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ABSTRACT
Prostate cancer is currently one of the most commonly-diagnosed types of cancer among males. Although
its death rate has dropped in the last decades, it is still a major concern and one of the leading causes of
cancer death. Prostate biopsy is a test that confirms or excludes the presence of cancer in the tissue. Samples
extracted from biopsies are processed and digitized, obtaining gigapixel-resolution images called whole-
slide images, which are analyzed by pathologists. Automated intelligent systems could be useful for helping
pathologists in this analysis, reducing fatigue and making the routine process faster. In this work, a novel
Deep Learning based computer-aided diagnosis system is presented. This system is able to analyze whole-
slide histology images that are first patch-sampled and preprocessed using different filters, including a novel
patch-scoring algorithm that removes worthless areas from the tissue. Then, patches are used as input to a
custom Convolutional Neural Network, which gives a report showing malignant regions on a heatmap. The
impact of applying a stain-normalization process to the patches is also analyzed in order to reduce color
variability between different scanners. After training the network with a 3-fold cross-validation method,
99.98% accuracy, 99.98% F1 score and 0.999 AUC are achieved on a separate test set. The computation
time needed to obtain the heatmap of a whole-slide image is, on average, around 15 s. Our custom network
outperforms other state-of-the-art works in terms of computational complexity for a binary classification
task between normal and malignant prostate whole-slide images at patch level.

INDEX TERMS Convolutional Neural Networks, computer-aided diagnosis, deep learning, medical image
analysis, prostate cancer, whole-slide images

I. INTRODUCTION

PROSTATE cancer is the third most commonly-
diagnosed non-skin cancer and one of the leading causes

of cancer death among males [1], with more than 1.25 million
new cases in 2018 (7.5% of total cancer cases) and around
359k deaths worldwide (3.8% of the number of deaths of that
year). With these high numbers, finding a way to improve
current diagnosis systems is crucial, along with reducing the
diagnosis time.

The prostate is a gland in the male reproductive system in
most mammals that lies below the bladder, and whose main
function is to secrete prostate fluid. Prostate cancer begins
when cells of this gland grow uncontrollably. Then, these

cells could invade surrounding tissues and organs (a process
called infiltration) or spreading to other parts of the body
(metastasis) [2].

Generally, the diagnostic steps for this cancer consists,
firstly, in the realization of a digital rectal examination, and
a determination of PSA (Prostate-Specific Antigen) levels
in blood. In the case that the doctor finds anomalies in
digital rectal examination or PSA results, a prostate biopsy is
performed. This test would confirm or exclude the presence
of cancer in the prostate tissue [3]. Prostate biopsy consists
in obtaining samples of the prostate tissue using a needle
that performs the puncture from a region that is determined
through a transrectal ultrasound process. Then, these tissue
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TABLE 1. Comparative study between state-of-the-art research about prostate cancer diagnosis.

Ref. Dataset Preprocessing step Classifier Classes Performance measure

[10]

4 TMAs1:
- Train: 73 (cancer) + 89 (nor-
mal) cores
- Test: 217 (cancer) + 274
(normal) cores

Otsu’s thresholding, Euclidean
distance and Watershed algo-
rithm to perform nuclear seed
detection. Nuclear seed maps
are used as input to the classi-
fier.

CNN2 (cus-
tom) 2: Cancer and normal AUC3 at core level: 0.974

[11]

235 WSIs4:
- Train: 282k patches
- Val: 94k patches
- Test: 92k patches

Binary tissue mask obtained by
Blue Ratio image to remove
background.

CNN
(GoogLeNet) 2: High and low GGS5

ACC6 at patch level:
78.2% on test
73.52% on validation

[12]

225 WSIs:
- Train: 48 (cancer) + 52 (nor-
mal) WSIs
- Val: 31 (cancer) + 19 (nor-
mal) WSIs
- Test: 45 (cancer) + 30 (nor-
mal) WSIs

Binary tissue mask by ap-
plying thresholding procedure
based on optical density of
RGB channels to remove back-
ground.

CNN
(custom) 2: Cancer and normal AUC at slide level: 0.99

[13]
513 WSIs:
- Train: not specified
- Test: not specified

Normalize procedure to elimi-
nate stain variability.

R-CNN7

(custom)
4: Stroma, benign glands, low
GGS, high GGS

IOU8 *: 79.56%
OPA9 *: 89.40%
SMA10 *: 88.78%
*at tile level (set of patches)

[14]
54 patches:
- Train: not specified
- Test: not specified

Extraction of architectural
features. Extraction of 1st-
order statistical features with
the average, median, standard
deviation and range of the pixel
values. Extraction of 2nd-order
statistical features (Haralick
features) from a co-occurrence
matrix.

SVM11

2, but with different classes:
Epithelium vs stroma
GGS 3 vs GGS 4
GGS 3 vs epithelium
GGS 3 vs stroma
GGS 4 vs epithelium
GGS 4 vs stroma

ACC at patch level:
Epithelium vs stroma: 76.9%
GGS 3 vs GGS 4: 76.9%
GGS 3 vs epithelium: 85.4%
GGS 3 vs stroma: 92.8%
GGS 4 vs epithelium: 88.9%
GGS 4 vs stroma: 89.7%

[15]
22 WSIs
- Train: 17 WSIs
- Test: 5 WSIs

Segmentation procedure with
CNN and superpixel segmen-
tation. Feature extraction with
Bag-of-Word to remove back-
ground.

RFC12 2: GGS 3 and GGS 4

F1-score*: 0.8460
Sensitivity*: 0.70±0.15
Specificity*: 0.89±0.04
ACC*: 0.83±0.03
*at patch level

[16]

24859 WSIs:
- Train: 70%
- Val: 15%
- Test: 15%

Otsu’s thresholding to remove
background.

CNN
(ResNet34)
+
RNN13

2: Tumor and normal AUC at slide level: 0.986

[17]

8914 WSIs:
- Train: 6953 WSIs
- Val: 1631 WSIs
- Test: 330 WSIs

Segmentation algorithm based
on Laplacian filtering.

CNN
(60 Inception
V3)

2: Normal and malignant
3: GGS 3, GGS 4 and GGS 5

AUC for normal and malig-
nant*:
0.997 on validation
0.986 on test
Mean pairwise kappa for
GGS*: 0.62
*at slide level

[18]

1243 WSIs:
- Train: 933 WSIs
- Val: 100 WSIs
- Test: 210 WSIs

Tissue segmentation network
for extracting tissue from back-
ground. Tumor detection sys-
tem to define the tumor and ep-
ithelial tissue detection system
to label the images.

CNN
(U-Net)

6: Benign, GGG14

1-5.

AUC at slide level:
Benign vs malignant: 0.990
Benign and GGG 1 vs GGG≥2:
0.978
Benign and GGG 1-2 vs
GGG≥3: 0.974

1: Tissue Microarray. 2: Convolutional Neural Network. 3: Area Under Curve. 4: Whole Slide Tissue Image. 5: Gleason Grade Score. 6: Accuracy. 7: Region-
based Convolutional Neural Network. 8: Intersection Over Union. 9: Overall Pixel Accuracy. 10: Standard Mean Accuracy. 11: Support Vector Machine. 12:
Random Forest Classifier. 13: Recurrent Neural Network. 14: Gleason Grade Group.

2 VOLUME 4, 2016



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.3008868, IEEE Access

L. Duran-Lopez et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

samples are processed in a laboratory and scanned, resulting
on gigapixel-resolution images called Whole-Slide Images
(WSIs), which are then analyzed and inspected by patholo-
gists.

The aggressiveness of prostate cancer could be determined
through a scoring system called the Gleason Grading System
(GGS) [4], which ranges from 1 to 5 and describes how
much the cancer from a biopsy resembles normal tissue
when analyzed. Pathologists observe the structure of the
cells in WSIs and assign a lower or higher score depending
on whether the appearance is that of healthy or abnormal
tissue, respectively. This grade is later used by the doctor to
assign the most suitable treatment for the patient. However,
many studies have reported interobserver variability among
pathologists in the process of labeling the cancerous sections
of the tissue (more than 30% degree of discrepancy in the
score) [3] [5] [6].

To avoid this problem, and also to reduce pathologists’
fatigue when analyzing WSIs, artificial intelligence could
play an important role in this field. This emerging topic has
proved its potential in image diagnostic tasks such as radi-
ology [7], dermatology [8] and histopathology [9], among
others. To this respect, Computer-Aided Diagnosis (CAD)
systems have gained popularity in recent years. CAD systems
are automatic or semi-automatic algorithms whose main goal
is to assist doctors when making an interpretation of med-
ical images. Recently, many researchers have investigated
the application of this kind of systems to the diagnosis
of prostate cancer based on different methodologies. Some
of these studies use machine learning techniques, such as
neural networks, Support Vector Machines (SVMs), or some
complex algorithms to carry out the classification [10]–[19],
while others are based on algebraic tools, such as Homology
Profile algorithms, which extracts features from a structure
of a topological space [20]. Many of them have performed
a binary classification [10]–[12], [14]–[16], distinguishing
between cancerous and normal tissue or between different
GGS scores, whereas others have performed a multi-class
detection [13], [17]–[19].

For this kind of systems, preprocessing the information
could be a key factor to make it easier for the classifier
to extract the most relevant features from the input images.
Background and noise removal are key processes to consider
when working with histopathological images. Otsu’s thresh-
olding [21] is one of the most well-known and used methods
for extracting background and tissue from WSIs [10], [19].
In [11], the Blue Ratio method, which detects nuclei from
cells in stained images, is used to obtain tissue regions. Other
simpler mechanisms to remove background are based on
thresholding procedures on the optical density of the RGB
channels [12].

Stain normalization has also proved to be useful for
histopathological images, since they reduce color variations
that could have been produced in the staining process of the
tissue sample [22]. This has been used in different cancer
studies based on histopathological images [23]. In [24],

the authors compared the effect of applying different stain
normalization methods in histopathological images for liver,
breast, kidney and colorectal cancer.

Table 1 presents a comparison of some of these stud-
ies, summarizing the characteristics of the dataset, the pre-
processing step applied to the data, the main classifica-
tion method procedure of the CAD system, the number of
classes taken into account and the results obtained with
their corresponding performance measure. These works have
used many different techniques for the preprocessing step,
although apart from [14], which uses SVMs, the rest have
performed either the classification or part of the preprocess-
ing by using Convolutional Neural Networks (CNNs). These
complex architectures have increased in popularity in the
recent years thanks to the rise in the computation capabilities
of current general purpose computers, reducing the gap of
achieving a robust and accurate CAD system.

In this work, a novel deep-learning-based CAD system
for prostate cancer detection in WSI images is presented to
support pathologists in this task. A CNN was trained and
tested over a new dataset that was built and labeled with
the supervision of expert pathologists after processing the
images with novel algorithms to improve cancer detection
and robustness across WSIs from different hospitals and
scanners.

The main contributions of this work include the following:

• A novel filter to discriminate areas without tissue in-
cluding noise and external agents.

• A comparative study based on the application of stain
normalization in prostate WSI images.

• A 9-layer custom CNN model, trained and validated
from scratch, to reduce the computation time needed to
process WSIs with competitive accuracy.

The rest of the paper is structured as follows: in section
II, the materials and methods are presented, focusing on the
dataset that was used for this work (including preprocessing
and data augmentation), along with the neural network model
that was trained and tested. Then, section III presents the
results obtained in the system for different evaluation metrics,
which are described. After this, discussions, some limitations
of the proposed system and conclusions are presented in
sections IV, V and VI, respectively.

II. METHODOLOGY
A. DATASET
Training a CNN requires a large amount of data to make
the classifier learn and converge to the wanted solution. The
lack of free and open datasets with the sufficient amount of
samples, and with reliable labels associating the pixels in
every image with a specific class, is always a restriction when
trying to develop a CAD system for medical image analysis.

For this work, a novel dataset that was analyzed and
labeled by expert pathologists was created. In this dataset,
malignant regions of the WSIs considered by the pathologist
for such diagnosis were specified. This kind of labels could
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FIGURE 1. Flow chart of the whole dataset acquisition and the different preprocessing steps applied.
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FIGURE 2. WSI with unwanted areas: regions which correspond to the edge of the slide cover (A), cells from external tissue not related to the prostate (B), external
agents such as dirt (C) and zones highlighted with pen (D).

provide the necessary information to train a learning system
in order to extract relevant features from the cell struc-
tures contained in them and, thus, detect specific patterns.
This approach was not considered for other prostate cancer
datasets (such as TCGA) that were used in some of the
works mentioned in section I, in which a general diagnosis
was given to WSIs instead of specifying malignant regions.
These regions would provide much more information for the
training of a CNN.

Figure 1 depicts the whole process applied for obtaining
our dataset.

1) Data acquisition and labeling
To obtain a reliable dataset, a collaboration with the Patho-
logical Anatomy Unit of Virgen de Valme Hospital in Seville
(Spain) was established. They provided a large set of prostate
cancer cases obtained from different patients. These cases
consisted in different Hematoxylin and Eosin (H&E) stained
slides (diagnosed as normal or malignant) obtained from nee-
dle core biopsy. Then, they were digitized with a VENTANA
iScan HT1 scanner from Roche Diagnostics.

Once the biopsies were scanned and digitized, the
following step consisted in labeling the WSIs. To this end,

1https://diagnostics.roche.com/global/en/products/instruments/ventana-
iscan-ht.html

a desktop software application was designed and developed
in C# and Windows Presentation Foundation (WPF) with
Microsoft ® .NET Framework with the purpose of categoriz-
ing specific regions of the tissue that are malignant. Using
this application, experienced pathologists examined WSIs
in order to find malignant areas, considered as Regions of
Interest (ROIs), indicating the GGS score that they belong
to, and thus, labeling each of the WSI images. For a more
precise and comfortable labeling process, pathologists used
computer drawing pads from Wacom® to mark the ROIs
inside WSIs.

The essential attributes details for the dataset creation are
summarized in Table 2.

2) Patch sampling

Due to the large size of the WSIs obtained from the pro-
cess presented in section II-A1 (100k×100k pixels approx-
imately), using them as a direct input for the CNN is not
doable. To this end, these images were divided into small
patches (100×100 pixels at 10× optical magnification) in
order to obtain a dataset that the neural network could work
with for the training, validation and testing steps, ensuring
that all patches of a patient are only in one of these subsets.
This division would also have some other effects. First of all,
it would speed up the computation time for processing a com-
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TABLE 2. Dataset summary.

Attributes Details

Staining method Hematoxylin and Eosin stain

Scanner VENTANA iScan HT from
Roche Diagnostics

Scanner resolution 0.25 µm per pixel

Total number of WSIs 97

Optical magnification 10×

plete WSI, since unwanted areas such as noisy regions of the
image or background would not be taken into account. Then,
this would also increase the overall accuracy, robustness
and reliability of the system, since more images would be
considered for training the network. Finally, the CAD system
would also be more precise in locating malignant areas of the
tissue, which could better help pathologists, rather than just
predicting if a whole WSI is malignant or not, as an unique
and global diagnosis.

The quality of the dataset is crucial in the training step
as well as when testing the network. The lesser number of
noisy patches the dataset contains, the more robust and better
fitted the training step of the network would be, leading to
achieving better results. For these reasons, it is important to
discard all unwanted regions (background and noisy regions)
from the dataset and only consider areas which contain
prostate tissue. Figure 2 shows some common noisy agents
that could be present in WSIs.

To obtain the dataset, different patch-extraction algorithms
were applied for WSIs labeled as normal and malignant.
It is important to mention that patches labeled as normal
were only obtained from WSIs diagnosed as normal, and
patches labeled as malignant were obtained from ROIs of
WSIs diagnosed with cancer, avoiding possible malignant
tissue regions that the pathologist could have missed when
labeling a malignant WSI. For malignant WSIs, the ROIs
selected by the pathologists were framed with a polygon,
which was then scanned by overlapping patches (with 50%
overlap between them) as in [13] and [16], due to the smaller
amount of malignant patches in comparison with the normal
ones. Overlapping was only applied to malignant WSIs in
the cross-validation set, and not in the test set (see section
II-B2). Those patches which had at least 80% of its area
within the ROI were considered, and the rest of them were
discarded. For normal WSIs, all patches which contained
tissue were extracted, following two consecutive processes:
first, background patches were discarded based on an RGB
value threshold, where patches with a mean color value close
to either white or black were removed (below 30 and above
230, using a 8-bit color depth); then, patches corresponding

to unwanted areas (noise) were discarded by applying a
novel filter process based on Deron Eriksson’s patch scoring
formula2.
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FIGURE 3. Examples of the application of Reinhard stain-normalization on
three patches (source) from three WSIs (A, B and C) from different scanners,
obtaining normalized patches (mapped).

This filter applies a score (in a scale that ranges from 0 to
1) to each extracted patch depending on three subfilters (see
(1)). Following this score, if the patch exceeded a threshold
(established at 0.7), then the patch was considered for the
dataset, if not, it was discarded.

Score = TP × CF × SVF (1)

Where TP stands for Tissue Percentage; CF, Color Factor;
and SVF, Saturation and Value Factor.

TP measures the amount of tissue that the patch contains,
scoring it from 0 to 1, by counting the number of pixels that
do not correspond to background. The more tissue the patch
contains, the higher the score it will be given.

CF measures (from 0 to 1) the area of the patch that is
inside H&E’s color range (which is between pink and blue,
including purple, depending on whether the region is acidic
or basic). For this, each of the patches were first converted
from RGB to HSV scale, which consists of three channels:
hue (H), saturation (S) and brightness/value (V). Then, the
score assigned to CF depends on the percentage of pixels
whose hue lie within H&E’s color range.

SVF measures the dispersion (standard deviation) of the
saturation and brightness channels of the patch after being
converted to HSV scale. As patches which contain tissue have
a medium-high dispersion due to their low uniformity, those
that do not have tissue or that have a small amount of tissue
score lower SVF.

The number of patches obtained from normal and malig-
nant WSIs after applying the mentioned steps is shown in
Table 3, where the GGS distribution is also reported. Around

2https://github.com/deroneriksson/python-wsi-preprocessing
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TABLE 3. Dataset classes distribution.

Categories No. of WSI No. of patches

Malignant 70

19905, where:
6404 (32.17%) GGS 3
9791 (49.19%) GGS 4
3710 (18.64%) GGS 5

Normal 27 19772

Total 97 39677

50% of the total amount of patches correspond to normal, and
the rest to malignant.

3) Preprocessing step

Histology images could present unwanted color variations
caused by different factors such as the staining procedure
that was performed, the equipment that was used for doing it
and the color responses of digital scanners in the digitization
process, among others. When comparing WSIs, their color
could be very different even if the images are obtained from
the same scanner. Therefore, color normalization methods,
which reduce the variability of H&E stain appearance, could
be useful to improve the classifier. This could also make the
system more robust and stable when predicting or inferring
over new unseen samples from different hospitals and scan-
ners with which the network has not been trained with.

To this end, a color normalization processing, called Rein-
hard stain-normalization [25], [26], was applied. With this
color normalization method, the mean and standard deviation
of each channel of a source image are matched to that of a
target image by applying a linear transformation in a percep-
tual colourspace (the lαβ colourspace of [27]), obtaining the
resulting mapped image. This process is defined by equations
(2), (3) and (4).

lmapped = lsource−l̄source
l̂source

l̂target + l̄target (2)

αmapped = αsource−ᾱsource
α̂source

α̂target + ᾱtarget (3)

βmapped = βsource−β̄source
β̂source

β̂target + β̄target (4)

Where l̄, ᾱ, and β̄ are the channel means; l̂, α̂, and β̂
are the channel standard deviations (calculated over all the
pixels in the image). This process was applied to every patch
(source) in the dataset, considering target as the mean over
all the patches in the training set (dashed purple in Figure 5).
An example of the application of this process can be seen in
Figure 3.

4) Data augmentation
In Deep Learning algorithms, the more images the dataset
has, the more robust and stable the system will be. Also,
having a larger dataset helps to avoid overfitting, since the
network has more different data to train with. However, this
is not always the case (e.g., adding more noisy samples will
not help), and this is why having a clean dataset with region-
specific labels is so important.

For this reason, data augmentation techniques were ap-
plied to our dataset in order to increase the number of
images for the training step, and thus, to contemplate many
other cases. Different transformations were performed to the
original patches, thus, for each training patch, a horizontal
flip and a vertical flip were applied, along with rotations in
the whole 360◦ range with steps of 1◦, where the missing
information in the corners after rotating the patch was filled
by mirroring. Therefore, we obtained 2×2×360 new patches
from each original patch.

B. DEEP LEARNING FRAMEWORK
1) Convolutional Neural Network architecture
CNNs are a particular class of deep, feed-forward neural net-
works. They have become the most popular network architec-
tures in the Deep Learning field due to their success on image
processing and classification tasks [28]. The main difference
between CNNs and other feed-forward neural networks is the
application of convolution operations to extract features from
the input image. In addition to the convolutions, CNNs have
other kinds of layers that improve and accelerate the learning
and the inference by downsampling the amount of data that
is generated, as well as for the classification step.

In this work, PROMETEO, a custom CNN was devel-
oped to perform the prostate cancer detection task. It is a
supervised neural network whose architecture is shown in
Figure 4. This network consists of five convolution stages.
A convolution stage consists of the following layers: con-
volution, batch normalization, rectified linear unit and 2×2
pooling. These 5 layers have 64 5×5, 64 3×3, 128 3×3, 128
3×3 and 256 3×3 filters, respectively, connected to three
consecutive fully-connected layers with 256, 128 and 128
units, respectively. Finally, a Softmax decision layer with two
units gets the output from the last fully-connected layer and
generates the result of the classification, identifying between
normal and malignant patches. Different architectures were
tested in this work, including the VGG16 [29], VGG19
[29], MobileNet [30] and DenseNet121 [31] architectures,
although this custom CNN was selected based on the fact
that achieved the best results.

2) Training, validating and testing the system
As mentioned in previous sections, CNNs and other deep
learning algorithms need a large amount of samples for the
training phase. When using these architectures, the dataset
is commonly divided into three different sets for training,
validating and testing the model, respectively, where the
training set is by far the one with more samples.
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FIGURE 5. 3-fold cross-validation and final test diagram. The dataset was
divided into four subsets. Two of them were used for training each fold and one
for validation. After that evaluation, those three subsets were used to train a
final model and the remaining one was used to test the performance of the
system.

At the same time, to measure the generalization ability
of the model, cross-validation is usually performed. There
are different types of cross-validation; the one we used in
this work was the K-fold stratified cross-validation (where
K = 3). First, the dataset was split in two sets: 75% was
used to perform the 3-fold cross-validation and the remaining
25% for performing a final test of the system.

For performing cross-validation, the 3-fold cross-
validation set was divided again into three different subsets,
where patches in each of these subsets were also divided
following a patient-level split. Each subset consisted of,
approximately, 50% cancer and 50% normal cases. Then,
the network was trained for 200 epochs with a batch size of
32 using Adadelta optimizer [32] and validated three times

(once per fold), using two of the subsets for training and
the remaining one for validating the system. The results for
cancer detection were evaluated as an average of the 3-fold
cross-validation results.

After obtaining these results, a final test was performed,
using the whole 3-fold cross-validation set (75% of the
dataset) for training and then testing with the 25% set that
was left apart. Figure 5 shows a diagram about the dataset
division for the 3-fold-cross-validation and the final test.

In this work, TensorFlow3 and Keras4, which are two
widely known Deep Learning frameworks/libraries, were
used to design, train and test the network.

3) Evaluation metrics
In order to present the capabilities of this implemented CAD
system, different evaluation metrics were used. These are
accuracy (Equation 5), precision (Equation 6), sensitivity
(Equation 7), specificity (Equation 8), F1-score (Equation
9), and Area Under Curve (AUC) of the Receiver Operating
Characteristic (ROC) curve. All of them were measured at
patch level.

Accuracy = 100 × TP + TN
TP + TN + FP + FN

(5)

Precision = 100 × TP
TP + FP

(6)

Sensitivity = 100 × TP
TP + FN

(7)

3https://www.tensorflow.org
4https://keras.io
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Specificity = 100 × TN
TN + FP

(8)

F1-score = 2 × Precision × Sensitivity
Precision + Sensitivity

(9)

Where TP and FP denote true positive cases (when the sys-
tem diagnoses a malignant patch correctly) and false positive
cases (the system detects a malignant patch in a region where
the tissue does not correspond to a tumor), respectively. TN
and FN denote true negative cases (the system classifies a
normal patch as normal) and false negative cases (the system
classifies a malignant patch as normal), respectively.

The ROC curve shows the diagnostic ability of a binary
classifier system as its discrimination threshold is varied. The
AUC is a commonly used metric that measures the area that is
under the ROC curve, where an area of 1 represents a perfect
test.

III. RESULTS
A. QUANTITATIVE EVALUATION
The evolution of the loss and accuracy over 200 epochs for
each fold, both for the stain-normalized dataset and for the
original one that was not normalized, is shown in Figure 6
and Figure 7, respectively.

The ROC curve was calculated for the same cases that
were taken into account in the loss and accuracy plots (Fig-
ures 6 and 7), along with their corresponding AUC value,
which are shown in Figure 8 and Figure 9.

Table 4 presents the results obtained from each of the
cross-validation sets that were trained and validated, consid-
ering the stain-normalized dataset and the one that was not
normalized. These results consists of the evaluation metrics
that were introduced in section II-B3, comparing both ap-
proaches by calculating the average over the validation sets.

After the cross-validation was performed, and as was
explained in section II-B2, the three subsets were used for
training and the remaining 25% of the dataset was used
to test the network (see Figure 5). With this, the stain-
normalized approach achieved 99.14% accuracy, while the
not-preprocessed achieved 99.98% (see Table 4). Figures 8
and 9 present the ROC curves for these two tests.

As can be seen from these results, both approaches
achieved very high scores in all the metrics that were studied
for this classification task, with the dataset that was not nor-
malized performing slightly better (less than 1.5% increase in
accuracy). However, as was mentioned in previous sections,
these results were obtained with WSIs from the same hospital
(Virgen de Valme), and to measure the performance of both
approaches with WSIs obtained from different hospitals and
scanners, a new test was carried out, which is presented in
section III-D.

B. COMPARISON WITH OTHER METHODS
The results obtained in the previous section were com-
pared with different state-of-the-art architectures and clas-
sifiers using the same dataset. The following well-known

CNN models were used to extract features from the dataset:
MobileNet, DenseNet121, VGG16 and VGG19. Instead of
training these networks from scratch, whose architectures are
more complex than the one that was developed for this work,
their weights were obtained by using the transfer learning
technique from the ImageNet dataset [33]. Along with these
four models, two different classifiers were tested: Support
Vector Machine (SVM) and SoftMax. Moreover, each of the
architectures was also fine-tuned, meaning that the weights
from ImageNet were adjusted using backpropagation to in-
crease the recognition rate over our dataset. The accuracy
results for each of the possible combinations are presented
in Table 5.

C. EXPERT PATHOLOGISTS’ VERIFICATION
In addition to the numerical results that were obtained in the
previous section, a validation was also performed by expert
pathologists.

To this end, the network trained for the final test was used.
With that model, a prediction was performed over the WSIs
from the test subset. To perform a prediction, all patches
from WSIs were read and only those which passed the patch
filters mentioned in section II-A2 were stain normalized and
predicted by the CNN. These predictions were represented in
a heatmap graph over the original WSI image. An example
can be seen in Figure 10, where the ground truth annotations
from the pathologist are also shown. These heatmaps were
given to different pathologists together with their corre-
sponding WSIs in order to validate the predictions obtained
from the network. The results of the CNN presented by the
heatmap mark the same regions that pathologists labeled in
the original WSI, with the exception of some isolated false
positives, which are indicated.

D. TESTING WITH WSIs FROM DIFFERENT HOSPITALS
The results presented in section III-A are promising, although
it is important to highlight that, as was mentioned in previous
sections, for both training and testing the network, only
images from a single hospital were taken into account, which
also means images from one laboratory and a specific scan-
ner. A new experiment was carried out in order to measure the
performance of the network when using new images obtained
from other hospitals. This also allows determining whether
the stain-normalization step was better or not compared to
the same images without applying any kind of color normal-
ization.

To perform this experiment, new WSIs were obtained
from two different hospitals: Puerta del Mar Hospital (Cádiz,
Spain) and Clínic Barcelona Hospital (Barcelona, Spain). It
is important to mention that this new images were not labeled
the same way as the ones that were used to perform the
previous experiments. These WSIs were only diagnosed as
normal or malignant, without indicating which specific areas
of the tissue were relevant for the pathologists to make that
decision. Therefore, this new experiment consisted in mea-
suring the number of false positives against true negatives
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FIGURE 6. Loss and accuracy evolution when training with the three cross-validation sets using the stain-normalized dataset.

0 25 50 75 100 125 150 175
Epoch

0.0

0.2

0.4

0.6

0.8

1.0
Loss

0 25 50 75 100 125 150 175
Epoch

0.5

0.6

0.7

0.8

0.9

1.0
Accuracy

Fold 1: Train
Fold 2: Train
Fold 3: Train
Fold 1: Validation
Fold 2: Validation
Fold 3: Validation

FIGURE 7. Loss and accuracy evolution when training with the three cross-validation sets using the dataset that was not stain-normalized.
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FIGURE 8. Left: ROC curve for each cross-validation set and the test set when using the stain-normalized dataset. Right: zoomed in at top left.
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FIGURE 9. Left: ROC curve for each cross-validation set and the test set when using the dataset that was not stain-normalized. Right: zoomed in at top left.
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TABLE 4. Results obtained from each cross-validation fold and the final test.

Set Dataset
Accuracy

(%)

Specificity

(%)

Sensitivity

(%)

Precision

(%)

F1 score

(%)
AUC

C
ro

ss
-v

al
id

at
io

n

1st fold
Stain-normalized 97.43 97.42 97.44 97.47 97.45 0.995

Not normalized 98.54 98.99 98.11 99.00 98.55 0.994

2nd fold
Stain-normalized 96.7 97.85 95.63 97.85 96.73 0.995

Not normalized 99.24 100.00 98.50 100.00 99.24 0.999

3rd fold
Stain-normalized 95.35 96.25 94.49 96.28 95.37 0.990

Not normalized 96.43 95.10 97.72 95.34 96.52 0.994

Average
Stain-normalized 96.49 97.17 95.83 97.2 96.51 0.993

Not normalized 98.07 98.03 98.11 98.11 98.10 0.996

Fi
na

lt
es

t

Test
Stain-normalized 99.14 99.18 99.10 99.27 99.19 0.999

Not normalized 99.98 100 99.97 100 99.98 0.999

TABLE 5. Results comparison for different state-of-the-art methods. Best
accuracies for each architecture model are highlighted in bold.

Model Classifier Fine-tuning Accuracy (%)

VGG16
SoftMax No 86.36

Yes 94.76

SVM No 85.37
Yes 93.85

VGG19
SoftMax No 83.87

Yes 93.54

SVM No 85.11
Yes 91.22

MobileNet
SoftMax No 81.48

Yes 98.96

SVM No 80.58
Yes 99.08

DenseNet121
SoftMax No 78.47

Yes 96.82

SVM No 78.00
Yes 97.77

(specificity) detected by the network in total for all WSIs
diagnosed as normal for each hospital. WSIs diagnosed as
malignant were not taken into consideration for a sensitivity
study due to the fact that there was no ground truth that
could be used to evaluate the network when testing it with the
patches obtained from them. Instead, a statistical study based
on Student’s t-test is later presented to compare the predicted
patches’ distribution between normal and malignant WSIs.

From Clínic Barcelona Hospital, 100 new WSIs diagnosed
as normal were used, whereas a total of 79 were considered
from Puerta del Mar Hospital: 33 of them were obtained from
needle core biopsy (the same procedure as Virgen de Valme
Hospital and Clínic Hospital) and the remaining 46 WSIs
were obtained from incisional biopsy.

Figure 11 shows the mean specificity and standard de-
viation for each of the three sets from different hospitals,
comparing the stain-normalization algorithm (96.08 ± 2.85,

94.82 ± 3.52 and 96.26 ± 2.20, respectively) to the original
images (93.31 ± 6.43, 95.87 ± 8.57 and 95.94 ± 3.42,
respectively).

Since malignant WSIs only provided a global diagnosis,
we could not calculate the sensitivity at patch level. Then,
an evaluation relying on the slide-level label was performed,
comparing the probability distributions estimated by the
CNN for normal and malignant WSIs for each external hos-
pital. To carry out this evaluation, 129 new WSIs diagnosed
as malignant from Clínic Barcelona Hospital and 65 new
malignant WSIs from Puerta del Mar Hospital (26 obtained
from needle core biopsy and 39 from incisional biopsy) were
considered, along with the ones diagnosed as normal that
were used in the previous experiment. Patches from both
normal and malignant WSIs were predicted following the
same procedure explained in section III-C with the model
that was trained with stain-normalized patches and also with
the one that was not (in this case, patches extracted from the
WSIs from external hospitals were not stain-normalized in
the preprocessing step). The average and standard deviation
of the percentage of malignant patches in relation to the total
amount of tissue patches (those that passed the patch filters
mentioned in section II-A2) that the models predicted, were
calculated for each hospital. Statistical Student’s t-test was
performed to measure how significant the difference between
the results obtained for normal and malignant WSIs were. For
the t-test, two values were generated: the t-statistic and the
critical t-value. If the first is greater than the second, the test
concludes that there is a statistically significant difference
between the results obtained for normal and malignant WSIs.
The results of this evaluation are presented in Table 6, where
the impact of using stain-normalization is also shown.

As can be seen from the results obtained when performing
the predictions, there is a statistically significant difference
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Ground Truth CNN output

FIGURE 10. Left: WSI taken from the test subset with ground truth labels from pathologists. Right: output of the CNN represented with a heatmap. Isolated false
positives marked with red squares.
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FIGURE 11. Mean specificity and standard deviation achieved by the CNN
with WSIs obtained from Clínic Barcelona Hospital (Barcelona. Spain), and
Puerta del Mar Hospital (Cádiz, Spain). A and B were extracted with incisional
biopsy and needle core biopsy, respectively.

between the results obtained for normal and malignant WSIs
when using stain-normalization as part of the preprocessing
step. On the other hand, significant differences cannot be
achieved when predicting without having applied the nor-
malization process to the input patches before, except for the
WSIs obtained from Clínic Barcelona Hospital.

Figure 12 presents three extreme cases from Puerta del
Mar Hospital obtained with needle core biopsy. The first case
(A) shows a malignant WSI in which the system detected
a high quantity of malignant patches (∼45% of the tissue).
On the other hand, the second one (B), corresponds to a
malignant WSI with around a 6% of the tissue predicted
as malignant. Finally, in the third case (C), a normal WSI
is shown, in which the system mistakenly detected 5% of
the patches that correspond to tissue as malignant. These
malignant WSIs present pen marks drawn by the pathologist
that globally diagnosed the slide before being scanned, which

TABLE 6. Results of the statistical evaluation performed with malignant and
normal WSIs from external hospitals, where Avg%ppm stands for the average
of the percentage of patches predicted as malignant, and Std for its standard
deviation. Cases where t-static > critical t-value (statistically significant
difference found between normal and malignant distributions) are highlighted
in bold. A and B were extracted with incisional biopsy and needle core biopsy,
respectively.

Malignant Normal

C
lín

ic
B

ar
ce

lo
na Stain-normalized

Avg%ppm 12.22% 3.92%
Std 9.29% 2.85%

t-statistic
(critical t-value)

8.24
(1.98)

Not normalized
Avg%ppm 15.46% 6.69%

Std 10.17% 6.43%
t-statistic

(critical t-value)
7.29

(1.98)

Pu
er

ta
de

lM
ar

(A
)

Stain-normalized
Avg%ppm 11.47% 5.18%

Std 9.43% 3.52%
t-statistic

(critical t-value)
3.93

(2.01)

Not normalized
Avg%ppm 7.35% 4.13%

Std 9.97% 8.57%
t-statistic

(critical t-value)
1.58

(1.99)

Pu
er

ta
de

lM
ar

(B
) Stain-normalized

Avg%ppm 14.00% 3.74%
Std 11.87% 2.20%

t-statistic
(critical t-value)

4.35
(2.05)

Not normalized
Avg%ppm 3.35% 4.06%

Std 4.08% 3.42%
t-statistic

(critical t-value)
-0.71
(2.01)

roughly delimit malignant areas of the tissue. As can be seen
in Figure 12, C has a relatively high quantity of patches
detected as malignant. However, these patches are scattered
across the tissue and, hence, not focusing on a specific region,
which clearly represents the error of the system. On the
other hand, in B, the small quantity of patches detected
as malignant are mostly focused inside the area delimited
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FIGURE 12. Heatmaps generated by the system for three different WSIs from Puerta del Mar Hospital. A and B correspond to WSIs globally diagnosed as
malignant with high and low quantity of malignant patches detected by the system, respectively, while C represents a normal WSI with a high error rate in the
prediction. Zoomed regions are presented for better visualization.

by the pen marks. After being revised by a pathologist, it
was confirmed that the malignant area matches the heatmap,
while the rest corresponds to normal tissue, except for a small
area that is partially overlapped by the bottom pen mark.
Finally, the heatmap presented for A shows that the system
detects most of the malignant tissue correctly based on the
pen marks.

Further details on the limitations of the study presented in
this section are discussed in section V.

E. PERFORMANCE EVALUATION

As mentioned in section II, the fatigue that the pathologist
undergoes when examining many consecutive WSIs was the
main motivation and inspiration of this work. With this CAD
system, pathologists could be aided in the process of looking
for malignant areas in such large images, speeding up the
process and having a second opinion. For this reason, the time
that the system takes to evaluate a WSI should be as short as
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possible. To this end, a performance evaluation was carried
out to determine the advantages of this CAD system.

This evaluation was performed over the 97 WSIs from
Virgen de Valme Hospital, measuring the time that each of
the images takes to go through the whole process: from the
extraction of all patches, to the prediction of each patch,
including filtering and stain-normalization. These times were
obtained with an Intel® Core™ i7-8700K CPU at 3.70 GHz.

Figure IV top shows the mean time (in milliseconds) that
the system takes to process one patch (8.9 ms in total) for
each of the processing steps. Figure IV bottom shows the
mean time (in seconds) that is needed for the CAD system
to process a complete WSI on average (calculated over 97
WSIs) (18.78±6.55 s in total for a stain-normalized WSI
and 16.41±5.39 s for a WSI that has not been normalized),
detailing how much time it requires for each of the processing
steps. As an example, the WSI shown in Figure 10 took 12.9 s
to complete the whole process.

As can be seen, for a single patch, the extraction is the
process that takes less time (around 0.6 ms). However, when
processing a WSI, the patch extraction is the step that in-
volves the longest amount of time. This is due to the fact
that, in that step, all patches from a WSI have to be read and
analyzed, but not all of them are processed in the following
steps. Most of the patches are discarded before being scored
to remove unwanted areas. Then, only those which are not
background and pass the scoring step are normalized and
predicted by the CNN.

To compare the network that was developed with the
different models that were tested in section III-B, the aver-
age time that each of these took to process a single patch
was measured over the same WSIs. Compared with the
2.8 ms that our model took to predict a patch, MobileNet
took 4.88 ms; VGG16, 5.85 ms; VGG19, 6.14 ms; and
DenseNet121, 13.8 ms, in the best cases, due to their greater
number of layers and higher complexity.

IV. DISCUSSION
As can be clearly seen from the results obtained in section
II-B3, both the stain-normalized version of the dataset and
the original one achieved very high recognition rates for
the prostate cancer detection task. However, the second one
performed slightly better than the first in the 3-fold cross-
validation step and in the final test, which can be due to
different reasons. First of all, color differences could be
one of the factors that the network learns for distinguishing
between malignant and normal patches, since the H&E stain
makes malignant regions tend to a more purple-like color
due to the stronger hematoxylin stain balance because of the
higher nucleic acid content in those areas. Then, normalizing
all patches to a target color could imply losing relevant
information for the classification.

However, when testing with different hospitals whose
WSIs were not used to train the system and which present
different color variations, the results changed when compar-
ing both approaches. In that case, the mean specificity of both

approaches is still around 95%. However, when looking at the
standard deviation of the specificity, the difference is clearer:
the stain-normalized was more stable while achieving almost
the same result. This could be caused by the fact that, thanks
to the normalization, the patches were more homogeneous
in terms of color, and the network was able to extract more
relevant features based on the cell structures (which are
more complex to detect than color differences) during the
training phase. Hence, the stain-normalization could make
the system more robust and stable to images from new
hospitals and scanners where color variations exist. This idea
was confirmed when performing the Student’s t-test over the
percentage of malignant area of the tissue predicted by the
CNN for normal and malignant WSIs without applying stain-
normalization, which showed that there was no statistically
significant difference between the two classes for two out of
the three external sources. These results were also studied in
[34], where the authors conclude that training a deep CNN
with stain-normalized images did not improve the results
and, in some cases, they were worse than the baseline.
However, the authors state that this technique improved
the generalization of the CNN for classification tasks using
digital pathology images. Our results also confirm this idea
regarding the application of stain normalization to prostate
cancer histopathological images.

Apart from the preprocessing step, another option for
improving the results obtained from the CAD system could
be adding a postprocessing layer to remove either isolated
false negatives and/or isolated false positives, as the ones that
were present in the heatmaps in Figure 10 (marked with red
squares) and Figure 12 (C).

State-of-the-art works, such as [10], [12], [16] and [17],
also performed a classification between normal and malig-
nant tissue. However, since these works performed the clas-
sification and obtained the metrics at a different level (core-
level and slide-level), results cannot be directly compared.
Moreover, those works use different datasets, which also
does not allow a strict and fair comparison with the results
obtained in this work. Therefore, our network was compared
with different well-known pre-trained models, which were
tested on the same dataset that we used. Some of them ob-
tained similar results after a fine-tuning process, as presented
in Table 5. However, in terms of performance, due to the
higher complexity of these models compared to our proposal,
the average time that they take to predict a single patch is
higher than that of our network, as presented in section III-E.
This means that, when using our network, the CAD system
would be able to process more WSIs in the same amount of
time than any of the other models that were tested, as well as
to achieve a slightly higher accuracy. These pre-trained mod-
els were much faster to train than our network, since it was
trained from scratch, and their accuracies are close to ours.
However, since the training process is a step that only has to
be done once, it is worth to have a longer training process in
order to obtain a lighter computational algorithm with better
accuracy for its production phase (predicting every new WSI
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FIGURE 13. Mean execution time for patches (top) and WSIs (bottom),
calculated over 97 WSIs, detailing between patch extraction, scoring,
stain-normalization and prediction.

that is processed in a hospital). We have also carried out a
comprehensive comparison with other state-of-the-art works
in terms of the number of operations (OPS) performed by the
network. In our case, based on the number and size of the
layers, our network performs around 350 MOPS (106 opera-
tions) per patch. Other works that present high accuracies for
a binary classification task in WSIs, such as [11], [16], [17],
use well-known models that, based on [35], perform more
than 1 GOPS (109 operations) per input patch. The custom
model presented in [12] needs to perform more than 660
MOPS per patch. Our custom CNN outperforms other state-
of-the-art works in terms of computational complexity for a
binary classification task in prostate histopathological images
between normal and malignant WSIs.

As a future work, we would like to develop a more
complex CAD system based on the one proposed on this
work. This system would consists of two different CNNs: the
first one would discriminate between normal and malignant
patches, and the second one would receive the patches classi-
fied as malignant and identify the GGS score that they belong
to. We are already working with pathologists in order to get
new WSIs labeled by them in order to train the first CNN
with more images and also to start developing the second one
for building the new CAD system.

V. LIMITATIONS OF THE STUDY
In this study, we present and evaluate a tool, called PROM-
ETEO, that aims to aid pathologists in their routine work.
PROMETEO is a CNN-based system able to analyze a

WSI for patch-level classification of normal and malignant
tissue. It offers a heatmap over the original WSI to highlight
the malignant tissue detected together with statistical values
about the distribution of the patches. The current state of the
system presents some limitations which are discussed in the
following subsections.

1) Dataset size
The size of the dataset (obtained from ∼100 WSIs of one
particular hospital) has demonstrated that robust results for
cancer detection at patch level can be achieved after training
and testing our presented model. Nevertheless, the invaluable
work from pathologists in labeling these WSIs to extract
patches from the presented dataset must continue in order
to obtain a competitive dataset valid for deeper classification
with Gleason scores, and to combine information from dif-
ferent hospitals to improve results on classifying WSIs from
different sources not used in the training process.

2) Sensitivity on external hospitals
In order to calculate the sensitivity at patch level when pre-
dicting WSIs from external hospitals and scanners, region-
specific labels from pathologists are required. However, these
were not available for external hospitals. This limitation
made us perform a different evaluation relying on their global
available label by comparing the probability distributions
of malignant patches predicted by the system for normal
and malignant WSIs. To this end, the statistical t-test was
performed in order to discriminate if predictions for normal
and malignant WSIs were significantly different. This test has
demonstrated that, even though there is a limitation on report-
ing the results from the external hospitals, the distributions of
predicted patches on malignant and normal cases are clearly
different when using the stain-normalization in the process,
which validates the application of this method.

VI. CONCLUSION
In this work, the authors have presented a novel CAD system
based on deep learning algorithms (CNNs) for discriminat-
ing between malignant and normal regions in WSI images
obtained from Virgen de Valme Hospital (Seville, Spain)
and labeled by expert pathologists. A custom CNN, called
PROMETEO, consisting of 9 layers (5 convolution stages,
3 fully connected layers and a Softmax layer) was trained,
validated and tested by means of a 3-fold stratified cross-
validation technique with 100×100 patches extracted from
the WSIs. These patches were filtered with a novel patch
extraction and scoring algorithm which removed unwanted
areas such as pen marks and external agents.

The authors have also studied the impact of using a stain-
normalization algorithm on the patches for improving the
classification of the system. The results show that the applica-
tion of this kind of normalization is not relevant when work-
ing with images obtained from the same hospital/scanner,
although it could potentially be useful for developing a
stable and "universal" CAD system which could achieve
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better results (than the one trained with images that are not
stain-normalized) due to the color variations that WSIs from
different scanners present because of the H&E stain process.

The network presented in this work achieves, in the best
case of the cross-validation process, a mean accuracy of
98.07%, a mean specificity of 98.03%, a mean sensitivity
of 98.11%, a mean precision of 98.11%, a mean F1-score
of 98.10% and a mean AUC of 0.996 over the three cross-
validation folds. The system was also evaluated over a test
set, obtaining 99.98% accuracy, 100% specificity, 99.97%
sensitivity, 100% precision, 99.98% F1-score and 0.999 AUC
in the best case. Different state-of-the-art methods were
tested with the same dataset to compare the performance of
the system. In the case of MobileNet with SVM as classifier,
the accuracy achieved is similar to that of our model, with a
difference of 0.9%. However, if the execution time needed
to process a WSI is considered, our model is 75% faster,
approximately, which is very relevant when working with
real-time CAD systems.

The system is able to generate a heatmap of the input
WSI, indicating the regions that the network has detected
as malignant. This could help pathologists in their task by
reducing fatigue and the time they take to analyze a WSI.
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