∑
k=1

ak(α+
jk − α

−
jk)xij + b

 ≥ 1− ξi ∀i = 1, . . . , n (5.7)

ξi ≥ 0 ∀i = 1, . . . , n (5.8)
K∑
k=1

(α+
jk + α−jk) ≤ 1 ∀j = 1, . . . , d (5.9)

α+
jk, α

−
jk ∈ {0, 1} ∀j = 1, . . . , d, ∀k = 1, . . . ,K(5.10)

b ∈ R. (5.11)

This MILP formulation has n + d constraints, 2dK binary decision variables, n non-
negative and 1 free, while the SVM formulation has a quadratic objective function but
all the decision variables are continuous.

In terms of the choice of the number of rating levels, the DILSVM(K) may lead
to a higher classification accuracy than the DILSVM(K′), with K > K ′, but it is
computationally more expensive as the number of zero–one decision variables increases
and the gains in interpretability and sparsity are less dramatic. Similar observations
can be made when comparing the SVM and the DILSVM(K), since at the end of the
spectrum is the SVM, which can be seen as DILSVM(∞). In the tradeoff between
accuracy and interpretability, we recommend the K = 1 and K = 2 versions of the
model, namely the DILSVM(1) and the DILSVM(2).

5.3.2 Reduction strategies

We have formulated the DILSVM(K) as an MILP problem. Solving this MILP formu-
lation to optimality is an NP-hard task even if we only consider one single rating level,
namely K = 1 and a1 = 1, and C =∞, as shown in [48]. In addition, the quality of the
DILSVM(K) classifier may be strongly influenced by the choice of the tradeoff param-



5.3. Constructing the DILSVM classifier 57

eter C as well as the K rating levels. Thus, building the DILSVM classifier involves
solving a series of MILP problems, which, if solved to optimality, may make the overall
computational cost high for large datasets. In this section we present three different
strategies to alleviate the computational burden of building the DILSVM(K) classifier.

The proposed strategies use the guidance of related but simpler optimization mod-
els, and reduce the computational cost associated with each parameter vector (C, a1, . . . ,
aK) and/or the number of parameter vectors to be inspected. The first strategy is
based on rounding the SVM classifier using each vector of rating levels. The second
strategy proposes, for each parameter vector, the randomized rounding, [132], of the
Linear Programming (LP) relaxation of the DILSVM(K). The third strategy aims at
speeding up the process for the DILSVM(K) based on information readily available for
the DILSVM(K′), K ′ < K. Clearly, these strategies are of diverse nature and, as the
computational experience will illustrate, offer different tradeoffs between quality and
reduction in computational cost.

The first and second strategies will be presented for general K, while, and for the
sake of clarity, the third strategy will be described for K = 2, though the process
gracefully extends to arbitrary K. Apart from a grid of parameter vectors, we assume
that we are given a selection criterion, [42], to choose the optimal classifier among those
generated for each vector of the grid. This is usually the accuracy on an independent
sample different from the one used to build the classifier, see Figure 4.3 from Chapter
4.

The first strategy, the SVM rounding (RSVM ), is based on rounding the feature
scores of the SVM classifier using the rating levels. For each value of C, the SVM
classifier is obtained, and the rounding procedure is performed using each vector of
rating levels. The pseudocode of this reduction strategy is given in Figure 5.1, where
a0 = ∞. While this strategy examines all the parameter vectors in the grid, it is
appealing since it is cheaper to train an SVM than a DILSVM. In addition, for a given
value of C, once the SVM classifier has been obtained, the rounding procedure takes
O(dK) time for each vector of rating levels.

The second strategy is based on the randomized rounding of the LP relaxation of the
DILSVM(K). We call this the randomized rounding (RR) strategy. For each parameter
vector (C, a1, . . . , aK), the RR strategy solves the LP relaxation of the DILSVM(K),
where constraints (5.10) are relaxed to α+

jk, α
−
jk ∈ [0, 1]. Let (α+, α−) be the (partial)

optimal solution obtained. Without loss of optimality, α+
jk · α

−
jk = 0. Thus, for a given

feature j, α+
jk (α−jk) can be seen as the desirability of setting the score of feature j to

value ak (−ak). Noting that the assignment constraints (5.9) are satisfied, a randomized
rounding procedure can be applied to derive the DILSVM classifier. In order to ensure
feasibility with respect to the assignment constraints, the rounding needs to take place
in a predetermined order of the rating levels, such that once a rating level and a sign
has been assigned to a feature, we move to the next feature. In the current version of
the RR strategy, the rating levels are arranged in decreasing order of max{α+

jk, α
−
jk}.

The pseudocode of this reduction strategy can be found in Figure 5.2, where rand(p)
is a subroutine of random numbers generation, returning the value 1 with probability
p and 0 otherwise.

In the third strategy, the fixing strategy, we use the output of the DILSVM(1)

classifier to alleviate the burden of building the DILSVM(2) classifier. In this case,
the reduction is twofold. First, the size of the parameter space is narrowed down.
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Step 1. For each C,

(i) Solve the SVM and obtain the (partial) optimal solution
(ω, b).

(ii) For each (a1, . . . , aK),
For j = 1, . . . , d

For k = 1, . . . ,K, set β+
jk = β−jk = 0

For k = 1, . . . ,K
If ak ≤ ωj < ak−1 then β+

jk = 1
ElseIf −ak−1 < ωj ≤ −ak then β−jk = 1

end
end

Return the classifier
K∑
k=1

ak(β+
k − β

−
k )>x+ b.

Step 2. Choose the optimal parameter vector using
K∑
k=1

ak(β+
k − β

−
k )>x+ b.

Figure 5.1: Pseudocode for the SVM rounding strategy.

Second, some of the decision variables in the MILP formulation (5.6)–(5.8) are fixed
in advanced, and therefore eliminated. The pseudocode for this reduction strategy can
be found in Figure 5.3. Using the grid corresponding to parameters C and a1, we first
build the DILSVM(1) classifier yielding optimal parameters values C(1) and a

(1)
1 . We

then build the DILSVM(2) classifier using the MILP formulation (5.6)–(5.8) for K = 2,
with C = C(1), a1 = a

(1)
1 and the values of a2 in the grid. In addition, we reduce the

number of zero–one decision variables in the MILP formulation. In the current version
of the fixing strategy, feature j will have a strong positive rating in the DILSVM(2)

classifier if that was the case in the DILSVM(1) classifier, and similarly for a strong
negative rating. For the rest of features, β+

jk and β−jk, k = 1, 2, must be optimized.
As already mentioned, the fixing strategy can be extended to an arbitrary K, where

we use the output of the DILSVM(K′) classifier with K ′ < K.

5.4 Computational results

In this section we illustrate the quality of the DILSVM classifier in terms of accuracy
and sparsity. As benchmark procedure we use the SVM, whose quality in terms of
both criteria is reported in Table 5.1. To build the DILSVM classifier, we use four
approaches, namely the MILP approach and the three reduction strategies. We will
show that, considered in its full generality and with small values of K (K = 1, 2) to
ensure interpretability, the DILSVM(K) is competitive against the SVM in terms of
accuracy, being substantially sparser than the latter. Inspired by the model in [48],
we show in Table 5.2 results for the DILSVM(1) with fixed parameters C = ∞ and
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Step 1. For each (C, a1, . . . , aK),

(i) Solve the LP relaxation of DILSVM(K) and obtain the
(partial) optimal solution (α+, α−).

(ii) For j = 1, . . . , d
For k = 1, . . . ,K, set β+

jk = β−jk = 0
Set K = {1, . . . ,K}
while (K 6= ∅)

Let k̄ such that max{α+
jk̄
, α−

jk̄
} ≥ max{α+

jk, α
−
jk},

∀k ∈ K

Set β+
jk̄

= rand(α+
jk̄

)
If β+

jk̄
= 1, set K = ∅

Else
Set β−

jk̄
= rand(α−

jk̄
)

If β+
jk̄

= β−
jk̄

= 0, set K = K \ {k̄}
Else K = ∅

end
end

(iii) Return the classifier
K∑
k=1

ak(β+
k − β

−
k )>x+ b.

Step 2. Choose the optimal parameter vector using
K∑
k=1

ak(β+
k − β

−
k )>x+ b.

Figure 5.2: Pseudocode for the randomized rounding strategy.

a1 = 1. Comparing the DILSVM(1) with it shows the relevance of tuning parameters.
The results for the DILSVM(1) are reported in Table 5.2, where for each dataset and
each criterion, we underline the best results across the three approaches. (Note that
the fixing strategy only applies to K ≥ 2, and therefore it is not present in Table 5.2.)
Similarly, Table 5.3 reports the results for the four approaches to build the DILSVM(2)

classifier.
Our experiments have been conducted on a PC with an Intel Core i7 processor,

16 Gb of RAM. We use the optimization engine IBM-Cplex v12.4, [98], for solving all
optimization problems. We have set the time limit to 300 seconds, which is enough
for most of the optimization problems we have solved. For the remaining ones, the
classifiers derived in this way are of heuristic nature.

The construction of the DILSVM classifier calls for tuning some parameters, namely
the tradeoff parameter C as well as the rating levels. For that purpose, we use the tuning
procedure in Figure 4.3 where cs = as, ∀s = 1, . . . ,K. Following the usual approach,
for the DILSVM(1), parameters C and a1 are tuned by inspecting a grid of the form
C
n ∈ {10−6, . . . , 106} and of the form a1 ∈ {20, . . . , 210}. For the DILSVM(2), C and
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Step 1. For each (C, a1),

(i) Solve the DILSVM(1) and obtain the (partial) optimal
solution (α+, α−, b).

(ii) Choose the optimal parameter vector (C(1), a
(1)
1 ) using

a1(α+ − α−)>x+ b, and obtain (ᾱ+, ᾱ−).

Step 2. For C(1), a
(1)
1 , and for each a2,

(i) For j = 1, . . . , d
If ᾱ+

j1 = 1 then β+
j1 = 1 and β−j1 = β+

j2 = β−j2 = 0
ElseIf ᾱ−j1 = 1 then β−j1 = 1 and β+

j1 = β+
j2 = β−j2 = 0

end

(ii) Solve the DILSVM(2) and return the classifier
2∑

k=1
ak(β+

k − β
−
k )>x+ b.

Step 3. Choose the optimal parameter vector using
2∑

k=1
ak(β+

k − β
−
k )>x+ b.

Figure 5.3: Pseudocode for the fixing strategy.

a1 are tuned with the same grid, and a2 ∈ {a1
2 ,

a1
22 }. In order to show the relevance of

tuning parameters, results for the DILSVM(1) with C =∞ and a1 = 1 are reported in
Section 5.4.1.

The quality in terms of accuracy and sparsity of our model is illustrated using 10
real-life large datasets whose description can be found in Table 4.1. The size of the
training set (n) is set as the closest 5 · 10m−1 multiple to |Ω|/2 where |Ω| is of 10m
order, see the fifth column of Table 4.1.

5.4.1 Results for the MILP approach

In this section we compare the quality of the DILSVM(1) and the DILSVM(2) against
that of the SVM, where the DILSVM results are generated using the MILP formulation
in Section 5.3.1. Quality will be measured in terms of two criteria, accuracy and
sparsity. The ideal model would be that one achieving the highest values in both
criteria. When, for a given criterion, the difference in quality between two approaches
is 1 percentage point (p.p.) or below, we will say that both approaches are comparable
under that criterion.

Recall that Table 5.1 reports the quality of the SVM, while the MILP approach
results for the DILSVM(1) can be found in the second set of columns of Table 5.2, and
the ones for the DILSVM(2) in the first set of columns of Table 5.3. For each dataset,
we report the mean validation accuracy across the ten instances, as well as the standard
deviation and the median. The same statistics are presented for the sparsity. Below
we discuss mean values, but similar conclusions are derived if the median is used.
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We start with the analysis of the mean accuracy, and show that the DILSVM is
competitive against the SVM. We first compare with the mean accuracy of the SVM.
For three datasets, adult, german and careval, the DILSVM(1) outperforms the SVM
by 5.54, 2.36 and 1.16 p.p., respectively. For three datasets, mushroom, gamma and
shuttle, the DILSVM(1) and the SVM are comparable. In three datasets, ijcnn1,
abalone and calhous, the SVM outperforms the DILSVM(1) by 1.20, 1.24 and 1.61
p.p., respectively. In cod-rna, the DILSVM(1) is clearly inefficient compared to the
SVM. For datasets such as cod-rna, the DILSVM(1) is too restrictive, and the accuracy
may benefit from the additional flexibility built in by the DILSVM(2). An improve-
ment of more than 1 p.p. can be observed from the DILSVM(1) to the DILSVM(2) in
three datasets. The first one is careval, for which the DILSVM(1) is already better
than the SVM, and the improvement on the SVM increases from 1.66 to 3.66 p.p. The
second one is cod-rna, where now the difference in mean accuracy between the SVM
and the DILSVM has been reduced from 15.69 to 3.22 p.p. The third one is calhous,
where the SVM is better than the DILSVM(1), but now the DILSVM(2) has a compa-
rable quality to the SVM. Across all datasets, the DILSVM(2) outperforms the SVM in
three datasets, they are comparable in five datasets, while the SVM outperforms the
DILSVM(2) in two datasets. Thus, the DILSVM(2) is competitive against the SVM in
terms of mean accuracy. We now show the relevance of tuning parameters by com-
paring mean accuracy results between the DILSVM(1) and the DILSVM(1) with fixed
parameters C =∞ and a1 = 1. Using this criterion, the fixed DILSVM(1) is not com-
petitive and is outperformed by the DILSVM(1) in eight datasets, where the increase in
mean accuracy achieved ranges between 2.80 and 18.41 p.p., while the mean accuracy
of both methods is basically the same for mushroom and ijcnn1.

We now focus on the second criterion, and show that the DILSVM is the best in
terms of mean sparsity. Indeed, for each dataset, the best model is the DILSVM(1),
followed by the DILSVM(2), and the SVM being the worse. Note that the sparsity
quality of the SVM is rather poor, being always fully dense (except for german), i.e., all
features have nonzero coefficients, and therefore play a role in the classifier. In terms
of mean sparsity, the DILSVM(1) with fixed parameters is clearly outperformed by the
DILSVM(1), except for cod-rna, in which the mean sparsity is exactly the same for both
methods. We now take a closer look at the mean sparsity of our model and show how
useful the MILP approach is to determine a high number of irrelevant features which
may make the classifier harder to interpret and also may negatively affect accuracy due
to overfitting. The mean sparsity for the DILSVM(1) is always 50% or above except
for calhous, with 31.25%, while for the DILSVM(2) the mean sparsity is always above
35% except for calhous, with 17.50%. Thus, except for calhous, at least half of the
features are irrelevant in the DILSVM(1), while this becomes at least one third in the
DILSVM(2). The results are even more encouraging for five of these datasets, where
the mean sparsity of the DILSVM(1) is at least 70%, while the mean sparsity of the
DILSVM(2) is at least 50%. In addition, in the mushroom dataset, both the DILSVM(1)

and the DILSVM(2) report a 100% accuracy with a 91.60% mean sparsity.
In summary, the model we propose, the DILSVM, is competitive against the SVM

in terms of accuracy, being substantially sparser than the latter. When faced with the
choice between one or two rating levels, we should observe that the DILSVM(1) is, in
general, more appealing: it has comparable accuracies to those of the DILSVM(2) in
seven datasets, while the DILSVM(1) is at least as sparser as the DILSVM(2). Thus, one
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rating level will, in general, suffice. In the remaining three datasets, including cod-rna,
the DILSVM(1) underperforms in terms of accuracy, while the additional rating level
available in the DILSVM(2) boosts the accuracy to a competitive level, at the cost of a
lower sparsity.

The MILP approach to build the DILSVM yields attractive results in terms of both
criteria against both benchmarks. That comes with a high computational cost though,
where an MILP problem needs to be solved for each parameter vector. This can be
illustrated by the median ratio across the ten datasets between the building time of
the DILSVM and that of the SVM, which is equal to 210.91 for K = 1 and 429.60 for
K = 2. When comparing with the fixed DILSVM(1), the median ratio is 361.18 for
K = 1 and 1054.53 for K = 2. We should emphasize that this high computational
effort only affects the phase of building the classifier (off-line). The evaluation phase
(on-line), when new objects are to be classified, is even faster than with the SVM, since,
due to the high sparsity of the classifier, fewer terms are computed. In addition, as
shown in the next section, the three strategies proposed in Section 5.3.2 are able to
reduce the time to build the DILSVM classifier. In terms of quality, while the sparsity
is not compromised, the accuracy will depend on the magnitude of the time reduction.

5.4.2 Results for the reduction strategies

In this section we illustrate the quality of the three reduction strategies proposed in
Section 5.3.2, as well as their building times. The accuracy and the sparsity results
can be found in Tables 5.2 (K = 1) and 5.3 (K = 2), where we present the mean, the
standard deviation and the median of both criteria. Clearly, there is a drop in accuracy
with respect to the corresponding MILP approach. Below we show that these strategies
behave well against the benchmark. As before, we start with the mean accuracy.

In the RSVM strategy, we round the feature scores of the SVM classifier using the
rating levels in the grid. This is a cheap option, in which the optimization problems
involved have only continuous decision variables. We now analyze the mean accuracy,
and show that the RSVM strategy is dominated by the SVM. For K = 1, the RSVM
strategy is clearly inefficient against the SVM, where the loss in accuracy is at least
1 p.p. in all datasets, while this becomes 47.97 p.p. in mushroom and 22.81 p.p. in
cod-rna. The improvement of K = 2 is dramatic for mushroom, where the RSVM
strategy becomes comparable to the SVM, also in ijcnn1, while in the remaining eight
datasets this strategy is still not competitive against the SVM.

In the RR strategy, we reduce the computational cost of solving an MILP problem
for each parameter vector. Instead, the RR strategy solves the LP relaxation of the
DILSVM(K) and applies a randomized rounding to its optimal solution. Below, we show
that the RR strategy yields mean accuracies close to those of the SVM. For K = 1, the
loss in accuracy of the RR strategy compared to the SVM ranges from 0.51 to 17.73
p.p., and therefore, using this criterion, the RR strategy is dominated by the SVM. For
K = 2, the RR strategy outperforms the SVM in adult by 4.15 p.p. and in careval
by 3.71 p.p., for three datasets both methods are comparable, while in the remaining
five the losses in accuracy (in p.p.) with respect to the SVM are 1.12 (ijcnn1), 1.87
(shuttle), 1.88 (abalone), 3.12 (calhous) and 13.76 (cod-rna). Except for cod-rna,
we can conclude that the RR strategy with K = 2 and the SVM are comparable in
terms of accuracy.
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In the fixing strategy, we first build the DILSVM(1), and use its classifier to re-
duce both the number of parameter vectors to be inspected as well as the number of
zero–one decision variables in the MILP. For each dataset, this strategy reduces the
number of MILP problems to be solved from 286 (full grid inspected) to 2 (only grid
for a2 inspected), after solving the 143 MILP problems associated with the DILSVM(1).
Roughly speaking, this halves the number of MILP problems to be solved. We now
analyze the mean accuracy, and show that the fixing strategy yields results close to
those of the SVM. Compared to the SVM, the fixing strategy outperforms the SVM
in adult by 4.19 p.p. and in careval by 1.79 p.p., for three datasets both methods
are comparable, while in the remaining five the SVM performs better. If we ignore
cod-rna with a 12.54 p.p. loss, one can see that the improvement of the SVM for the
remaining four datasets is below 1.36 p.p. Except for cod-rna, we can conclude that
the fixing strategy has a comparable behavior to the SVM.

In terms of mean sparsity, the strategies clearly dominate the SVM, as the latter is
always fully dense (except for ijcnn1). We now take a closer look at the mean sparsity
of each strategy. For K = 1, the mean sparsity of the RSVM strategy is at least 50%
for all datasets with eight datasets above 70%, while for K = 2 the mean sparsity is
above 25% for all datasets with seven above 50%. For K = 1, the mean sparsity of
the RR strategy is at least 65% for all datasets with eight datasets above 70%, while
for K = 2 the mean sparsity is above 15% for all datasets with eight datasets above
50%. Finally, the sparsity of the fixing strategy is at least 20% for all datasets with
five datasets above 50%.

We now illustrate the reduction in building time achieved by the strategies. As
before, we measure the ratio between the building time of a given strategy and that
of the SVM, and report the median ratio across the ten datasets. For the RSVM
strategy, the rounding time is negligible for small values of K. Thus, for K = 1, 2, the
ratio between the building time of the RSVM and the SVM is roughly equal to 1 for
each dataset. For the RR strategy, when comparing with the SVM, the median ratio is
equal to 10.32 for K = 1 and 34.41 for K = 2. Finally, the fixing strategy is designed to
reduce the building time when K = 2 using the DILSVM(1) classifier, and the median
ratios are very similar to the ones reported for the MILP approach with K = 1, namely
211.60 against the SVM.

In conclusion, we have presented three strategies of very diverse nature that are
able to reduce the building time of the DILSVM classifier. When compared to the
SVM, the RR and the fixing strategies are competitive in terms of mean accuracy, but
less so is the RSVM, while the dominance of the three strategies in terms of sparsity is
overwhelming.

5.5 Conclusions

In this chapter we propose the DILSVM(K) classifier, an SVM-type classifier in which
there are K possible levels of agreement of each feature with the positive class. We
recommend small values of K, such as K = 1 and K = 2. In this case, our classifier
enjoys two properties. First, it can be visualized as a collection of Likert scales, and
therefore, since K is small, the DILSVM(K) classifier gains in interpretability. Second,
once the classifier has been built, the evaluation of the DILSVM(K) (i.e., classifying
new objects) is at least as inexpensive as for the SVM: classifying new objects amounts
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to evaluating a linear function. In addition, as shown by our computational experience,
many coefficients are set to zero in both the DILSVM(1) and the DILSVM(2), while the
SVM is fully dense.

The gain in visualization and sparsity achieved by the DILSVM is made without
paying any price in accuracy. As our computational experience shows, the DILSVM
is competitive against the SVM in terms of accuracy. Our classifier is much harder
to obtain than the SVM, since an MILP problem is to be solved for each parameter
vector, and we have illustrated that parameter tuning is crucial if we do not want
to compromise accuracy. In terms of the number of parameters, there are now one
(K = 1) or two (K = 2) more parameters than in the standard SVM to tune. In order
to alleviate the computational burden, three reduction strategies have been proposed.
Our computational tests show that we are able to preserve an accuracy comparable
to the SVM and significantly better sparsities. This means that, at the expense of an
increase in off-line computational cost, the DILSVM is able to extract easy-to-interpret
information from datasets without sacrificing classification accuracy.

We conclude with three promising extensions of our approach. First, knowledge
domain can also be incorporated into the model. Given a family of features, constraints
of the type “at least one feature of this family should be selected” or “no more than
one feature of this family should be chosen” simply lead to new linear constraints in
the MILP formulation. Second, accuracy and interpretability are usually contradicting
objectives. In this chapter we fix the number of rating levels, and aim at optimizing
accuracy. It is natural to consider the problem of simultaneous optimization of both
accuracy and interpretability, see for instance [91, 120]. This biobjective model deserves
further analysis and testing. Third, our approach can also be extended to other linear
classifiers, such as the classical Linear Discriminant Analysis [73] and the Logistic
Regression [88], where building the new classifier yields Nonlinear Integer Programming
problems [34]. Solving these nonlinear problems efficiently remains an important future
challenge.
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Chapter 6

Clustering Categories in Support
Vector Machines

Exploiting the structure of categorical features can benefit the process of building the
classifier, obtaining less complex classifiers. This chapter [39] contributes to the lit-
erature on SVM and data mining, because it reduces the categorical complexity of
the SVM classifier in the presence of categorical features without comprising accuracy.
These advantages are achieved by defining a new methodology that lets categories
cluster around their peers and builds an SVM classifier using the clustered dataset.

6.1 Introduction
In many applications of Supervised Classification, datasets are composed by a large
number of features and/or objects, making it hard to both build the classifier and
interpret the results. In this case, it is desirable to obtain a less complex classifier, which
may make classification easier to handle and interpret, less prone to overfitting and
computationally cheaper when classifying new objects [11, 38, 44, 113, 114, 125, 126].
The most popular strategy proposed in the literature to achieve this goal is feature
selection [76, 81, 158], which aims at selecting the subset of most relevant features
for classification while maintaining or improving accuracy and preventing the risk of
overfitting. Feature selection reduces the number of features by means of all·or·nothing
procedure. For categorical features, binarized as explained above, it simply ignores
some categories of some features, and does not give valuable insight on the relationship
between feature categories. These issues may imply a significant loss of information.

In this chapter, a methodology to reduce the complexity of the SVM classifier for
datasets composed by categorical features, sometimes containing many categories, and
occasionally continuous features, is proposed. This is done by clustering the different
categories of each categorical feature into a given number of clusters, and then obtaining
an SVM-type classifier for the clustered dataset. We call this the Cluster Support Vector
Machines (CLSVM) methodology and we will refer to the CLSVM classifier.

As an illustration, let us consider the german dataset introduced in Chapter 4. In
this dataset each object is originally composed by 20 features: 11 categorical features,
binarized into 52 dummies, and 9 continuous features, finally obtaining 61 features in
total. For this dataset, the SVM formulation with original data, hereafter denoted
by SVMO, gives a classifier, (ω)>x + (ω′)>x′ + b = 0, leading to a classification ac-

69
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curacy of 76.67% and whose categorical score subvector ω′ has 50 relevant features,
i.e., card({ω′j′ 6= 0}) = 50. However, using the CLSVM methodology described in this
chapter, where the categories of each categorical feature are grouped just into two clus-
ters, the classification accuracy is increased to 80.00% while the CLSVM classifier uses
2× 11 = 22 relevant dummies. In other words, the methodology proposed here allows
one to obtain a much simpler classifier with an accuracy even higher than the original
one. The clustering is shown in Figure 6.8, where we can see each categorical fea-
ture separated by a discontinuous line and each category from each categorical feature
represented by a circle. The two clusters are distinguished by the coloring with dark
grey and light grey circles. For instance, the categorical feature “property” originally
had four categories, namely, “real estate”, “building society savings agreement/life in-
surance”, “car or other” and “unknown/no property”. As we will see later, the three
first categories, colored in dark grey, are those indicating the positive class, and will
be grouped into one single cluster, against the category indicating the negative class,
namely “unknown/no property”.

In this chapter, four strategies to build the CLSVM classifier are proposed using
different mathematical programming formulations. The first strategy proposed solves
the SVMO as initial step. Then, categories are clustered using the SVMO scores and the
CLSVM classifier consists of building an SVM classifier using the clustered values. For
the second strategy a Mixed Integer Nonlinear Programming (MINLP) formulation of
the same type as the SVM formulation is proposed, but in this case defining a score for
each cluster of each categorical feature. The second strategy is based on solving the con-
tinuous relaxation of this MINLP formulation, a Quadratically Constrained Quadratic
Programming (QCQP) formulation to find a clustering, and the CLSVM classifier con-
sists of building again an SVM classifier using the clustered dataset. The third and
fourth strategies are based on a Mixed Integer Quadratic Programming (MIQP) for-
mulation derived from the MINLP formulation using the big M modeling trick to
reformulate the nonlinear terms in the feasible region. The third strategy works simi-
larly to the second one, but solves the continuous relaxation of the MIQP. The fourth
strategy solves the MIQP formulation itself and obtains the clustering and the classifier
at once.

In the computational results, the four strategies are compared against the SVMO in
ten real-life datasets using two quality criteria defined in Section 4.3, namely accuracy
and categorical complexity of the classifier for the categorical data, see equation (4.8).
We conclude from our experiments that the CLSVM achieves a comparable or even
better accuracy than the SVMO in nine of the ten datasets tested. In addition, the
CLSVM methodology provides a reduction on the complexity of the classifier for the
categorical data, while the SVMO uses more dummy features for all the strategies and
for all ten datasets.

The remainder of this chapter is organized as follows. In Section 6.2 we introduce
the CLSVM methodology together with two mathematical programming formulations.
Two theoretical results relevant to the formulations are presented. In Section 6.3 the
four CLSVM strategies are presented. Section 6.4 is devoted to the computational
experience, where the CLSVM classifier and the SVMO classifier are compared using
ten datasets. Finally, Section 6.5 contains a brief summary, final conclusions and some
lines for future research.
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6.2 The CLSVM methodology

In this section the CLSVM methodology is introduced. An MINLP formulation is
presented for building the CLSVM classifier and some theoretical results for the formu-
lation are stated and proved. Then, an MIQP formulation is derived from the MINLP
one, using the big M modeling trick to reformulate the nonlinear terms in the feasible
region. The theoretical results also hold for this formulation.

The CLSVM methodology is based on the SVM formulation, but takes into account
the way categorical features are handled in the SVM (and other linear classifiers):
splitting each feature into a series of 0-1 dummy features, the classifier assigns one
score to each dummy feature, and thus to each value of the categorical feature. Instead,
the CLSVM methodology lets categories cluster around their peers and builds an SVM
classifier using the clustered dataset, which may reduce the number of relevant features.
We will say that category k from categorical feature j′ is relevant to the classifier if
ω′j′,k 6= 0. Let us focus now on categorical features. If a category is relevant to the
classifier, we will say that category k from feature j′ points towards the positive class
if the score associated to the category is positive, i.e., if ω′j′,k > 0. Analogously, if
ω′j′,k < 0 we will say that category k from feature j′ points towards the negative class.
The fact that a category points towards the positive (or negative) class means that
it contributes to classify objects in the positive (or negative) class respectively, i.e.,
contributes to make sign((ω)>xi + (ω′)>x′i + b) equal to +1 (−1).

First, we remind the standard SVM [42, 56, 152, 153], formulated as the following
Quadratic Programming (QP) formulation with linear constraints:

min
ω,ω′,b,ξ

J∑
j=1

Kj∑
k=1

(ωj,k)2

2 +
J ′∑
j′=1

(ω′j′)2

2 + C

n

n∑
i=1

ξi (6.1)

s.t. (SVM)

yi(
J∑
j=1

Kj∑
k=1

ωj,k xi,j,k + (ω′)> x′i + b) ≥ 1− ξi ∀i = 1, . . . , n (6.2)

ξi ≥ 0 ∀i = 1, . . . , n (6.3)

ω ∈ R
∑J

j=1Kj (6.4)
ω′ ∈ RJ

′ (6.5)
b ∈ R, (6.6)

where ξ = (ξi) denotes the vector of deviation variables and C is the tradeoff parameter
that calls for tuning, see Section 4.4.

The methodology proposed in this chapter, the CLSVM, receives as input a dataset
containing categorical and occasionally continuous features. We will denote by Lj′ the
number of clusters in which the Kj′ dummies of categorical feature j′ are clustered.
As a first step, the CLSVM performs a clustering for each categorical feature, defined
by an assignment vector z∗, where z∗j′,k,` is equal to 1 if category k from feature j′ is
assigned to the `-th cluster and 0 otherwise, for j′ = 1, . . . , J ′, k = 1, . . . ,Kj′ , ` =
1, . . . , Lj′ . Then, the dataset is clustered according to z∗, see Figure 6.1, and an SVM-
type classifier is constructed for the clustered dataset, given by (ω)> x+(ω̄)> x̄+b = 0.
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For categorical feature j′, the component ω̄j′,` denotes the score for the `-th cluster,
j′ = 1, . . . , J ′, ` = 1, . . . , Lj′ . The pseudocode of the CLSVM methodology can be
found in Figure 6.2. To avoid symmetry between clustering solutions, the first category
of each categorical feature is always assigned to its first cluster.

For each i ∈ Ω:

Step 1. Input:

• original object (xi, x′i, yi), xi ∈ RJ, x′i ∈ {0, 1}
∑J′

j′=1
Kj′ .

• assignment vector z∗ ∈ {0, 1}
∑J′

j′=1
Lj′Kj′

where

Lj′∑
`=1

z∗j′,k,` = 1, ∀j′ = 1, . . . , J ′; ∀k = 1, . . . ,Kj′.

Step 2. Output:

• clustered object (xi, x̄i, yi), xi ∈ RJ, x̄i ∈ {0, 1}
∑J′

j′=1
Lj′

where x̄i = (x̄i,1,1, . . . , x̄i,J′,LJ′
) with x̄i,j′,` =

Kj′∑
k=1

z∗j′,k,`x
′
i,j′,k.

Figure 6.1: Pseudocode for the clustered dataset defined by the assignment vector z∗.

Given a dataset Ω:

Step 1. Find the assignment vector z∗, defining a clustering for the categorical
features.

Step 2. Obtain the clustered dataset Ω̄ as in Figure 6.1.

Step 3. Find the CLSVM classifier for Ω̄, (ω)> x+ (ω̄)> x̄+ b = 0.

Figure 6.2: Pseudocode for the CLSVM methodology.

6.2.1 Formulations for the CLSVM

In this section two different mathematical programming formulations are proposed
for the CLSVM methodology, an MINLP and an MIQP formulations. The MIQP
formulation is derived from the MINLP formulation using the big M modeling trick to
reformulate the nonlinear terms in the feasible region.

First, we introduce the Cluster (CL) formulation, an MINLP formulation with
nonlinear constraints and 0-1 decision variables. This formulation aims at finding a
classifier, but at the same time clustering categorical feature j′ into Lj′ clusters, for
each j′ = 1, . . . , J ′. The CL is formulated as follows:

min
ω,ω̄,b,ξ,z

J∑
j=1

(ωj)2

2 +
J′∑
j′=1

Lj′∑
`=1

(ω̄j′,`)2

2 + C

n

n∑
i=1

ξi (6.7)
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s.t. (CL)

yi

(ω)> xi +
J′∑
j′=1

Lj′∑
`=1

ω̄j′,`

Kj′∑
k=1

zj′,k,` x
′
i,j′,k + b

 ≥ 1− ξi ∀i = 1, . . . , n (6.8)

Lj′∑
`=1

zj′,k,` = 1 ∀j′ = 1, . . . , J ′; ∀k = 1, . . . ,Kj′ (6.9)

ξi ≥ 0 ∀i = 1, . . . , n (6.10)

z ∈ {0, 1}
∑J′

j′=1
Lj′ Kj′ (6.11)

ω̄ ∈ R
∑J′

j′=1
Lj′ (6.12)

ω ∈ RJ (6.13)
b ∈ R. (6.14)

This formulation resembles the SVM formulation (6.1)-(6.6), and we will discuss
their main differences. Here we have a score associated with each feature and each
cluster, ω̄j′,`, as opposed to a score for each category, ω′j′,k. With respect to the de-
cision variables, we have ∑J ′

j′=1 Lj′ Kj′ new 0-1 variables, the number of components
of the assignment vector z, but the number of continuous features associated with the
score vector decreases from ∑J ′

j′=1Kj′ to
∑J ′
j′=1 Lj′ . Constraint (6.8) corresponds to

constraint (4.2). Constraint (6.9) ensures that, given a categorical feature, each cate-
gory is assigned to a unique cluster, which means that there are ∑J ′

j′=1Kj′ additional
constraints to those in the SVM formulation.

We will say that a categorical feature j′ is irrelevant to the classifier if ω̄j′,` = 0, ∀` =
1, . . . , Lj′ . On the contrary, if the feature is relevant to the classifier, we will say that
cluster ` from feature j′ points towards the positive class if the score associated to the
cluster is positive, i.e., if ω̄j′,` > 0. Analogously, if ω̄j′,` < 0 we will say that cluster `
from feature j′ points towards the negative class. The effective use of the clusters by
the CL formulation is stated in the following theoretical results.

Proposition 6.1. For any optimal solution of CL, given a categorical feature j∗, if
there exists `∗ such that zj∗,k,`∗ = 1 ∀k = 1, . . . ,Kj∗, then ω̄j∗,` = 0 ∀` = 1, . . . , Lj∗.

Proof: The proposition will be proved by contradiction. Let (ω, ω̄, b, ξ, z) be an
optimal solution of CL for which the desired property does not hold. For the case ` = `∗,
if ω̄j∗,`∗ 6= 0, then (ω∗, ω̄∗, b∗, ξ∗, z∗) obtained by setting ω̄∗j∗,`∗ = 0 and b∗ = b+ ω̄j∗,`∗ is
a feasible solution for (6.7)-(6.14) and has a smaller objective value, which contradicts
the fact that the solution (ω, ω̄, b, ξ, z) is optimal.

Now we analyze the case ` 6= `∗. If ω̄j∗,` 6= 0, then (ω∗, ω̄∗, b∗, ξ∗, z∗) obtained by
setting ω̄∗j∗,` = 0 is a feasible solution for (6.7)-(6.14) and has a smaller objective value,
which contradicts the fact that the solution (ω, ω̄, b, ξ, z) is optimal. �

From this proposition, we obtain:

Corollary 6.2. Given a categorical feature, if all its categories belong to the same
cluster, then the feature is irrelevant to the CLSVM classifier.

The clustering given in the CL formulation for a categorical feature j′ with Lj′ = 2,
groups the categories into two clusters. It is easy to see that either the feature is
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irrelevant or one of the clusters of the feature points towards the positive class while
the other points towards the negative one.

Proposition 6.3. If Lj′ = 2, for a given j′, for any optimal solution of CL, it holds
that:

ω̄j′,1 · ω̄j′,2 ≤ 0. (6.15)

Proof: The proposition will be proved by contradiction. Let (ω, ω̄, b, ξ, z) be an
optimal solution of CL for which the desired property does not hold, i.e., ω̄j′,1 ·ω̄j′,2 > 0.
Then (ω∗, ω̄∗, b∗, ξ∗, z∗) obtained by setting ω̄∗j′,1 = ω̄j′,1−ω̄j′,2

2 , ω̄∗j′,2 = ω̄j′,2−ω̄j′,1
2 and

b∗ = b + ω̄j′,1+ω̄j′,2
2 satisfies (6.15), is a feasible solution for (6.7)-(6.14) and has a

smaller objective value, which contradicts the fact that the solution (ω, ω̄, b, ξ, z) is
optimal. �
Figure 6.8 illustrates the applicability of Proposition 6.3 for the dataset german, where
the clustering gives the additional information of which cluster points towards the
positive class or the negative class. We have assigned a dark gray coloring to clusters
in which ω̄j′,` > 0 in the CLSVM classifier, and therefore, those clusters point towards
the positive class; similarly, a light gray coloring is assigned to clusters in which ω̄j′,` < 0
in the CLSVM classifier, and therefore, those clusters point towards the negative class.
For the four categories of feature “property”, the two clusters are given by {“real estate”,
“building society savings agreement/life insurance”, “car or other”} and {“unknown/no
property”}. The categories of the first cluster point towards the positive class, while
the category “unknown/no property” points towards the negative class.

Nonconvex nonlinear constraints such as (6.8) are known to be computationally
difficult to deal with, e.g. [147]. Therefore, one may want to reformulate constraint
(6.8) from the MINLP formulation in order to obtain an MIQP formulation where

the nonlinear term of the product of variables ω̄j′,`
Kj′∑
k=1

zj′,k,` x
′
i,j′,k in constraint (6.8)

is reformulated by introducing new constraints, often indicated as big M or indica-
tor constraints. This implies adding ∑J ′

j′=1 Lj′Kj′ continuous variables, ω̃j′,k,`, j′ =
1, . . . , J ′, k = 1, . . . ,Kj′ , ` = 1, . . . , Lj′ , yielding
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min
ω,ω̄,ω̃,b,ξ,z

J∑
j=1

(ωj)2

2 +
J′∑
j′=1

Lj′∑
`=1

(ω̄j′,`)2

2 + C

n

n∑
i=1

ξi (6.16)

s.t. (CL-bigM)

yi

(ω)> xi +
J′∑
j′=1

Lj′∑
`=1

ω̃j′,k(i),` + b

 ≥ 1− ξi ∀i = 1, . . . , n (6.17)

Lj′∑
`=1

zj′,k,` = 1 ∀k = 1, . . . ,Kj′ , ∀j′ = 1, . . . , J ′ (6.18)

ω̃j′,k,` ≤ ω̄j′,` +M(1− zj′,k,`) ∀k = 1, . . . ,Kj′ , ∀` = 1, . . . , Lj′ , ∀j′ = 1, . . . , J ′ (6.19)
ω̃j′,k,` ≥ ω̄j′,` −M(1− zj′,k,`) ∀k = 1, . . . ,Kj′ , ∀` = 1, . . . , Lj′ , ∀j′ = 1, . . . , J ′ (6.20)

ω̃j′,k,` ≤M zj′,k,` ∀k = 1, . . . ,Kj′ , ∀` = 1, . . . , Lj′ , ∀j′ = 1, . . . , J ′ (6.21)
ω̃j′,k,` ≥ −M zj′,k,` ∀k = 1, . . . ,Kj′ , ∀` = 1, . . . , Lj′ , ∀j′ = 1, . . . , J ′ (6.22)

ξi ≥ 0 ∀i = 1, . . . , n (6.23)

z ∈ {0, 1}
∑J′

j′=1
Lj′ Kj′ (6.24)

ω̄ ∈ R
∑J′

j′=1
Lj′ (6.25)

ω ∈ RJ (6.26)

ω̃ ∈ R
∑J′

j′=1
Lj′ Kj′ (6.27)
b ∈ R. (6.28)

We will compare this with the CL formulation. Both objective functions are exactly
the same. The difference between the two formulations comes from the constraints,
and the addition of ∑J ′

j′=1 Lj′Kj′ new continuous variables. Constraint (6.17) is the
corresponding to constraint (6.8). Here, the nonlinear term is replaced with the variable
ω̃j′,k(i),`, where k(i) identifies the category in which object i falls for feature j′. In order
to reformulate constraint (6.8) as a collection of linear constraints, it is a very well-
known modeling trick to use a 0-1 variable to control if constraint (6.8) is active or
not, see [159]. Then, constraint (6.8) is reformulated as linear constraint (6.17), and
4 ·∑J ′

j′=1 Lj′Kj′ more constraints are needed for the reformulation, (6.19)-(6.22), the
so-called big M constraints, where M > 0 is a big enough constant.

Please note that Proposition 6.1, Proposition 6.3 and Corollary 6.2 also hold for
the CL-bigM formulation, as it is a valid reformulation of the CL formulation.

6.3 Strategies for the CLSVM

In this section four different strategies are proposed to obtain the CLSVM classifier.
The first, and natural, way to define a CLSVM classifier is by clustering the categories
using the scores of the original SVM, the SVMO. This is a cheap strategy but underper-
forming in some cases in terms of accuracy, as we will see in the computational section.
Three alternative strategies are proposed based on the two mathematical programming
formulations introduced in Section 6.2, the CL and the CL-bigM.

In the remainder of this section, when describing the strategies, we will explain how
to obtain the partial solution (ω, ω̄, b), which determines the CLSVM classifier, and the
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assignment vector z∗. Then, the assignment vector z∗ performs a clustering for the
original dataset, obtaining a clustered dataset, as shown in Figure 6.1.

The first strategy, the centroid SVM (SVMC) strategy, is based on the SVMO scores.
As initial step, the SVMO classifier is built for the original dataset, then the categories
of categorical feature j are clustered into Lj′ clusters by clustering the SVMO scores,
for each j′. This is done by solving the minimum sum of squares clustering problem
(MSSC), [86]. Given a categorical feature j′, MSSC clusters all the categories into
Lj′ clusters such that the sum of the squared distance of the score of a category from
the centroid of the cluster is minimized. The pseudocode of the MSSC problem can
be found in Figure 6.3, where the j′ index has been dropped for the sake of clarity,
and calligraphic font is used to denote sets, while regular font for their cardinality.
After clustering the dataset, the CLSVM classifier builds an SVM classifier using the
clustered dataset. The pseudocode of this strategy can be found in Figure 6.4.

Given a vector ν ∈ RK associated with a categorical feature with K categories,

Step 1. Sort the values νk, k = 1, . . . ,K, increasingly, such that:

ν(1) ≤ ν(2) ≤ . . . ≤ ν(K)

Step 2. Set Ii0 = ∅
Set Ii` = {1, . . . , i`}
Set IiL = {1, . . . ,K}

Set F (Ii` ) =
∑
i∈Ii`

ν(i) −
1
Ii`

∑
h∈Ii`

ν(h)

2

Solve

min
i1,...,iL−1

L∑
`=1

F (Ii` \Ii`−1 )

Step 3. Return the assignment vector z∗ defined by the L clusters, determined by
Ii1 , . . . ,IiL−1 .

Figure 6.3: Pseudocode for the MSSC problem.

For each C,

Step 1. Solve the SVMO and obtain the (partial) optimal solution ω′.

Step 2. For each j′, cluster the Kj′ categories of feature j′ into Lj′ clusters
solving the MSSC problem for ν=ω′j′·, obtaining the components from the
assignment vector z∗j′...

Step 3. Solve the SVM formulation with clustered data defined by z∗, and return this
as the CLSVM classifier.

Choose the best C using the CLSVM classifier.

Figure 6.4: Pseudocode for the SVMC strategy.

The second strategy, the CL randomized rounding (CLRR) strategy, performs a ran-
domized rounding, [132], to the fractional assignment vector returned by the continuous
relaxation of the CL formulation. This is a QCQP formulation, where constraint (6.11)

is relaxed to z ∈ [0, 1]
∑J′

j′=1 Lj′ Kj′ . The pseudocode of this reduction strategy can be
found in Figure 6.5, where rand(p) is a subroutine of random numbers generation,
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returning the value 1 with probability p and 0 otherwise.

For each C,

Step 1. (i) Solve the continuous relaxation of CL and obtain the (partial) optimal
solution z.

(ii) Set z∗j′,k,` = 0 ∀k = 1, . . . ,Kj′ , ∀` = 1, . . . , Lj′ , ∀j′ = 1, . . . , J ′

For j′ = 1, . . . , J ′

For k = 1, . . . ,Kj′

Set ` = 1
while (` < Lj′)

Set z∗j′,k,` = rand(zj′,k,`)
If z∗j′,k,` = 0, set ` = `+ 1
Else ` = Lj′

end

Set z∗j′,k,Lj′
= 1−

Lj′−1∑
`=1

z∗j′,k,`

end
end

(iii) Return the assignment vector z∗.

Step 2. Solve the SVM formulation with clustered data defined by z∗, and return this
as the CLSVM classifier.

Choose the best C using the CLSVM classifier

Figure 6.5: Pseudocode for the CLRR strategy.

The third strategy, the CL-bigM randomized rounding (CLMRR) strategy is based
on the randomized rounding of the partial solution of the continuous relaxation of the
CL-bigM formulation. It is similar to the CLRR strategy, but with the difference that
it solves the continuous relaxation of the CL-bigM formulation, where constraint (6.24)

is relaxed to z ∈ [0, 1]
∑J′

j′=1 Lj′ Kj′ . The pseudocode of this strategy can be found in
Figure 6.6.

The last strategy, the CLM strategy, is based on the CL-bigM formulation. Instead
of solving the continuous relaxation, this strategy solves the CL-bigM formulation or
returns the incumbent solution after a given time limit. In this case the incumbent
solution gives the clustering and the classifier at once. The pseudocode of this strategy
can be found in Figure 6.7. This is the most computationally expensive strategy, as
it involves solving an MIQP formulation with big M constraints. However, the cost of
the strategy is balanced with the computational results, as shown in Section 6.4.

Other strategies are possible and natural, and some were tested. For instance, we
tried two strategies based on solving the CL formulation. These strategies solved to
optimality the CL formulation or returned the incumbent solution after a given time
limit. We tested the strategy for which the incumbent solution gave the clustering and
the classifier at once. We also tested another one for which the assignment vector z∗ of
the incumbent solution was used to cluster the dataset and an SVM was solved to find
the classifier. These strategies are however computationally expensive as they involve
solving MINLP formulations. The quality of these strategies is not reported in Section
6.4 since they were systematically outperformed by the strategies above.
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For each C,

Step 1. (i) Solve the continuous relaxation of CL-bigM and obtain the (partial)
optimal solution z.

(ii) Set z∗j′,k,` = 0 ∀k = 1, . . . ,Kj′ , ∀` = 1, . . . , Lj′ ,∀j′ = 1, . . . , J ′

For j′ = 1, . . . , J ′

For k = 1, . . . ,Kj′

Set ` = 1
while (` < Lj′)

Set z∗j′,k,` = rand(zj′,k,`)
If z∗j′,k,` = 0, set ` = `+ 1
Else ` = Lj′

end

Set z∗j′,k,Lj′
= 1−

Lj′−1∑
`=1

z∗j′,k,`

end
end

(iii) Return the assignment vector z∗.

Step 2. Solve the SVM formulation with clustered data defined by z∗, and return this
as the CLSVM classifier..

Choose the best C using the CLSVM classifier

Figure 6.6: Pseudocode for the CLMRR strategy.

For each C,

Step 1. Solve the CL-bigM and obtain the (partial) solution (ω, ω̄, b, z), the
assignment vector and the classifier at once, and return this as the CLSVM
classifier.

Choose the best C using the CLSVM classifier

Figure 6.7: Pseudocode for the CLM strategy.

6.4 Computational results

In this section we illustrate the quality of the CLSVM methodology compared to the
benchmark procedure, the SVMO, in terms of accuracy and complexity of the classifier
associated with the categorical features. For the sake of clarity, we will refer to the
complexity of the classifier associated with the categorical features as complexity. The
complexity of the SVMO classifier is given in equation (4.8) and the complexity of the
CLSVM classifier is given by card({ω̄j′,` 6=0})∑J′

j′=1 Kj′
· 100%. We will show that the CLSVM cla-

ssifier is competitive against the SVMO classifier in terms of accuracy and outperforms
the SVMO classifier in terms of complexity.

Our experiments have been conducted on a PC with an Intel Core i7 processor with
16 Gb of RAM for all strategies except for the CLRR strategy, where the Neos Server
is used, [58]. We use the optimization engine IBM-Cplex v12.5, [99], for solving the
SVM formulation, the CL-bigM formulation and its continuous relaxation, and Ipopt,
[155, 58], for the continuous relaxation of CL. We have fixed M=1000 on the CL-bigM
formulation. Although most optimization problems are solved to optimality in a few
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seconds, for the CL-bigM formulation the time limit is set to 300 seconds.
Following the usual approach, the parameter C is tuned by inspecting a grid of the

form C
n ∈ {10−6, . . . , 106}, see [42]. The quality in terms of accuracy and complexity

of the CLSVM methodology is illustrated using ten real-life datasets from the UCI
repository, [23]. A description of these datasets can be found in Tables 4.1 and 6.1.
The size of the training set (n) is set as the closest 102 multiple to |Ω|/3 setting
5000 as the maximum in order to have running times below reasonable values, see
the sixth column of Table 4.1. The second and third columns of Table 6.1 report the
number of categorical and continuous features, respectively. Finally, the total number
of categories and the number of categories per feature are reported. Computational
results are presented in Section 6.4.1.

6.4.1 Results

In this section we compare the quality of the four strategies proposed to build the
CLSVM classifier against that of the SVMO classifier in terms of accuracy and com-
plexity of the classifier. When, for a given criterion, the difference in quality of two
classifiers is below 1 percentage point (p.p.), we will say that both classifiers are com-
parable under such criterion.

Tables 6.2-6.5 report the mean validation accuracy as well as the standard deviation
and the median across the ten reshuffles for the accuracy and complexity, where for each
dataset and each criterion, we underline the best results accross all the strategies and
the benchmark procedure. Results for the benchmark procedure, SVMO, are reported
in Table 6.2, for the SVMC strategy in Table 6.3, for the CLRR strategy in Table 6.4,
and for the CLMRR and the CLM strategies in Table 6.5. The following conclusions can
be drawn from our computational results for the mean values, but similar conclusions
are derived if median values are analyzed.

We start with the accuracy. For seven datasets (census income, mushrooms, coil
2000, abalone, molecular, solar-c, german), at least one of the strategies is compa-
rable to the SVMO. For two datasets the SVMO is outperformed, by two strategies
in adult and by one strategy in australian. In adult, the SVMC strategy and the
CLMRR strategy outperform the SVMO by 3.65 p.p. and 4.18 p.p. respectively. In
australian, the CLM strategy outperforms the SVMO in 1.26 p.p. For one dataset,
careval, the SVMO achieves the best accuracy, where the difference with the CLSVM
classifier is between 2.57 p.p., with the CLM strategy, and 13.94 p.p., with the SVMC

strategy.
We now focus on the second criterion, namely, complexity. All strategies show a

dramatic reduction on complexity of the classifier with respect to the categorical fea-
tures. The minimum improvement over the SVMO is for the coil 2000 dataset, of 8.12
p.p. For the remaining datasets, all strategies proposed for the CLSVM methodology
outperform the SVMO at least by 30 p.p. For the first six datasets, (census income,
adult, mushrooms, coil 2000, abalone, molecular), the CLM strategy achieves the
lowest complexity. For the last four datasets (careval, solar-c, german, australian),
the CLMRR strategy achieves the lowest complexity, reaching an improvement of 85.25
p.p. over the SVMO.

In summary, the four strategies proposed for the CLSVM methodology are com-
petitive against the SVMO in terms of accuracy, and clearly dominate in terms of
complexity of the classifier. The SVMC and CLMRR strategies, have a computational
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cost comparable to that of the benchmark procedure, SVMO, as they only involve
solving QP formulations. Then, for a small increase in the computational cost, one
can obtain a more stable strategy, the CLRR, solving QCQP formulations. Although
the CLM strategy is the most computationally expensive strategy, as it involves solv-
ing difficult MIQP formulations with big M constraints, its cost is balanced with the
computational results, as it is the strategy performing best accuracy results in three
datasets (careval, german, australian) and best complexity results in six datasets
(census income, adult, mushrooms, coil 2000, abalone, molecular).

As shown in Table 6.5, the quality of the CLM strategy suggests it could be improved
for datasets with a large number of categories, such as molecular. Recall that to obtain
running times below reasonable values, the time limit for this strategy is set to 300
seconds. Increasing the time limit to 3600 seconds for molecular, changes the mean
accuracy from 51.92% to 93.70% and the median from 51.92% to 93.74%, which makes
the CLM comparable to the SVMO in terms of accuracy for molecular. Therefore,
increasing the running time may be an alternative for the CLM strategy when dealing
with a large number of features.

6.5 Conclusions

In this chapter the CLSVMmethodology is proposed, based on the SVM and performing
a clustering for categorical features, letting categories cluster around their peers and
building an SVM classifier using the clustered dataset. Four strategies are presented
to build the CLSVM classifier by means of QCQP, MIQP and QP formulations. When
using two clusters, the CLSVM classifier has a comparable accuracy to the SVMO

classifier, in seven of the ten benchmark datasets. In the remaining three datasets, the
CLSVM classifier outperforms the SVMO classifier in two datasets, and is outperformed
in the other one. In terms of complexity of the classifier with respect to the categorical
features, the CLSVM methodology shows a dramatic improvement over the SVMO.

There are several interesting directions to extend the CLSVM methodology. First,
knowledge domain [38, 114] can be incorporated into the methodology to build a set
of comprehensible rules to facilitate interpretability. This can be done by adding new
constraints to the formulations. For each categorical feature, the CLSVM creates a
given number of clusters, hence, constraints implying that two categories must belong
to the same cluster, or fixing the maximum (or minimum) number of categories that
compose a cluster, can be easily added. Other natural constraints could contribute to
interpretability. For instance, if categories are countries, one may want to impose some
countries to be in the same cluster based on their geographic location.

Second, a sequential methodology could be designed to handle datasets containing
a large number of categorical features. This can be done by running a CLSVM model
for each feature, fixing a clustering for the feature, and then iteratively repeating the
process for the remaining features. Different ways of choosing the order of features for
the iterative process require extra analysis; for instance, one can choose the feature for
which the CLSVM classifier has the best accuracy.

Third, the CLSVM methodology can be extended to handle continuous features as
well. As the CLSVM aims at reducing the complexity of the classifier in the presence of
categorical features, we have focused on benchmark datasets composed by categorical
features and occasionally continuous features. However, for any dataset, a combined
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methodology could be performed in order to transform continuous features into cate-
gorical ones, by applying the techniques from [36, 138], either binarizing or discretizing
continuous features and then applying the CLSVM methodology. This extension de-
serves further study and testing.
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Chapter 7

Heuristic Approaches for
Support Vector Machines with
the Ramp Loss

SVM with the ramp loss is an interesting classification model due to its outperformance
in terms of robustness compared to the SVM in spite of its difficulty, as it has been
proved to be an NP-hard problem. This chapter [40] contributes to the literature on
SVM because it illustrates the ability to handle datasets of much larger size than those
previously addressed in the literature by proposing heuristics that exploit the nature
of the SVM with the ramp loss.

7.1 Introduction

As stated in Chapter 4, the SVM [56, 152, 153], has proved to be one of the state-of-
the-art methods for Supervised Classification. The SVM, in its typical form (4.1)-(4.5),
finds the hyperplane ω>x + b = 0 by minimizing the sum of the squared L2 norm of
the score vector ω and the so-called hinge loss function [42]. This convex loss function
yields smooth convex optimization problems, in fact, convex quadratic, which have
been addressed in the literature by a collection of competitive algorithms. However,
more challenging optimization problems arise when solving the SVM with nonconvex
loss functions, see e.g., [52, 125, 144, 161].

In this chapter, we are interested in the SVM with the so-called ramp loss function
[52, 144]. From the computational perspective, a first attempt to study the SVM with
the ramp loss is presented in [109], where the problem is formulated as a Mixed Integer
Quadratic Programming (MIQP) problem, and datasets with up to n = 100 objects
are solved with a commercial software package. In this model, objects are penalized
in a different way depending on if they fall inside or outside the margin, i.e., if they
fall between ω>x+ b = −1 and ω>x+ b = 1, see Figure 4.2. Misclassified objects that
fall outside the margin have a fixed loss of 2, while objects that fall inside the margin
have a continuous loss between 0 and 2. The state-of-the-art algorithm is given in [33],
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where the ramp loss model, (RLM), is formulated as the following MIQP problem

min
ω,b,ξ,z

1
2

d∑
j=1

ω2
j + C

n

(
n∑
i=1

ξi + 2
n∑
i=1

zi

)

s.t. (RLM)

yi(ω>xi + b) ≥ 1− ξi −Mzi ∀i = 1, . . . , n
0 ≤ ξi ≤ 2 ∀i = 1, . . . , n
z ∈ {0, 1}n (7.1)

ω ∈ Rd

b ∈ R,

where M > 0 is a big enough constant, ξ = (ξi) denotes the vector of deviation
variables and C is the tradeoff parameter that calls for tuning, see Section 4.4. For a
given object i, the binary variable zi is equal to 1 if object i misclassified outside the
margin and 0 otherwise. See [33] for further details on this formulation, called there
the SVMIP1(ramp), and [70, 156] for related models. This MIQP formulation has a
quadratic term of dimension d and n binary variables, and is therefore challenging from
the computational point of view. In [33], datasets with up to 500 objects are solved
to optimality. In this chapter, we propose two heuristics for the RLM that can handle
datasets of larger size, and compare them to the state-of-the-art algorithm. The first
one is based on the continuous relaxation of the RLM, therefore, it is a cheap heuristic
(its computation time is comparable to training an SVM). The second heuristic is based
on training an SVM on a reduced dataset identified by an integer linear problem. At
the expense of higher running times, and as our computational results will illustrate,
this procedure behaves much better in terms of classification accuracy than the other
two.

The remainder of the chapter is organized as follows. In Section 7.2, the two heuris-
tics and the state-of-the-art algorithm for the RLM are described in more detail. In
Section 7.3, we report our computational results using both synthetic and real-life
datasets. We end this chapter in Section 7.4 with some conclusions and topics for
future research.

7.2 Heuristic approaches

In this section, we describe three heuristics, heuristics 1, 2, 3, whose descriptions can
be found in Figures 7.2–7.4, respectively. Heuristics 1 and 2 are our proposals while
heuristic 3 is the state-of-the-art algorithm with a time limit [33]. Before describing the
heuristics, we present in Figure 7.1 a procedure that exploits the nature of the RLM
formulation to build feasible solutions starting from a partial solution (ω, b). In short,
the RLM can be written as a two-stage problem, in which we first choose the classifier,
defined by ω and b, and then fill in the variables ξ and z.

Therefore, in the rest of this section, when describing the three heuristics, we will
concentrate on explaining how to obtain the partial solution (ω, b) defining the classifier.
The corresponding ξ and z will be derived using the fill-in procedure in Figure 7.1.
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Step 1. For each i, fill in variables ξi and zi as follows:

Case I. If yi(ω>xi + b) > 1, then set ξi = 0, zi = 0.

Case II. If −1 ≤ yi(ω>xi + b) ≤ 1, then set
ξi = 1− yi(ω>xi + b), zi = 0.

Case III. If yi(ω>xi + b) < −1, then set ξi = 0, zi = 1.

Step 2. (ω, b, ξ, z) is a feasible solution for the RLM.

Figure 7.1: Fill-in procedure for the RLM.

We now describe heuristic 1, see Figure 7.2. In heuristic 1, we first construct the
continuous relaxation of the RLM, where the integrality constraints (7.1) are replaced
by z ∈ [0, 1]n, and return as (partial) solution (ω, b) to the RLM the optimal classifier of
this relaxation. This is a cheap and naïve heuristic, which consists of solving a convex
quadratic problem with linear constraints, and our computational results show that it
performs well in the datasets tested.

Step 1. Solve the continuous relaxation of the RLM, yielding a
(partial) solution (ω, b).

Step 2. Fill in (ω, b) as described in Figure 7.1.

Figure 7.2: Description of heuristic 1.

Heuristic 2 is based on the optimization of an integer linear problem, easier to
solve than the RLM since neither the quadratic term 1

2
∑d
j=1 ω

2
j nor the variables ξi

are present. Let us consider the Linear Separability Problem (LSP), which aims to
find the minimum number of objects to be taken off to make the sets {xi, yi = 1} and
{xi, yi = −1} linearly separable. For each object i, let us define the binary variable
αi taking the value 1 if object i is removed, and 0 otherwise. Now, the LSP can be
formulated as:

min
ω,b,α

n∑
i=1

αi

s.t. (LSP)

yi(ω>xi + b) ≥ 1−Mαi ∀i = 1, . . . , n
α ∈ {0, 1}n

ω ∈ Rd

b ∈ R,

where M is a big enough constant.
Heuristic 2 works as shown in Figure 7.3. First, a solution to the LSP is used to
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define a reduced set, in which only objects with αi = 0 are considered. Second, an SVM
is trained on the reduced set, yielding a (partial) solution (ω, b) to the RLM. Third,
(ω, b) is used as initial solution in a branch and bound (B&B) procedure for the RLM,
which is truncated by a time limit.

Run for tlim2 seconds:

Step 1. Solve the LSP and let (ω′, b′, α′) be the solution vector obtained.

Step 2. The solution to the LSP is used to define a reduced set, in
which only objects with α′i = 0 are considered.

Step 3. An SVM is trained on the reduced set, yielding a (partial)
solution (ω, b) to the RLM.

Step 4. Fill in (ω, b) as described in Figure 7.1.

Step 5. (ω, b, ξ, z) is used as initial solution in a B&B procedure.

Figure 7.3: Description of heuristic 2.

To end, we describe heuristic 3, see Figure 7.4. This heuristic is based on solving
the RLM by a B&B procedure, enhanced with an initial solution, and possibly at
each node with a heuristic procedure. In [33], two initial solutions are proposed, the
so-called zero solution (iniω=0) and the so-called zero error solution (iniz=0). Please
note that there is a third heuristic solution in [33]. Since it is computationally very
expensive, and therefore, impractical for large datasets, it is not considered in our
tests. The zero solution is derived by setting ω = 0, and b = 1 if card({i, yi = 1}) >
card({i, yi = −1}) and b = −1 otherwise. The zero error solution involves solving a
quadratic problem consisting of the RLM with zi = 0 ∀i = 1, . . . , n. In [33], a heuristic
procedure is applied at each node aiming at improving the best upper bound. This
node improvement consists of constructing a feasible solution to the RLM by applying
the fill-in procedure in Figure 7.1 to the classifier returned by the continuous relaxation.
If the objective value of this new solution improves the best upper bound, this bound
will be updated. Note that our heuristic 1 is a cheap heuristic where such a fill-in
procedure is only applied at the root node. As for heuristic 2, heuristic 3 is run until
a time limit is reached. Note that the three heuristics are matheuristics, [111], since
their procedures require solving nontrivial optimization problems.

7.3 Computational results

This section is aimed to illustrate the quality of our heuristics, heuristics 1 and 2, with
respect to heuristic 3.

Our experiments have been conducted on a PC with an Intel Core i7 processor,
16 Gb of RAM. We use the optimization engine IBM-Cplex v12.3, [97], for solving all
optimization problems.

To illustrate the capacity of our heuristics to handle datasets of larger sizes than
heuristic 3, we use both synthetic and real-life datasets. In [33], heuristic 3 was tested
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Run for tlim3 seconds:

Step 1. Let NI ∈ {0, 1}.

Step 2. Let (ω, b) be an initial (partial) solution.

Step 3. Fill in (ω, b) as described in Figure 7.1.

Step 4. (ω, b, z, ξ) is used as initial solution in a B&B procedure,
where if NI=1, heuristic 1 is applied in each node with the
aim of improving the current best feasible solution.

Figure 7.4: Description of heuristic 3.

on two synthetic datasets obtained using the TypeA and TypeB generators, and 11 real-
life datasets from the UCI repository [23]. We use both the TypeA and TypeB generators
(for d equal to 2, 5 and 10), as well as the dataset adult, the only real-life one tested
in [33] with a size larger than 5000 objects. In addition, we also report results on three
other large UCI datasets, see [23, 45]. A description of these datasets can be found in
Table 4.1, for which large sizes are used for the training set.

7.3.1 Parameter tuning

As customary in Supervised Learning, the RLM contains parameter C in its formulation
which needs to be tuned. Following the usual approach, 4.3, C is tuned by inspecting
a grid of 26 values of the form C = 2k, such that 2−13 ≤ C

n ≤ 213.
In order to make a fair comparison, overall time limits for both heuristics 2 and

3 should be the same. Heuristic 2 involves solving one LSP plus 26 RLMs, which
are aborted when a time limit is exceeded. In our experiments we choose tlimLSP =
300 seconds for the LSP, and for each RLM tlim2 is chosen as the closest integer
to

d+ n
100

5 . Heuristic 3 involves solving 26 RLMs, which are aborted after tlim3 =
tlim2 + tlimLSP

26 .

7.3.2 Accuracy results

As in previous chapters, to obtain sharp estimates for the accuracy of the different
heuristics, ten instances are run for each dataset. For each dataset and for each heuris-
tic, Tables 7.1 and 7.2 report the mean validation accuracy across the ten instances,
as well as the standard deviation and the median. When the difference in accuracy of
two heuristics is below 1 percentage point (p.p.), we will say that both heuristics are
comparable. For each dataset, we underline the best results across the heuristics.

We have a whole array of variants of heuristic 3 depending on the initial solution
chosen and whether the node improvement procedure is applied. We can see that
the simplest implementation of heuristic 3, where we start with the zero solution and
no node improvement is applied, dominates the rest of the variants in terms of mean
and median accuracy, except for TypeA (d = 2) and gamma. In any case, heuristic 2
outperforms any variant of heuristic 3. Therefore, and unless stated, when referring to
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heuristic 3 we will use the results mentioned above.
The following conclusions can be drawn from our computational results. In TypeA,

heuristic 2 outperforms heuristic 3, while heuristic 3 outperforms heuristic 1. The
increase in mean accuracy shown by heuristic 2 compared to heuristic 3 is more pro-
nounced for larger values of d, being equal to 19.68 p.p. for d = 10. A similar behaviour
is observed for the median accuracy. In TypeB, heuristics 1 and 2 outperform heuristic
3. Heuristic 2 outperforms heuristic 1 in terms of median accuracy, where in terms of
mean accuracy the same holds for d = 2, 10, while for d = 5 the mean accuracies are
comparable. A closer look reveals that for larger d, any variant of heuristic 3 has a
median accuracy of 50%, the one given by the zero solution. Heuristics 1 and 2 have
a similar accuracy in the real-life datasets, and they clearly outperform heuristic 3 in
three of the datasets. For the gamma dataset, the best mean accuracy of heuristic 3 is
achieved by giving the best among the zero solution and the zero error solution at the
root node, as well as applying the node improvement procedure. For the gamma dataset,
the increase in mean accuracy (in p.p.) from heuristic 2 to heuristic 3 is then equal to
4.62. For the datasets adult and codrna, the increase in mean accuracy is equal to 5.41
and 12.67, respectively. Similar dominance is observed when using the median accuracy.
For the last real-life dataset, ijcnn1, the behaviour in terms of accuracy of the three
heuristics is similar. Taking a closer look at this dataset, one can observe that classes
are highly unbalanced, see Table 4.1, and therefore the accuracy of the three is very
similar to that of the zero solution. A finer analysis, taking into account not only the
overall accuracy, but also the sensitivity and specificity, reveals significant differences
between the heuristics. Indeed, as shown in Table 7.3, while heuristic 3 misclassifies all
records in Class +1 (the class in minority), our procedures are slightly better for such
class. If, instead of the overall average accuracy, we measure the (weighted) geometric
mean of the accuracy in both classes, we see that our procedures clearly outperform
heuristic 3. This shows that our heuristics can address, for a given time limit, larger
datasets than heuristic 3.

7.4 Conclusions
In this chapter we show that a quick heuristic, based on solving the continuous relax-
ation of the RLM, is competitive against the state-of-the-art algorithm for the SVM
with the ramp loss, the RLM. Much better results are obtained with our so-called
heuristic 2, which involves solving an integer linear problem and a convex quadratic
problem to obtain a good starting solution for the branch and bound procedure.

In order to solve problems of larger size, valid cuts strengthening the formulation
would be extremely helpful. In this sense, [33] proposes the so-called geometric cuts, but
also mentions that these cuts are only of interest in the trivial case of two-dimensional
data. As done in [33], these cuts have not been employed in experiments. New and
helpful cuts deserve further study.
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Table 7.3: Validation sample accuracy in % for ijcnn1.
Heuristic Sensitivity Specificity

mean std med mean std med
1 18.81 2.29 18.22 99.25 0.17 99.24
2 29.66 5.11 29.80 98.71 0.55 98.92

iniω=0 0.00 0.00 0.00 100.00 0.00 100.00
3,NI = 0 iniz=0 0.00 0.00 0.00 100.00 0.00 100.00

iniω=0 & iniz=0 0.00 0.00 0.00 100.00 0.00 100.00
iniω=0 0.00 0.00 0.00 100.00 0.00 100.00

3,NI = 1 iniz=0 0.00 0.00 0.00 100.00 0.00 100.00
iniω=0 & iniz=0 0.00 0.00 0.00 100.00 0.00 100.00





Chapter 8

Enhancing the Ramp Loss Model
Formulation

This chapter, based on [16], contributes to the literature on SVM and Mathemati-
cal Programming because it shows that the ramp loss model formulation addressed in
Chapter 7 can be solved much more efficiently by a Mixed Integer Nonlinear Program-
ming reformulation with nonconvex constraints. We challenge the common practice of
pursuing a linear reformulation for logical implications. This highlights that algorith-
mic features that are common in Global Optimization should be reconsidered for Mixed
Integer Linear Programming as well.

8.1 Introduction

Let us consider the linear inequality

αTx ≤ x0, (8.1)

in which both x ∈ Rd and x0 ∈ R are variables, while α is a given d-dimensional vector.
It is a very well-known modeling trick in Mixed Integer Linear Programming (MILP)
to use a binary variable to control whether or not linear constraint (8.1) is active or
not depending on other parts of the model or at the price of paying a penalty in the
objective function. Then, the constraint is reformulated as the following big M or
indicator constraint

αTx ≤ x0 +Mt, (8.2)

where t ∈ {0, 1} and M is a big enough value that guarantees that the constraint is
inactive if t = 1.

Although they provide a clean and flexible modeling tool to deal with nonlinearities
and logical implications by staying within the MILP framework, it is well-known that
indicator constraints present the drawback of having a weak continuous relaxation. In-
deed, depending on the value M and on the value attained by expression “αTx− x0”,
very small (fractional) values of t might be sufficient to satisfy the constraint. This
leads to quality issues with a continuous relaxation value typically very far away from
the mixed integer optimum, but, sometimes even more importantly, might lead to nu-
merical issues, with the MILP solvers being unable to assert if a t value below the

97
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integer tolerance is in fact a true solution.

An alternative for logical implications that has been used in the Mixed Integer
Nonlinear Programming (MINLP) literature for decades is provided by complementary
reformulation

(αTx− x0)t̄ ≤ 0, (8.3)

where t̄ = 1−t. However, (8.3) is a nonconvex constraint. Such a source of nonconvexity
does not significantly complicate the solution of already nonconvex MINLP models
arising, for example, in Chemical Engineering applications. In addition, numerical
issues on the choice of the value ofM do not appear anymore, at least in the formulation.
On the contrary, in the cases where those logical constraints were the only sources of
nonconvexity, the common approach has always been that of using constraints (8.2)
and MILP techniques.

In this chapter we challenge this common practice of pursuing a linear reformulation
for logical implications. We do that by exposing that the Mixed Integer Quadratic
Programming (MIQP) formulation of the ramp loss model (RLM) addressed in Chapter
7 can be solved much faster with the Global Optimization (GO) solver Couenne [55]
using reformulation (8.3) than virtually any state-of-the-art commercial MIQP solver
like IBM-Cplex [98], Gurobi [80] and Xpress [162]. This is quite counter-intuitive
because, in general, convex MIQP problems admit more efficient solution techniques
both in theory and in practice, especially by benefiting of virtually all machinery of
MILP solvers.

By computationally analyzing one by one the major components of the GO solver
and discussing their influence on the solving approach, we are able to shed some lights on
the reasons of this unexpected success and to argue on how MIQP and MILP solvers
could benefit from a tighter integration of the same components. One approach for
performing such an integration is discussed at the end of the chapter.

The remainder of the chapter is organized as follows. In Section 8.2 we address the
RLM, discussed in Chapter 7, the application we use as an example. In Section 8.3
we show the initial set of surprising computational results. In Section 8.4 we discuss
why those results are surprising while in Section 8.5 we carefully analyze the reasons
of the success of Couenne versus IBM-Cplex. In Section 8.6 we present an approach to
enhance IBM-Cplex trying to mimic Couenne’s behaviour. Finally, some conclusions
and future research are drawn in Section 8.7.

8.2 SVM with the ramp loss: An MIQP formulation

In this chapter, we are interested in the SVM with the ramp loss, addressed in Chapter
7. Let us remind the MIQP formulation of the RLM:

min
ω,b,ξ,z

1
2

d∑
j=1

ω2
j + C

n

(
n∑
i=1

ξi + 2
n∑
i=1

zi

)
(8.4)
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s.t. (RLM)

yi(ω>xi + b) ≥ 1− ξi −Mzi ∀i = 1, . . . , n (8.5)
0 ≤ ξi ≤ 2 ∀i = 1, . . . , n (8.6)
z ∈ {0, 1}n (8.7)

ω ∈ Rd (8.8)
b ∈ R, (8.9)

with M > 0 a big enough constant.
The appeal of model (8.4)–(8.9) relies in the fact that it can (potentially) be solved

by a black-box MIQP solver, e.g., IBM-Cplex [98]. More precisely, objective function
(8.4) is convex while constraints are linear, thus virtually all the very sophisticated
and effective machinery for MILP problems can be applied. However, as stated in
Chapter 7, the state-of-the-art algorithm given in [33] is able to solve to optimality
only a quite limited number of instances although some problem-specific cutting planes
and reductions are used to help the MILP solver, namely, IBM-Cplex. Essentially, this
difficulty is due to the big M constraints (8.5) that make the continuous relaxation of
model (8.4)–(8.9) very weak. Branching is effective for small problems but the almost-
complete enumeration is very hard to do for instances of serious size. Cutting planes
are not likely to solve the problem, although they would be specifically designed to face
the big M issue, or, more precisely, the disjunctive nature of constraints (8.5).

The Nonconvex Reformulation. Motivated by the discussed difficulty of dealing
with constraints (8.5), we propose the following alternative nonlinear, nonconvex, for-
mulation of the RLM:

min
ω,b,ξ,z̄

1
2

d∑
j=1

ω2
j + C

n

(
n∑
i=1

ξi + 2
n∑
i=1

(1− z̄i)
)

(8.10)

s.t.

(yi(ω>xi + b)− 1 + ξi) · z̄i ≥ 0 ∀i = 1, . . . , n (8.11)
0 ≤ ξi ≤ 2 ∀i = 1, . . . , n (8.12)
z̄ ∈ {0, 1}n (8.13)

ω ∈ Rd (8.14)
b ∈ R. (8.15)

Binary variables z̄’s are used as well in model (8.10)–(8.15) to disable constraints (8.11),
which replace constraints (8.5), but are the complemented version of z variables in the
RLM, i.e., z̄i = 1 − zi. Namely, z̄i = 1 forces the i-th constraint to be active, thus
allowing a maximum violation for ξi = 2, while z̄i = 0 disables the constraint in a
classical “complementary” way.

Of course, constraints (8.11) are responsible of the nonconvexity of the MINLP
model (8.10)–(8.15). However, its continuous version obtained by simply replacing
constraints (8.13) with z̄ ∈ [0, 1]n is solved to (local) optimality by the Nonlinear
Programming (NLP) solver Ipopt [101] providing a mixed binary solution that is very
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accurate, and relatively quick to compute. Indeed, it is easy to prove that:

Theorem 8.1. Any local optimal solution of the continuous version of model (8.10)–
(8.15) is mixed binary.

Proof: The proposition will be proved by contradiction. A local optimal solution
(ω, b, ξ, z̄) is feasible. Thus, constraints (8.11) are satisfied. For any i = 1, . . . , n, either
z̄i = 0 (integer), or if z̄i ∈ (0, 1), there exists an equivalent (still feasible) solution
(ω, b, ξ, z̄1, . . . , z̄i−1, 1, z̄i+1, . . . , z̄n) with z̄i = 1 having smaller objective function. �

Theorem 8.1 above implies that the global optimal solution is mixed binary as well,
thus solving the continuous version of the problem with a GO solver like Couenne [55]
solves the overall problem to optimality. On the other hand, Couenne is an MINLP
solver, hence it can handle integrality constraints on (a subset of) the variables. Thus,
in the results presented in the next section we have retained integrality on variables
z̄’s.

8.3 A raw set of computational results
In Chapter 7, we focused on the robustness of the RLM as a Supervised Classification
model. All experiments in Chapter 7 were performed following the usual approach
(see Figure 4.3) of tuning the tradeoff parameter C by inspecting a grid of values,
i.e., solving (8.4)-(8.9) for different values of C. In this chapter, we aim at enhancing
the ramp loss model formulation, therefore, we will focus on formulation (8.4)–(8.9)
and its reformulation (8.10)–(8.15) for a fixed value of C. Hence in the computational
experiments of this chapter we are not interested in classification accuracy (as we are
always solving the same problem with different formulations), but on the formulations
behaviour during optimization, such as computing time to reach the optimal value or
number of nodes inspected during the branch and bound tree exploration.

We have performed an exploratory test for the nonconvex MINLP formulation pro-
posed in Section 8.2. We consider only the artificial datasets proposed by [33], to be
able to control the dataset and problem size. However, in this chapter we concentrate
on a challenging subset of them (23 instances of size n = 100, d = 2, TypeB, see [33] for
details) showing the surprising behavior that Couenne out-of-the-box performs better
than IBM-Cplex. Table 8.1 reports the straightforward comparison. Computing times
(time) in CPU seconds, number of nodes (nodes), percentage gap of the upper (ub)
and lower (lb) bounds are reported, as well as the optimal value of each instance for
future reference. A time limit of 1 hour is provided to each run and in case such a
limit is reached the entry in the column “time” indicates a “×”. For instances solved
to optimality gaps are reported as “–”.

The results of Table 8.1 are quite straightforward to interpret, with a strict domi-
nance of Couenne with respect to IBM-Cplex. In the unique instance Couenne is unable
to solve to optimality (instance 3) the issue is probably that the upper bound is not
improved enough, thus being unable to propagate (see next section) and strengthen
the formulation. Conversely, IBM-Cplex is always able to find the right upper bound
(namely, the optimal solution value) but the lower bound value remains far from the
optimal value, thus being unable to prove optimality.

Table 8.1 reports detailed numbers only for IBM-Cplex but we solved the con-
vex MIQP model (8.4)–(8.9) with the convex MIQP solvers developed extending the
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Table 8.1: Computational results for Couenne and IBM-Cplex. Instances of TypeB [33],
n = 100, time limit of 1 hour, executed on Palmetto cluster [51].

Couenne IBM-Cplex

% gap % gap
optimal value time (sec.) nodes ub lb time (sec.) nodes ub lb

1 157,995.00 163.61 17,131 – – 3,438.49 16,142,440 – –
2 179,368.00 1,475.68 181,200 – – × 12,841,549 – 23.61
3 220,674.00 × 610,069 14.96 15.38 × 20,070,294 – 37.82
4 5,225.99 160.85 25,946 – – × 20,809,936 – 9.37
5 5,957.08 717.20 131,878 – – × 17,105,372 – 26.17
6 11,409,600.00 1,855.16 221,618 – – × 13,865,833 – 22.67
7 11,409,100.00 482.19 56,710 – – × 14,619,065 – 21.40
8 10,737,700.00 491.26 55,292 – – × 13,347,313 – 14.59
9 5,705,360.00 1,819.42 216,831 – – × 12,257,994 – 22.22
10 5,704,800.00 807.95 89,894 – – × 13,054,400 – 23.13
11 5,369,020.00 536.40 62,291 – – × 14,805,943 – 12.37
12 2,853,240.00 1,618.79 196,711 – – × 12,777,936 – 21.97
13 2,852,680.00 630.18 83,676 – – × 14,075,300 – 23.32
14 2,684,660.00 533.77 65,219 – – × 13,994,099 – 12.48
15 1,427,170.00 2,007.62 211,157 – – × 10,671,225 – 23.08
16 1,426,620.00 641.05 72,617 – – × 12,984,857 – 22.72
17 1,342,480.00 728.93 73,142 – – × 12,564,000 – 14.11
18 714,142.00 1,784.93 193,286 – – × 11,217,844 – 23.45
19 713,583.00 752.50 84,538 – – × 12,854,704 – 22.72
20 671,396.00 412.16 48,847 – – × 14,018,831 – 12.43
21 357,626.00 2,012.62 223,702 – – × 11,727,308 – 23.55
22 357,067.00 768.73 104,773 – – × 15,482,162 – 18.67
23 335,852.00 706.39 70,941 – – × 12,258,164 – 14.88

three major MILP solvers, namely Gurobi and Xpress, and IBM-Cplex itself. The
three solvers behave very similarly in the considered instances, thus indicating that the
weakness shown in Table 8.1 is structurally associated with solving the big M formu-
lation, or, conversely, that solving the nonconvex formulation through a GO solver is
effective.

8.4 Why are these results surprising?

Although, as anticipated in the introduction, convex MIQP solvers should be more
effective than GO ones especially because they can exploit the very sophisticated MILP
machinery, one can still argue that a comparison in performance between two different
solution methods and computer codes is anyway hard to perform. However, digging
into the way in which Couenne solves the problem leads to confirm the initial surprise.

McCormick Linearization. The first observation is that the way in which con-
straints (8.11) are managed by Couenne is through the classical McCormick lineariza-
tion [115]. Namely, for i = 1, . . . , n:

1. ϑi = yi(ω>xi + b)− 1 + ξi, with ϑLi ≤ ϑi ≤ ϑUi

2. ui = ϑiz̄i.
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Then, the product corresponding to each new variable ui is linearized as

ui ≥ 0 (8.16)
ui ≥ ϑLi z̄i (8.17)
ui ≥ ϑi + ϑUi z̄i − ϑUi (8.18)
ui ≤ ϑi + ϑLi z̄i − ϑLi (8.19)
ui ≤ ϑUi z̄i (8.20)

again for i = 1, . . . , n, where (8.16) is precisely (8.11). Essentially, setting z̄i = 0 again
deactivates constraint i by simply enforcing the loose ϑi ∈ [ϑLi , ϑUi ], where ϑLi plays the
role of the big M .

In other words, Couenne initially builds a big M formulation itself, with the differ-
ence that a specific ϑLi value for each i is computed. Although such an internal com-
putation is not responsible of the higher effectiveness of Couenne (typically Couenne is
more conservative than the static values of M used in the literature and especially by
[33]), this is, in practice, not a negligible issue because a safe value of M is not trivial
to be determined a priori.

In the next section we will extensively discuss how McCormick inequalities are
strengthened, as well as the bounds on ϑ variables. This will turn out crucial for
Couenne but, at first this similarity confirms the surprise.

Branching. It is well-known that a major component of GO solvers is the iterative
tightening of the convex (most of the time linear) relaxation of the nonconvex feasible
region by branching on continuous variables (see, e.g., [17]). Another surprising fact
here is that the default version of Couenne does not take advantage of this possibility
and branches on the binary variables z̄’s. Because everything is linear (after McCormick
linearization) and the objective function convex, as soon as all binaries are fixed the
problem is solved.

However, even better performance for Couenne could be obtained by branching on
continuous variables. Namely, instructed to branch preferably on continuous variables,
Couenne always selects ϑ variables, which clearly lead to additional bound tightening
with respect to branch on binaries. Indeed, if in a given relaxation we have ϑi = c,
the two branches ϑi ≤ c OR ϑi ≥ c propagate as follows: (i) if c < 0 then ϑi ≤ c
implies z̄i = 0 OR (ii) if c > 0 then ϑi ≥ c implies z̄i = 1. The results are reported in
Table 8.2 and clearly show the computational advantage of this choice. Thus, again it
is surprising that the default branching strategy of Couenne leads to an improvement
over the sophisticated branching framework of IBM-Cplex.

L1 and L2 norms. A natural question is if the results reported in Table 8.1 are
due to the somehow less sophisticated evolution of IBM-Cplex in its MIQP extension
with respect to the MILP one. In order to answer this question we performed two
sets of experiments in which the quadratic part of the objective function was replaced
by its L1 and L2 norms on ω, respectively. More precisely, in the case of the L1
norm, the absolute value of ω is minimized (and linear constraints to deal with the
absolute value are added). This results in a pure MILP once the big M constraints (8.5)
(solved by IBM-Cplex) or a nonconvex MINLP with linear objective function (solved by
Couenne) if constraints (8.11) are used instead. For the L2 norm, instead, we replace the
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Table 8.2: Computational results for Couenne default and Couenne branching emphasis
on continuous variables. Instances of TypeB [33], n = 100, time limit of 1 hour, executed
on Palmetto cluster [51].

Couenne default Couenne continuous
% gap % gap

optimal value time (sec.) nodes ub lb time (sec.) nodes ub lb
1 157,995.00 163.61 17,131 – – 323.21 62,873 – –
2 179,368.00 1,475.68 181,200 – – 561.95 106,905 – –
3 220,674.00 × 610,069 14.96 15.38 490.29 134,758 – –
4 5,225.99 160.85 25,946 – – 238.26 65,152 – –
5 5,957.08 717.20 131,878 – – 535.70 142,368 – –
6 11,409,600.00 1,855.16 221,618 – – 773.62 149,880 – –
7 11,409,100.00 482.19 56,710 – – 985.26 195,438 – –
8 10,737,700.00 491.26 55,292 – – 535.78 103,806 – –
9 5,705,360.00 1,819.42 216,831 – – 726.18 143,234 – –

10 5,704,800.00 807.95 89,894 – – 1,031.75 172,794 – –
11 5,369,020.00 536.40 62,291 – – 546.78 109,142 – –
12 2,853,240.00 1,618.79 196,711 – – 663.69 127,318 – –
13 2,852,680.00 630.18 83,676 – – 790.88 160,010 – –
14 2,684,660.00 533.77 65,219 – – 510.01 99,802 – –
15 1,427,170.00 2,007.62 211,157 – – 717.69 117,670 – –
16 1,426,620.00 641.05 72,617 – – 932.44 161,835 – –
17 1,342,480.00 728.93 73,142 – – 512.60 83,890 – –
18 714,142.00 1,784.93 193,286 – – 720.15 119,761 – –
19 713,583.00 752.50 84,538 – – 983.23 168,276 – –
20 671,396.00 412.16 48,847 – – 449.68 86,351 – –
21 357,626.00 2,012.62 223,702 – – 661.69 110,343 – –
22 357,067.00 768.73 104,773 – – 706.15 156,464 – –
23 335,852.00 706.39 70,941 – – 493.32 79,719 – –

quadratic term with a variable v and add the second-order-conic constraint v2 ≥ ||ω||22,
thus obtaining a Mixed Integer Second Order Conic Programming (MISOCP) problem.
For Couenne we simply use the square root of the current quadratic part and then
move it as a constraint so as to obtain a Mixed Integer Quadratically Constrained
Programming (MIQCP) problem. Again we use IBM-Cplex for the MISOCP problem
(with constraints (8.5)) and Couenne for the nonconvex counterpart (with constraints
(8.11)).

In both L1 and L2 versions of the RLM, Couenne continues achieving better results
than IBM-Cplex.

8.5 Bound reduction in nonconvex MINLP problems

Bound reduction is a crucial tool in MINLP: it allows one to eliminate portions of the
feasible set while guaranteeing that at least one optimal solution is retained. Although
its origins can be traced back to Artificial Intelligence [60], it finds wide application in
Constraint Programming and in solvers for both Nonlinear Optimization [117] and for
MILP problems [4, 142].

Consider a generic optimization problem min{f(x) : x ∈ X, ` ≤ x ≤ u}, where
X ⊂ Rn and x, `, u ∈ Rn. Also, suppose an upper bound U ∈ R ∪ {+∞} on the
objective function value of the optimal solution is available: if U < +∞, then a feasible
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solution x ∈ X ∩ [`, u] is available such that f(x) = U . Bound reduction attempts to
find tighter lower bounds `′i > `i and upper bounds u′i < ui. In general, a good upper
bound is often the key to a strong bound reduction.

An ideal bound reduction procedure obtains bounds by exploiting the full problem
structure:

`′i = max {xi : x ∈ X, ` ≤ x ≤ u, f(x) ≤ U},
u′i = min {xi : x ∈ X, ` ≤ x ≤ u, f(x) ≤ U}. (8.21)

However, the 2n optimization problems above can be as hard as the original MINLP
itself, therefore this approach is impractical.

A fast bound reduction procedure, known as Feasibility Based Bound Tightening
(FBBT), yields new bounds on a variable xi using bounds on other variables that are
linked to xi through a constraint or the objective function. For instance, the constraint
x1x2 ≤ 4 and the bounds x1 ≥ 1, x2 ≥ 1 yield new upper bounds x1 ≤ 4, x2 ≤ 4. An
example that is closer to our application is the constraint x2

i ≤ u, where u ≥ 0, which
obviously implies xi ∈ [−

√
u,
√
u].

A specialized version of this procedure applies to affine functions, and is commonly
used in MILP solvers [4]. Consider the range constraint:

`0 ≤ α0 +
n∑
j=1

αjxj ≤ u0.

Define J+ = {j = 1, . . . , n : αj > 0} and J− = {j = 1, . . . , n : αj < 0}. Bounds `0, u0
on the expression imply new (possibly tighter) bounds `′j , u′j on xj , j = 1, . . . , n : αj 6= 0:

∀j : αj > 0, `′j = 1
αj

(
`0 −

(
α0 +∑

i∈J+\{j} αiui +∑
i∈J− αi`i

))
,

u′j = 1
αj

(
u0 −

(
α0 +∑

i∈J+\{j} αi`i +∑
i∈J− αiui

))
;

∀j : αj < 0, `′j = 1
αj

(
u0 −

(
α0 +∑

i∈J+ αi`i +∑
i∈J−\{j} αiui

))
,

u′j = 1
αj

(
`0 −

(
α0 +∑

i∈J+ αiui +∑
i∈J−\{j} αi`i

))
.

(8.22)

8.5.1 Applying bound reduction to model (8.10)-(8.15)

Couenne is a branch and bound solver for MINLP problems that uses, among others,
several bound reduction techniques, including FBBT. At the beginning, Couenne runs
a greedy rounding procedure to obtain a feasible solution of the problem, and hence an
upper bound U . Applying FBBT using two rules mentioned above (for affine functions
and for the square operator) yields tight bounds on ωi at the root node of Couenne’s
branch and bound tree. Consider the objective function of our problem:

1
2

d∑
j=1

ω2
j + C

n

(
n∑
i=1

ξi + 2
n∑
i=1

(1− z̄i)
)
,

which is bounded from above by U . Also, note that ∑n
i=1 ξi + 2∑n

i=1(1 − z̄i) is non-
negative. Since ∑d

j=1 ω
2
j ≥ 0 and ∑n

i=1 ξi + 2∑n
i=1(1 − z̄i) ≥ 0, and also ξi and z̄i are

nonnegative, we have

ωi ∈
[
−
√

2U,
√

2U
]

∀i = 1, . . . , d.
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A related observation concerns the constraint of our model. The tighter bounds on
the ωi’s variables, which are initially unbounded per definition of the problem, does
not seem to have an influence on the constraints (8.11), where the variable b remains
unbounded. This family of nonlinear constraints can be simplified to ϑiz̄i ≥ 0, with
ϑi = (yi(ω>xi+b)−1+ξi) ∈ [−∞,+∞] and z̄i ∈ {0, 1}, for all i = 1, . . . , n. Due to the
infinite bounds, this constraint does not admit a linear relaxation, which is useful for
any MINLP solver to obtain a lower bound. When imposing fictitious bounds [−M,M ]
on ϑi, with large enough M , one gets the constraint ϑi ≥ M(z̄i − 1), which yields an
MILP formulation that is, however, impractical for large n.

In these cases, probing techniques can be of help. A probing bound reduction
algorithm works as follows: impose a fictitious upper bound λi ∈ (`i, ui) on a variable
xi, thereby restricting xi to [`i, λi]. If the restricted problem can be proved (through
FBBT, for example) to be infeasible or to have a lower bound that is above a cutoff
U , then no feasible solution with better objective function value can be found in the
restriction. Therefore, the new lower bound xi ≥ λi is valid.

This procedure can be applied to tighten the upper bound as well, by imposing a
fictitious lower bound µi ∈ (`i, ui). Although applying it to all variables is time con-
suming, it is especially useful for unbounded variables. Probing is a common tightening
technique in MILP solvers [142] and MINLP [17, 147].

We will now describe the specific reductions that Couenne applied to the RLM, and
we will computationally show that these reductions are crucial to obtain the results
shown in Section 8.4.

8.5.2 Strengthening McCormick constraints

The coefficients of McCormick constraints are the lower and upper bounds on the
variables involved, hence these constraints can be replaced by stronger ones if tighter
bounds are available on the variables involved. Couenne does it automatically by means
of a cut separator that is called at every branch and bound node, and only adds tighter
McCormick cuts if they are violated by the Linear Programming (LP) problem solution
available at that node.

Note that McCormick cuts are only useful if both variables ϑi and z̄i are not fixed, as
otherwise the constraint ui = ϑiz̄i becomes linear. Couenne does not take into account
the number of cuts separated up to a certain node, but rather leaves it to the branch
and bound manager (Cbc in this case) to get rid of the redundant cuts.

While looking for reasons of Couenne’s performance, we have run an experiment
where McCormick cuts were only added to the initial LP relaxation but excluded from
separation at all nodes. The performance worsened dramatically on all instances, which
indicates that the bound on the involved variables ui, ϑi, z̄i is tightened and should be
exploited.

8.5.3 Bound tightening

Couenne uses several techniques for bound tightening among those mentioned above.
In the context of this problem, tightening is based on the following elements:

• the objective function, if a cutoff U is available;

• the definition ui = ϑiz̄i ≥ 0 and related constraint ui ≥ 0;
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• the definition ϑi = (yi(ω>xi + b)− 1 + ξi).

Propagation possibly generates new bounds on ω, b, ξ, which are obtained through
standard presolve procedures [4]. For the sake of clarity, we add them here and define
αij = xikyi. Also, denote as (yib)L the lower bound on the expression yib (and similar
for (yib)U ). The bound reduction is as follows (clearly the bound is not set if a tighter
one is already available):

∀k : αik > 0 ωLk = 1
αik

(
ϑLi −

∑
j:αij<0 αijω

L
j −

∑
j 6=k:αij>0 αijω

U
j − (yib)U − ξU + 1

)
,

ωUk = 1
αik

(
ϑUi −

∑
j:αij<0 αijω

U
j −

∑
j 6=k:αij>0 αijω

L
j − (yib)L − ξL + 1

)
,

∀k : αik < 0 ωLk = 1
αik

(
ϑUi −

∑
j 6=k:αij<0 αijω

U
j −

∑
j:αij>0 αijω

L
j − (yib)L − ξL + 1

)
,

ωUk = 1
αik

(
ϑLi −

∑
j 6=k:αij<0 αijω

L
j −

∑
j:αij>0 αijω

U
j − (yib)U − ξU + 1

)
,

if yi > 0, bL = 1
yi

(
ϑLi −

∑
j:αij<0 αijω

L
j −

∑
j:αij>0 αijω

U
j − ξU + 1

)
,

bU = 1
yi

(
ϑUi −

∑
j:αij<0 αijω

U
j −

∑
j:αij>0 αijω

L
j − ξL + 1

)
,

if yi < 0, bL = 1
yi

(
ϑUi −

∑
j:αij<0 αijω

U
j −

∑
j:αij>0 αijω

L
j − ξL + 1

)
,

bU = 1
yi

(
ϑLi −

∑
j:αij<0 αijω

L
j −

∑
j:αij>0 αijω

U
j − ξU + 1

)
,

ξL = ϑLi −
∑
j:αij<0 αijω

L
j −

∑
j:αij>0 αijω

U
j − (yib)U + 1,

ξU = ϑUi −
∑
j:αij<0 αijω

U
j −

∑
j:αij>0 αijω

L
j − (yib)L + 1.

When solving an instance of our problem, tightening typically happens after obtaining
a new integer feasible solution or after branching on a variable. We describe here
the tightening steps we observed when solving a few instances of our problem while
enforcing branching on the binary variables z̄i. Note that the sequence of tightening
steps is often repeated to ensure a tight enough bound interval on all variables.

After branching on a binary variable z̄i, if z̄i is fixed to 0 the lower bound on the
objective function is increased, which may allow for extra tightening on the variables
appearing in the objective or, if the lower bound is above the cutoff, for pruning the
node. If z̄i is instead fixed to 1, Couenne uses the new lower bound on ϑi to obtain a
better bound on ω and b. When a new upper bound U is found (Couenne finds a good
one at the beginning), this triggers a tightening of ω. No tightening is done on any z̄i
variable since all of them have the same coefficient in the objective.

Note that in both cases (branching on z̄i and new bound U) the tightening of ω
and b above allows one to strengthen the McCormick inequalities, that are necessary
to build a linear relaxation of the problem. To summarize, both branches and a new
cutoff value allow to tighten the bounds on ϑ, ω, and b, and this in turn allows for
strengthening McCormick inequalities at every node.

Also, disabling bound reduction in Couenne leads to a dramatic worsening of the
performance. It appears therefore that both bound reduction and McCormick cuts are
essential to solve these problems efficiently.

8.6 Enhancing MILP solvers: Iterative domain reduction

Inspired by the outperforming results of Couenne over IBM-Cplex, we have tried to
exploit some of the MINLP tools to deal with the weak relaxations associated with big
M constraints.



8.7. Conclusions 107

Iterative domain reduction can be seen as a preprocessing tool to enhance the
behaviour of IBM-Cplex. An initial bound tightening is performed by solving a sequence
of MILP problems to strengthen ω variables.

Let us denote by P the set of feasible solutions of the RLM, by Z(ωi, ξ, z) the
objective value (8.4) of the solution (ωi, ξ, z), and by U the value of an upper bound
on (8.4). Lower (li) and upper (ui) bounds on ωi are iteratively generated by solving
the following MILP problems:

li = min{ωi : (w, ξ, z) ∈ P,Z(w, ξ, z) ≤ U},∀i = 1, . . . , d, (8.23)
ui = max{ωi : (w, ξ, z) ∈ P,Z(w, ξ, z) ≤ U},∀i = 1, . . . , d. (8.24)

In order to obtain the set of feasible solutions P , the MILP problems, (8.23) and
(8.24), are solved within a node limit. Please note that at each step, solutions from
P must satisfy new bounds on ω. This iterative process allows IBM-Cplex internal
preprocessing tools to propagate the current domain of the variables.

We have tested this approach on the 23 instances from Table 8.1. First, an initial
upper bound U is computed by solving the RLM with a node limit of 100k (plus 10
polish nodes). Then, for each lower and upper bound tightening, the MILP problems
are solved within a node limit of 100k. Finally, the RLM is solved with all new bounds
on ω variables. The results are reported in Table 8.3. All instances are solved to
optimality in an average time of 30 seconds and average number of nodes of 412k.

8.7 Conclusions

In this chapter we have studied the RLM addressed in Chapter 7 from a computational
point of view. We have shown that the nonconvex reformulation of so-called big M
constraints and the consequent use of a general-purpose MINLP solver instead of an
MIQP solver can lead, surprisingly, to faster computing times for the RLM. Through a
careful analysis of Couenne features and components we have been able to isolate those
that make a difference, namely aggressive bound tightening and iterative strengthening
of the McCormick linearization. It is conceivable that similar reformulations tightened
in the same way can be effective for other problems involving logical implications and
disjunctions of this type.

More precisely, we have argued that sophisticated (nonconvex) MINLP tools might
be very effective to face one of the most structural issues of MILP, which is dealing
with the weak continuous relaxations associated with big M constraints. The biggest
challenge at the moment is to export these techniques, or better, their more extensive
use, in solvers like IBM-Cplex. One successful attempt is to involve the use of aggressive
MILP computation as a preprocessing to tighten bounds (Section 8.6).

As an interesting approach to enhance the RLM formulation performance in IBM-
Cplex, one can strengthen constraints (8.5) iteratively on the tree as explained in
Section 8.5.2. Basically, any time one can tighten the upper and lower bounds on ω
and b, then one can recompute the (smaller) value of M in any constraint (8.5) so as to
make it stronger. However, as discussed in the previous sections, the tightening of the
bounds on ω and b is obtained by branching and propagation, thus it is inherently local
to the subtree rooted in the node it happens. Thus, strengthened versions of constraints
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Table 8.3: Computational results for IBM-Cplex enhanced with iterative domain reduc-
tion (i.d.r.). Instances of TypeB [33], n = 100, executed on an Intel Xeon E3-1220V2
at 3.10 GHz.

IBM-Cplex i.d.r.
% gap

optimal value time (sec.) nodes ub lb
1 157,995.00 29.83 370,978 – –
2 179,368.00 40.83 506,624 – –
3 220,674.00 29.91 506,414 – –
4 5,225.99 31.48 334,833 – –
5 5,957.08 31.87 441,770 – –
6 11,409,600.00 35.73 507,300 – –
7 11,409,100.00 25.61 374,911 – –
8 10,737,700.00 25.23 342,383 – –
9 5,705,360.00 42.99 506,984 – –

10 5,704,800.00 27.07 373,788 – –
11 5,369,020.00 25.38 348,722 – –
12 2,853,240.00 32.82 486,515 – –
13 2,852,680.00 24.54 374,144 – –
14 2,684,660.00 25.18 342,767 – –
15 1,427,170.00 35.99 507,397 – –
16 1,426,620.00 29.28 372,975 – –
17 1,342,480.00 25.15 342,465 – –
18 714,142.00 32.96 506,965 – –
19 713,583.00 29.62 372,701 – –
20 671,396.00 28.61 354,818 – –
21 357,626.00 36.08 506,453 – –
22 357,067.00 27.71 375,582 – –
23 335,852.00 24.12 331,407 – –

(8.5) are added as local cuts within the branch and bound tree. This strategy has been
implemented in a work-in-progress version with IBM-Cplex with encouraging results.
This approach deserves further study and testing.
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