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We will assume the reader has a working knowledge of ACL2. The best introdu
-tion to ACL2 is [5℄. Due to the la
k of spa
e, we will skip details of the me
hani
alproofs and we will not mention guards or guards veri�
ation. The 
omplete books areavailable on the web in http://www-
s.us.es/~jruiz/a
l2-mul/.1 Formalization of multiset relations in ACL21.1 Multisets: de�nitions and propertiesA multiset M over a set A is a fun
tion from A to the set of natural numbers. This isa formal way to de�ne \sets with repeated elements". Intuitively,M(x) is the numberof 
opies of x 2 A in M . This multiset is �nite if there are �nitely many x su
h thatM(x) > 0. The set of all �nite multisets over A is denoted asM(A).We will use standard set notation to represent multisets. For example, if A =fa; b; 
g, an example of multiset over A is M = fa; b; b; bg, an abbreviation of thefun
tion M(a) = 1, M(b) = 3 and M(
) = 0. Thus, fa; b; b; bg is identi
al to themultiset fb; b; a; bg, but distin
t from the multiset fa; b; bg.Basi
 operations on multisets are de�ned to generalize the same operations onsets, taking into a

ount multiple o

urren
es of elements: x 2 M means M(x) > 0,M � N means M(x) � N(x), for all x 2 A, M [N is the fun
tion M +N and M nNis the fun
tion M :� N (where x :� y is x� y if x � y and 0 otherwise). For example,fa; b; b; ag [ f
; 
; a; bg is the multiset fa; a; a; b; b; b; 
; 
g and fa; b; b; ag n f
; 
; a; bg isthe multiset fa; bg.Any ordering de�ned on a set A indu
es an ordering on multisets over A: given amultiset, a smaller multiset 
an be obtained by removing a non-empty subset X andadding elements whi
h are smaller than some element in X. This 
onstru
tion 
an begeneralized to binary relations in general, not only for partial orderings. This is theformal de�nition:DEFINITION 1. Given a relation < on a set A, the multiset relation indu
ed by < onM(A), denoted as <mul, is de�ned as N <mul M i� there exist X;Y 2 M(A) su
hthat ; 6= X �M;N = (M nX) [ Y and 8y 2 Y 9x 2 X; y < x.For example, if A = fa; b; 
; d; eg and b < a, d < 
, then fa; b; b; b; b; d; d; d; d; d; eg<mul fa; a; b; 
; d; eg by repla
ing X = fa; 
g by Y = fb; b; b; d; d; d; dg. It 
an beeasily shown that if < is a stri
t ordering, then so is <mul. In su
h 
ase we talk aboutmultiset orderings.A relation < on a set A is terminating if there is no in�nite de
reasing1 sequen
ex0 > x1 > x2 : : :. An important property of multiset relations on �nite multisets isthat they are terminating when the original relation is terminating, as stated by thefollowing theorem:THEOREM 1. Let < be a terminating relation on a set A, and <mul the multisetrelation indu
ed by < onM(A). Then <mul is terminating.The above theorem provides a tool for showing termination of re
ursive fun
tionde�nitions, by using multisets: show that some multiset measure de
reases in ea
hre
ursive 
all 
omparing multisets with respe
t to the relation indu
ed by a given ter-minating relation. In the following subse
tion, we explain how we formalized theorem1 in the ACL2 logi
.1 Although not expli
itly, we will suppose that the relations given here represent some kind of\smaller than" relation.



1.2 Formalization of well-founded multiset relations in ACL2Let us deal with formalization of terminating relations in ACL2. A restri
ted notion ofterminating relations is built into ACL2 based on the following meta-theorem (axiomof 
hoi
e needed): a relation < on a set A is terminating i� there exists a fun
tionF : A! Ord su
h that x < y ) F (x) < F (y), where Ord is the 
lass of all ordinals.In this 
ase, we also say that the relation is well-founded. Note that we are denotingthe relation on A and the ordering between ordinals using the same symbol <. Anarbitrary well-founded relation rel de�ned on a set of obje
ts satisfying a propertymp 
an be de�ned in ACL2 as shown below (dots are used to omit te
hni
al details,as in the rest of the paper):(en
apsulate((mp (x) booleanp) (rel (x y) booleanp) (fn (x) e0-ordinalp))...(defthm rel-well-founded-relation-on-mp(and (implies (mp x) (e0-ordinalp (fn x)))(implies (and (mp x) (mp y) (rel x y))(e0-ord-< (fn x) (fn y)))):rule-
lasses :well-founded-relation))The predi
ate mp re
ognizes the kind of obje
ts (
alled measures) that are orderedin a well-founded way by rel. The embedding fun
tion fn is an order-preservingfun
tion mapping every measure to an ordinal. On
e a relation is proved to satisfythese properties and the theorem is stored as a well-founded relation rule, it 
an beused in the admissibility test for re
ursive fun
tions. We 
all the theorem rel-well--founded-relation-on-mp above the well-foundedness theorem for rel, mp and fn.In ACL2, every parti
ular well-founded relation has to be given by means of threefun
tions (a binary relation, a measure predi
ate and an embedding fun
tion) andthe 
orresponding well-foundedness theorem for su
h fun
tions. As a parti
ular 
ase,when mp is t we 
an omit any referen
e to mp in the statement of the 
orrespondingwell-foundedness theorem. See well-founded-relation in the ACL2 manual [6℄.The above notion of termination is restri
ted: sin
e only ordinals up to "0 areformalized in the ACL2 logi
, a limitation is imposed on the maximal order typeof well-founded relations that 
an be formalized. Consequently, our formalizationsu�ers from the same restri
tion (nevertheless, our proofs do not depend on parti
ularproperties of "0, ex
ept well-foundedness).Let us now deal with formalization of multisets relations. We represent multisetsin ACL2 as true lists. Given a predi
ate (mp x) des
ribing a set A, �nite multisetsover A are des
ribed by the following fun
tion:(defun mp-true-listp (l)(if (atom l)(equal l nil)(and (mp (
ar l)) (mp-true-listp (
dr l)))))Note that this fun
tion depends on the parti
ular de�nition of the predi
ate mp.With this representation, di�erent true lists 
an represent the same multiset: twotrue lists represent the same multiset i� one is a permutation of the other. Thus,



the order in whi
h the elements appear in a list is not relevant, but the number ofo

urren
es of an element is important. This must be taken into a

ount, for example,when de�ning multiset di�eren
e in ACL2 (the fun
tion remove-one, omitted here,deletes one o

urren
e of an element from a list, whenever possible):(defun multiset-diff (m n)(if (atom n) m (multiset-diff (remove-one (
ar n) m) (
dr n))))The de�nition of <mul given in the pre
eding subse
tion is quite intuitive but,due to its many quanti�ers, diÆ
ult to implement. Instead, we will use a somewhatrestri
ted de�nition, based on the following theorem:THEOREM 2. Let < be a stri
t ordering on a set A, andM;N two �nite multisets overA. Then N <mul M i� M nN 6= ; and 8n 2 N nM;9m 2M nN; su
h that n < m.From the 
omputational point of view, the main advantage of this alternativede�nition is that the we do not have to sear
h the multisets X and Y of the originalde�nition be
ause we 
an take M nN and N nM , respe
tively. It should be remarkedthat this equivalen
e is true only when < is a stri
t partial ordering. Take for example,the relation S de�ned on A = fa; b; 
; dg, su
h that dS
, 
Sb and bSa. In this 
asewe have fb; 
; dgSmulfa; b; 
g, taking X = fa; b; 
g and Y = fb; 
; dg. Nevertheless,d 2 fb; 
; dg n fa; b; 
g, fag = fa; b; 
g n fb; 
; dg and it is not true that dSa.Anyway, this is not a severe restri
tion. Moreover, well-foundedness of <mul alsoholds when this restri
ted de�nition is used, even if the relation < is not transitive,as we will see. Thus, given a de�ned (or 
onstrained) binary relation rel, we de�nethe indu
ed relation on multisets based on this alternative de�nition:(defun exists-rel-bigger (x l)(
ond ((atom l) nil)((rel x (
ar l)) t)(t (exists-rel-bigger x (
dr l)))))(defun forall-exists-rel-bigger (l m)(if (atom l)t(and (exists-rel-bigger (
ar l) m)(forall-exists-rel-bigger (
dr l) m))))(defun mul-rel (n m)(let ((m-n (multiset-diff m n))(n-m (multiset-diff n m)))(and (
onsp m-n) (forall-exists-rel-bigger n-m m-n))))Finally, let us see how we 
an formalize in the ACL2 logi
 the theorem 1 above,whi
h states well-foundedness of the relation mul-rel. As said before, in order toestablish well-foundedness of a relation in ACL2, in addition to the relation (mul-relin this 
ase), we have to give the measure predi
ate and the embedding fun
tion, andthen prove the 
orresponding well-foundedness theorem. Sin
e mul-rel is intended tobe de�ned on multisets of elements satisfying mp, then mp-true-listp is the measurepredi
ate in this 
ase. Let us suppose we have de�ned a suitable embedding fun
tion
alled map-fn-e0-ord. Then theorem 1 is formalized as follows:



(defthm multiset-extension-of-rel-well-founded(and (implies (mp-true-listp x)(e0-ordinalp (map-fn-e0-ord x)))(implies (and (mp-true-listp x)(mp-true-listp y)(mul-rel x y))(e0-ord-< (map-fn-e0-ord x) (map-fn-e0-ord y)))):rule-
lasses :well-founded-relation)In the next subse
tion we show a suitable de�nition of map-fn-e0-ord and de-s
ribe some aspe
ts of the ACL2 proof of this theorem.1.3 A proof of well-foundedness of the multiset relationIn the literature [1℄, theorem 1 is usually proved using K�onig's lemma: every in�niteand �nitely bran
hed tree has an in�nite path. Nevertheless, we have to �nd a di�er-ent proof in ACL2, de�ning an order-preserving embedding fun
tion map-fn-e0-ordfrom mp-true-listp obje
ts to e0-ordinalp obje
ts. Thus, our proof is based onthe following result from ordinal theory: given an ordinal �, the set M(�) of �nitemultisets of elements of � (ordinals less than �), ordered by the multiset relationindu
ed by the order between ordinals, is order-isomorphi
 to the ordinal !� and theisomorphism is given by the fun
tion H where H(f�1; : : : ; �ng) = !�1 + : : : + !�n .This result 
an be proved using Cantor's normal form of ordinals and its properties.As a by-produ
t, an interesting property about multiset well-founded relations
an be dedu
ed. Sin
e � � "0 implies !� � !"0 = "0, this means that one 
an alwaysprove, in the ACL2 logi
, well-foundedness of the multiset relation indu
ed by a givenwell-founded ACL2 relation (i.e., using embeddings in the ordinal "0). This is notthe 
ase, for example, of lexi
ographi
 produ
ts, sin
e the maximal ordinal type of alexi
ographi
 produ
t of two ACL2 well-founded relations may be greater than "0.The isomorphism H above suggests the following de�nition of the embeddingfun
tion map-fn-e0-ord: given a multiset of elements satisfying mp, apply fn to everyelement to obtain a multiset of ordinals. Then apply H to obtain an ordinal lessthan "0. If ordinals are represented in ACL2 notation, then the fun
tion H 
an beeasily de�ned, provided that the fun
tion fn returns always a non-zero ordinal: thefun
tion H simply has to sort the ordinals in the multiset and add 0 as the �nal 
dr.These 
onsiderations lead us to the following de�nition of the embedding fun
tionmap-fn-e0-ord. Note that the non-zero restri
tion on fn is easily over
ome, de�ning(the ma
ro) fn1 equal to fn ex
ept for integers, where 1 is added. In this way fn1returns non-zero ordinals for every measure obje
t and it is order-preserving if andonly if fn is.(defun insert-e0-ord-< (x l)(
ond ((atom l) (
ons x l))((not (e0-ord-< x (
ar l))) (
ons x l))(t (
ons (
ar l) (insert-e0-ord-< x (
dr l))))))(defun add1-if-integer (x) (if (integerp x) (1+ x) x))



(defma
ro fn1 (x) `(add1-if-integer (fn ,x)))(defun map-fn-e0-ord (l)(if (
onsp l)(insert-e0-ord-< (fn1 (
ar l)) (map-fn-e0-ord (
dr l)))0))On
e map-fn-e0-ord has been de�ned, let us now deal with the ACL2 me-
hani
al proof of the well-foundedness theorem for mul-rel, mp-true-listp andmap-fn-e0-ord as stated at the end of subse
tion 1.2 by multiset-extension-of--rel-well-founded. The �rst part of the theorem, whi
h establishes that (map-fn--e0-ord x) is an ordinal when (mp-true-listp x), it is not diÆ
ult, and 
an beproved in ACL2 with minor help form the user. The hard part of the theorem is toshow that map-fn-e0-ord is order-preserving. Here is an informal proof sket
h:Proof sket
h: Let us denote, for simpli
ity, the fun
tions fn1 and map-fn-e0-ord,as f and fmul, and the relation rel, mul-rel and e0-ord-< as <rel, <mul and <,respe
tively. Let M and N be two multisets of mp elements su
h that N <mul M . Wehave to prove that fmul(N) < fmul(M). We 
an apply indu
tion on the number ofelements of N . Note that M 
an not be empty, and if N is empty the result triviallyholds. So let us suppose that M and N are not empty. Let f(x), f(y) be the biggestelements of f [N ℄ and f [M ℄, respe
tively. Note that f(x) and f(y) are the 
ar elementsof fmul(N) and fmul(M), respe
tively. Sin
e f(x) and f(y) are ordinals, three 
asesmay arise:1. f(x) < f(y). Then, by de�nition of <, we have fmul(N) < fmul(M).2. f(x) > f(y). This is not possible: in that 
ase x is in N nM and by the multisetrelation de�nition, exists z in M n N su
h that x <rel z. Consequently f(z) >f(x) > f(y). This 
ontradi
ts the fa
t that f(y) is the biggest element of f [M ℄.3. f(x) = f(y). In that 
ase, x 2M , sin
e otherwise it would exist z 2M nN su
hthat x <rel z and the same 
ontradi
tion as in the previous 
ase appears. LetM 0 =M nfxg and N 0 = N nfxg. We have N 0 <mul M 0 and, in addition, fmul(N 0)and fmul(M 0) are the 
dr of fmul(N) and fmul(M), respe
tively. Indu
tion hy-pothesis 
an be applied here to 
on
lude that fmul(N 0) < fmul(M 0) and thereforefmul(N) < fmul(M): utTo lead ACL2 to the above informal proof sket
h, an indu
tion s
heme must besupplied as hint. This is a fun
tion suggesting su
h indu
tion s
heme (the fun
tionmax-fn1-list, omitted here, returns the element of a given list with the greatestvalue of fn1):(defun indu
tion-multiset (n m)(de
lare (xargs :measure (a
l2::len n)))(
ond ((atom n) (if (atom m) 1 2))((atom m) 3)(t (let* ((max-m (max-fn1-list m)) (max-n (max-fn1-list n))(fn1-max-m (fn1 max-m)) (fn1-max-n (fn1 max-n)))



(
ond ((equal fn1-max-m fn1-max-n)(if (member max-n m)(indu
tion-multiset (remove-one max-n n)(remove-one max-n m))5))((e0-ord-< fn1-max-n fn1-max-m) 6)((e0-ord-< fn1-max-m fn1-max-n) 7)(t 8))))))Using this indu
tion s
heme we proved the following theorem, whi
h is the hardpart of the theorem multiset-extension-of-rel-well-founded.(defthm map-fn-e0-ord-order-preserving(implies (and (mp-true-listp n) (mp-true-listp m)(mul-rel n m))(e0-ord-< (map-fn-e0-ord n) (map-fn-e0-ord m))):hints (("Goal" :indu
t (indu
tion-multiset n m)))))The proof of this result was not easy: lemmas to handle ea
h of the 
ases generatedby the above indu
tion s
heme have to be proved, obtaining a me
hani
al proof very
lose to the previous proof sket
h. See the book multiset.lisp in the web page fordetails about the me
hani
al proof.Well-foundedness of mul-rel has been proved in an abstra
t framework, with-out assuming any parti
ular properties of rel, mp and fn, ex
ept those 
on
erningwell-foundedness. This allows us to fun
tionally instantiate the theorem in order toestablish well-foundedness of the multiset relation indu
ed by any given well-foundedACL2 relation. We developed a ma
ro named defmul in order to me
hanize thispro
ess of fun
tional instantiation. The following se
tion des
ribes the ma
ro.2 The defmul ma
ro and the multiset bookWe de�ned a ma
ro defmul in order to provide a 
onvenient way to de�ne the multisetrelation indu
ed by a well-founded relation, and to de
lare the 
orresponding well-founded relation rule. We explain now how defmul is used.Let us suppose we have a previously de�ned (or 
onstrained) relationmy-rel, whi
his known to be well-founded on a set of obje
ts satisfying the measure propertymy-mpand justi�ed by the embedding fun
tion my-fn. That is to say, the following theorem,using variables x and y, has been proved (and stored as a well-founded relation rule):(defthm theorem-name(and (implies (my-mp x) (e0-ordinalp (my-fn x)))(implies (and (my-mp x) (my-mp y) (my-rel x y))(e0-ord-< (my-fn x) (my-fn y)))):rule-
lasses :well-founded-relation))In order to de�ne the (well-founded) multiset relation indu
ed by my-rel, we writethe following ma
ro 
all:(defmul (my-rel theorem-name my-mp my-fn x y))



The expansion of this ma
ro generates a number of ACL2 forms. You may use theACL2 trans1 
ommand in order to view the translated form of a defmul 
all. Themain non-lo
al events generated by this ma
ro 
all are:{ the de�nitions needed for the multiset relation indu
ed by my-rel: fun
tions exis-ts-my-rel-bigger, forall-exists-my-rel-bigger, and mul-my-rel analogousto the fun
tions given in subse
tion 1.2.{ the de�nition of the multiset measure property, my-mp-true-listp.{ the de�nition of map-my-fn-e0-ord, the embedding fun
tion from multisets toordinals.{ the well-foundedness theorem for mul-my-rel, my-mp-true-listp and map-my--fn-e0-ord. This theorem is proved by fun
tional instantiation from multiset--extension-of-rel-well-founded and is named multiset-extension-of-my--rel-well-foundedWe expe
t defmul to work without assistan
e from the user. After the above 
all todefmul, the fun
tion mul-my-rel is de�ned as a well-founded relation on multisets ofelements satisfying the property my-mp, indu
ed by the well-founded relation my-rel.From this moment on, mul-my-rel 
an be used in the admissibility test for re
ursivefun
tions to show that the re
ursion terminates.To know the list of names we need to supply to a defmul 
all, we have developeda tool to extra
t the information from the ACL2 world and print it. This ma
ro issimply 
alled in this way:(defmul-
omponents my-rel )This is only an informative tool, not a event. This ma
ro looks up the ACL2 world,and returns the list of names that are needed in the defmul 
all for my-rel.We have divided the results and tools about multisets into two books. The bookmultiset.lisp 
ontains the proof of the theorem multiset-extension-of-rel--well-founded shown in subse
tion 1.3. Names in this book are de�ned in the pa
kageMUL. The book defmul.lisp 
ontains the ma
ro de�nitions of defmul and defmul--
omponents and in
ludes the multiset book. See the web page for details.We have also in
luded some non-lo
al rules in multiset.lisp, whi
h helped usto prove the three examples presented in this paper, and we think they are generalenough to assist in other 
ases. Two relevant examples of these additional results andtools are:{ We have de�ned the fun
tion equal-set as an equivalen
e relation. This fun
tionimplements equality for sets, not for multisets, but it turned out useful in our
ase studies be
ause it 
an be proved to be a 
ongruen
e with respe
t to botharguments of forall-exists-my-rel-bigger:(defun equal-set (x y) (and (subsetp x y) (subsetp y x)))(defequiv equal-set)(def
ong equal-set iff forall-exists-my-rel-bigger l m 1)(def
ong equal-set iff forall-exists-my-rel-bigger l m 2)Sin
e the latter two 
ongruen
e rules depend on the parti
ular de�nition of my-rel,they are generated by every parti
ular 
all to defmul.



{ We also de�ne a meta rule to deal with di�eren
e of multisets represented by listswith �nal 
ommon suÆx. This rule rewrites expressions of the form(multiset-diff (list* x1 x2 : : : xm l) (list* y1 y2 : : : yk l))to the following equivalent expression (with respe
t to equal-set):(multiset-diff (list x1 x2 : : : xm) (list y1 y2 : : : yk))This meta rule is very useful2 when proving that a parti
ular multiset measurede
reases in every re
ursive 
all of a fun
tion: it is \usual" that the multisetobtained measuring the arguments of a re
ursive 
all is a list with the same �nalpart than the multiset obtained measuring the arguments in the original 
all.3 Case studies using multiset relationsIn the next subse
tions, we show three examples where well-founded multiset relationsplay an important role in the ACL2 proof of non-trivial termination properties. The�rst example is taken from [4℄. We use a multiset relation to show termination ofa tail-re
ursive version of A
kermann's fun
tion. In the se
ond example, also takenfrom [4℄, we use a multiset relation to admit an iterative version of M
Carthy's 91fun
tion. The third example is a proof of Newman's lemma for abstra
t redu
tionsystems: every terminating and lo
ally 
on
uent redu
tion relation has the Chur
h-Rosser property. This last example is part of a larger proje
t developed by the authorsin order to formalize some aspe
ts of equational reasoning using ACL2 [8, 9℄.All the examples show one fun
tion whose termination is proved using a well-founded multiset relation and a multiset measure fun
tion. When the fun
tion ispresented for the �rst time, its 
ode is 
ommented (using semi
olons), to emphasizethat a suitable measure has still to be given in order to pass the admissibility test.3.1 A tail-re
ursive version of A
kermann's fun
tionThe following is the standard de�nition of A
kermann's fun
tion in ACL2:(defun a
k (m n)(de
lare (xargs :measure (
ons (+ (nfix m) 1) (nfix n))))(
ond ((zp m) (+ n 1))((zp n) (a
k (- m 1) 1))(t (a
k (- m 1) (a
k m (- n 1))))))We now try to de�ne the following iterative program to 
ompute A
kerman'sfun
tion:; (defun a
k-it-aux (S z); (if (endp S); z; (let ((head (first S))2 Due to a bug in ACL2 version 2.5, this meta rule fails to be applied. This is not the 
ase in version2.4, where we originally developed this work. The problem in version 2.5 
an be �xed by in
ludinga pat
h that will be in
luded in Version 2.6. Thanks to Matt Kaufmann for the pat
h.



; (tail (rest S))); (
ond ((zp head) (a
k-it-aux tail (+ z 1))); ((zp z) (a
k-it-aux (
ons (- head 1) tail) 1)); (t (a
k-it-aux (
ons head (
ons (- head 1) tail)); (- z 1))))))); (defun a
k-it (m n) (a
k-it-aux (list m) n))The intended behavior of the fun
tion a
k-it-aux is that in every iterativestep (a
k-it-aux S z) = (a
k sk (a
k sk�1 : : : (a
k s1 z))), where S is a sta
kwith k elements, (s1 : : : sk). Therefore, it 
an be proved (and we did) that (a
k m n)is equal to (a
k-it m n).A proof of termination of a
k-it-aux may be diÆ
ult. Note that in the thirdre
ursive 
all the sta
k in
reases its number of elements while the se
ond argumentde
reases. Nevertheless in the �rst and the se
ond re
ursive 
alls, the se
ond argumentin
reases, although the sta
k does not in
rease its number of elements.As shown in [4℄, a multiset measure 
an be used to prove termination of a
k--it-aux. In this 
ase, we use multisets of pairs of natural numbers, where pairsare supposed to be ordered by the lexi
ographi
 produ
t of the usual order betweennaturals. The measure asso
iated to arguments S = (s1 : : : sk) and z is the multisetf(s1; z); (s2 + 1; 0) : : : ; (sk + 1; 0)g.Using defmul, we 
an easily replay in ACL2 the proof given in [4℄. First of all,we de�ne the well-founded relation on pairs of natural numbers, 
alled here rel-a
k.This 
an be done by the following sequen
e of events:(defun rel-a
k (p1 p2)(
ond ((< (
ar p1) (
ar p2)) t)((= (
ar p1) (
ar p2)) (< (
dr p1) (
dr p2)))))(defun mp-a
k (p)(and (
onsp p)(integerp (
ar p)) (>= (
ar p) 0)(integerp (
dr p)) (>= (
dr p) 0)))(defun fn-a
k (p) (
ons (+ 1 (
ar p)) (
dr p)))(defthm rel-a
k-well-founded(and (implies (mp-a
k x)(e0-ordinalp (fn-a
k x)))(implies (and (mp-a
k x) (mp-a
k y) (rel-a
k x y))(e0-ord-< (fn-a
k x) (fn-a
k y)))):rule-
lasses :well-founded-relation)We de�ne the well-founded multiset relation indu
ed by rel-a
k on multisets ofpairs of natural numbers, using the following defmul 
all:(defmul (rel-a
k rel-a
k-well-founded mp-a
k fn-a
k x y))Now we have de�ned the fun
tion mul-rel-a
k as a well-founded relation withmeasure property mp-a
k-true-listp and embedding fun
tion map-fn-a
k-e0-ord.



The relation mul-rel-a
k 
an be used as a well-founded relation in the the admissibil-ity test for the fun
tion a
k-it-aux, with a suitable measure fun
tion. The fun
tionmeasure-a
k-it-aux implements the multiset measure sket
hed above, using theauxiliary fun
tion get-pairs-add1-0:(defun get-pairs-add1-0 (S)(if (endp S)nil(
ons (
ons (+ (nfix (
ar S)) 1) 0) (get-pairs-add1-0 (
dr S)))))(defun measure-a
k-it-aux (S z)(if (endp S)nil(
ons (
ons (nfix (
ar S)) (nfix z))(get-pairs-add1-0 (
dr s)))))We 
an now prove termination of a
k-it-aux, giving mul-rel-a
k as well-foun-ded relation and measure-a
k-it-aux as measure fun
tion:(defun a
k-it-aux (s z)(de
lare (xargs :measure (measure-a
k-it-aux s z):well-founded-relation mul-rel-a
k:hints ....))(if (endp s)z(let ((head (first s))(tail (rest s)))(
ond ((zp head) (a
k-it-aux tail (+ z 1)))((zp z) (a
k-it-aux (
ons (- head 1) tail) 1))(t (a
k-it-aux (
ons head (
ons (- head 1) tail))(- z 1)))))))Given the measure and the well-founded relation in the de�nition of a
k-it-aux,the proof of its termination is not diÆ
ult, and only a very few previous lemmas areneeded, in order to prove that the multiset measure given de
reases in ea
h re
ursive
all. See the book a
kermann.lisp in the web page for details. Moreover, after theadmission of the de�nition we 
an de�ne the fun
tion a
k-it as shown above, and�nally prove in ACL2 the following theorem:(defthm a
k-it-equal-a
k(equal (a
k-it m n) (a
k m n)))3.2 M
Carthy's 91 fun
tionThis example is taken from [4℄ and shows admissibility of an iterative version of there
ursive de�nition of M
Carthy's 91 fun
tion. For a detailed treatment (in ACL2) ofM
Carthy's 91 fun
tion and its generalization given by Knuth, we urge the interestedreader to 
onsult the work of Cowles [3℄, where proofs are done over arbitrary ar
hi-median �elds. Our intention here is only to show how multisets 
an help to prove anon-trivial termination property.



The \91 fun
tion" is a fun
tion a
ting on integers, originally given by M
Carthyby the following re
ursive s
heme:(defun m
 (x)(de
lare (xargs :mode :program))(
ond ((not (integerp x)) x)((> x 100) (- x 10))(t (m
 (m
 (+ x 11))))))See [3℄ for a des
ription of ACL2's resistan
e to a

ept this de�nition (in logi
mode). Instead, we try to de�ne the following iterative version of that re
ursives
heme, as given by the following fun
tions:; (defun m
-aux (n z); (
ond ((or (zp n) (not (integerp z))) z); ((> z 100) (m
-aux (- n 1) (- z 10))); (t (m
-aux (+ n 1) (+ z 11))))); (defun m
-it (x) (m
-aux 1 x))As we will show, the re
ursive algorithm given by m
-it and m
-aux is a somewhat
ompli
ated way to 
ompute the following fun
tion:(defun f91 (x)(
ond ((not (integerp x)) x)((> x 100) (- x 10))(t 91)))The intended behavior of the fun
tion m
-aux is that in every iterative step(m
-aux n z)= (f91 (f91 n: : :(f91 z))) and, 
onsequently, (m
-it x)=(f91 x).Proving termination of m
-aux may be diÆ
ult: note the di�erent behavior of thetwo re
ursive 
alls. In [4℄, a multiset measure is given to justify termination of thefun
tion: every re
ursive 
all of (m
-aux n z) is measured with the following mul-tiset: fz; (f91 z); (f91 (f91 z)); : : : ; (f91 (f91 n�1: : : (f91 z)))g, and multisetsare 
ompared with respe
t to the multiset relation indu
ed by the \greater-than"relation de�ned for integers equal 3 or less than 111. In the sequel, we des
ribe howACL2 is guided to this termination argument.First, we de�ne the well-founded relation rel-m
 that will be extended later toa multiset relation. Note that in this 
ase, the measure property is t, although onlyintegers under 111 are 
omparable with respe
t to rel-m
. One 
ould think thatintegerp-<=-111 should be the measure property of the well-founded relation, in-stead of t. But there is a subtle di�eren
e: the multiset measure we will de�ne 
an
ontain elements greater than 111, although those elements are not 
omparable w.r.t.rel-m
. The following sequen
e of events de�nes rel-m
 and stores it as a well foundedrelation:3 Performing the ACL2 proof, we dis
overed a minor bug in the proof given in [4℄: it is ne
essary to
onsider integers equal or less than 111, and not only stri
tly less than 111.



(defun integerp-<=-111 (x)(and (integerp x) (<= x 111)))(defun rel-m
 (x y)(and (integerp-<=-111 x) (integerp-<=-111 y) (< y x)))(defun fn-m
 (x)(if (integerp-<=-111 x) (- 111 x) 0))(defthm rel-m
-well-founded(and (e0-ordinalp (fn-m
 x))(implies (rel-m
 x y)(e0-ord-< (fn-m
 x) (fn-m
 y)))):rule-
lasses :well-founded-relation)We de�ne the well-founded multiset relation indu
ed by rel-m
 on multisets(true-listp obje
ts in this 
ase), using the following defmul 
all:(defmul (rel-m
 rel-m
-well-founded t fn-m
 x y))Through this ma
ro 
all, we have de�ned the well-founded relation mul-rel-m
(with measure property true-listp and embedding fun
tion map-fn-m
-e0-ord),allowing us to use it in the admissibility test for the fun
tion m
-aux, with the measurefun
tion given above, and implemented by the fun
tion measure-m
-aux:(defun measure-m
-aux (n z)(if (zp n) nil (
ons z (measure-m
-aux (- n 1) (f91 z)))))We 
an now de�ne the fun
tion m
-aux, giving mul-rel-m
 and measure-m
-auxas the well-founded relation and measure fun
tion to be used, respe
tively:(defun m
-aux (n z)(de
lare (xargs :measure (measure-m
-aux n z):well-founded-relation mul-rel-m
))(
ond ((or (zp n) (not (integerp z))) z)((> z 100) (m
-aux (- n 1) (- z 10)))(t (m
-aux (+ n 1) (+ z 11)))))The fun
tion is admitted with a minor help from the user (surprisingly, only onespe
i�
 lemma is needed). See the book m

arthy-91.lisp in the web page for details.After this de�nition we 
an de�ne the fun
tion m
-it as above, and show that veri�esthe original re
ursion s
heme given by M
Carthy. Moreover, we 
an even prove veryeasily that m
-it is equal to f91 (previously proving a suitable generalization, assket
hed above):(defthm m
-it-re
ursive-s
hema(equal (m
-it x)(
ond ((not (integerp x)) x)((> x 100) (- x 10))



(t (m
-it (m
-it (+ x 11)))))))(defthm m
-it-equal-f91(equal (m
-it x) (f91 x)))3.3 Newman's lemmaAbstra
t redu
tion systems: Newman's lemma is a result about abstra
t redu
-tion systems, whi
h plays an important role in the study of de
idability of 
ertainequational theories. We give a short introdu
tion to basi
 
on
epts and de�nitionsfrom abstra
t redu
tions. See [1℄ for more details.Redu
tions system are simply an abstra
t formalization of step by step a
tivities,su
h as the exe
ution of a 
omputation, the gradual transformation of an obje
tuntil some normal form is rea
hed, or the traversal of some dire
ted graph. The term\redu
tion" gives the intuition that an element of less 
omplexity is obtained in everystep. Formally speaking, an abstra
t redu
tion is simply a binary relation ! de�nedon a set A. We will denote as  , $, �! and �$ respe
tively the inverse relation, thesymmetri
 
losure, the re
exive-transitive 
losure and the equivalen
e 
losure. Thefollowing 
on
epts are de�ned with respe
t to a redu
tion relation !. We say that xand y are equivalent if x �$ y. We say that x and y are joinable (denoted as x # y) ifthere exists u su
h that x �! u � y. An element x is in normal form (or irredu
ible)if there is no z su
h that x! z.A redu
tion relation has the Chur
h-Rosser property if every two equivalent el-ements are joinable. An equivalent property is 
on
uen
e: for all x; u; v su
h thatu � x �! v, then u # v. In a redu
tion relation with the Chur
h-Rosser property, twodistin
t elements in normal form 
annot be equivalent. A redu
tion relation is nor-malizing if every element has an equivalent normal form (denoted as x #). Obviously,every terminating (as de�ned in subse
tion 1.1) redu
tion is normalizing. Chur
h-Rosser and normalizing redu
tion relations have a ni
e property: provided normalforms are 
omputable and identity in A is de
idable, then the equivalen
e relation�$ is de
idable. This is due to the fa
t that, in that 
ase, x �$ y i� x #= y #, for allx; y 2 A.Con
uen
e 
an be lo
alized when the redu
tion is terminating. In that 
ase, anequivalent property is lo
al 
on
uen
e: for all x; u; v su
h that u x! v, then u # v.The following theorem, named Newman's lemma, states this:THEOREM 3 (Newman's lemma). Let ! be a terminating and lo
ally 
on
uentredu
tion relation. Then ! is 
on
uent.This result allows to make easier the study of 
on
uen
e (or equivalently, of theChur
h-Rosser property) for terminating redu
tion relations. One has only to dealwith joinability of lo
al divergen
es. This is 
ru
ial in the development of 
omple-tion algorithms for term rewriting systems in order to obtain de
ision pro
edures forequational theories [1℄.Formalization of Newman's lemma in ACL2: Every redu
tion relation hastwo important aspe
ts. On the one hand, a de
larative aspe
t, sin
e every redu
tionrelation des
ribes its equivalen
e 
losure. On the other hand, a 
omputational aspe
t,des
ribing a stepwise a
tivity, a gradual transformation of obje
ts until (eventually)



a normal form is rea
hed. Thus, if x ! y, the point here is that y is obtained fromx by applying some kind of transformation or abstra
t operator. In its most abstra
tformulation, we 
an view a redu
tion as a binary fun
tion that, given an element andan operator, returns another element, performing a one-step redu
tion. Of 
ourse notany operator 
an be applied to any element: we need a boolean binary fun
tion totest if it is legal to apply an operator to an element.The dis
ussion above leads us to formalize a general abstra
t redu
tion relation us-ing two partially de�ned fun
tions: redu
e-one-step and legal; (redu
e-one-stepx op) represents a one-step redu
tion applying operator op to x, and (legal x op)represents a test to 
he
k if the operator op may be applied to x4. It should be re-marked that no predi
ates are used to re
ognize neither operators nor elements, thusensuring abstra
tness.These two fun
tions are introdu
ed using en
apsulate. In order to formalizeNewman's lemma, additional properties are in
luded to assume termination and lo
al
on
uen
e of the redu
tion relation, en
oding in this way the assumptions of thetheorem we want to prove. This is shown in �gure 1. In the following, we des
ribe indetail the events appearing in it.Before des
ribing how we formalized termination and lo
al 
on
uen
e, we showhow we 
an de�ne the equivalen
e 
losure of a redu
tion relation. In order to de�nex �$ y, we have to in
lude an argument with a sequen
e of steps x = x0 $ x1 $x2 : : : $ xn = y. An abstra
t proof (or simply, a proof) is a sequen
e of legal stepsand ea
h proof step is a stru
ture5 r-step with four �elds: elt1, elt2 (the elements
onne
ted), dire
t (a boolean value indi
ating if the step is dire
t or inverse) andoperator:(defstru
ture r-step dire
t operator elt1 elt2)A proof step is legal if one of its elements is obtained by applying the (legal)operator to the other, in the sense indi
ated. The fun
tion proof-step-p implementsthis 
on
ept. The fun
tion equiv-p implements the equivalen
e 
losure of our abstra
tredu
tion relation: (equiv-p x y p) 
he
ks if p is a proof justifying that x �$y. Seethe de�nitions of proof-step-p and equiv-p in item (b) of �gure 1.Two proofs justifying the same equivalen
e will be said to be equivalent. We hopeit will be 
lear from the 
ontext when we talk about abstra
t proofs obje
ts and proofsin the ACL2 system.Let us now see how 
an we formalize termination. Our formalization is based onthe following meta-theorem: a redu
tion is terminating if and only if it is 
ontainedin a well-founded partial ordering (axiom of 
hoi
e needed). Thus, let rel6 be a givengeneral well-founded partial order, as de�ned in item (a) of �gure 1.This well-founded partial order rel will be used to state termination of the generalredu
tion relation de�ned, by assuming that every legal redu
tion step returns asmaller obje
t, with respe
t to rel. See item (b) in �gure 1 for a statement of thisassumed property.The Chur
h-Rosser property and lo
al 
on
uen
e 
an be rede�ned with respe
tto the form of a proof. We de�ne (omitted here) fun
tions to re
ognize proofs with4 In [9℄ a third fun
tion redu
ible is introdu
ed, in order to formalize 
omputation of normal forms.Nevertheless, in the proof of Newman's lemma we don't need to deal with normal forms.5 We used the defstru
ture tool developed by Bishop Bro
k [2℄.6 Con
i
ts with names used in the multiset.book are avoided using pa
kages.



;;; (a) A well-founded partial order:(en
apsulate((rel (x y) t) (fn (x) t))...(defthm rel-well-founded-relation(and (e0-ordinalp (fn x))(implies (rel x y) (e0-ord-< (fn x) (fn y)))):rule-
lasses (:well-founded-relation :rewrite))(defthm rel-transitive(implies (and (rel x y) (rel y z)) (rel x z))));;; (b) A terminating and lo
ally 
onfluent redu
tion relation:(en
apsulate((legal (x u) boolean) (redu
e-one-step (x u) element)(redu
ible (x) boolean) (transform-lo
al-peak (x) proof))....(defun proof-step-p (s)(let ((elt1 (elt1 s)) (elt2 (elt2 s))(operator (operator s)) (dire
t (dire
t s)))(and (r-step-p s)(implies dire
t (and (legal elt1 operator)(equal (redu
e-one-step elt1 operator)elt2)))(implies (not dire
t) (and (legal elt2 operator)(equal (redu
e-one-step elt2 operator)elt1))))))(defun equiv-p (x y p)(if (endp p)(equal x y)(and (proof-step-p (
ar p)) (equal x (elt1 (
ar p)))(equiv-p (elt2 (
ar p)) y (
dr p)))))(defthm terminating(implies (legal x op) (rel (redu
e-one-step x op) x)))(defthm lo
ally-
onfluent(let ((valley (transform-lo
al-peak p)))(implies (and (equiv-p x y p) (lo
al-peak-p p))(and (steps-valley valley) (equiv-p x y valley))))))Fig. 1. Assumptions of Newman's lemmaparti
ular shapes (valleys and lo
al peaks): lo
al-peak-p re
ognizes proofs of theform v  x! u and steps-valley re
ognizes proofs of the form v �! x � u.To deal with the assumption of lo
al 
on
uen
e, note that a redu
tion is lo
ally
on
uent i� for every lo
al peak proof there is an equivalent valley proof. Therefore,in order to state lo
al 
on
uen
e of the general redu
tion relation de�ned, we assumethe existen
e of a fun
tion transform-lo
al-peak whi
h returns a valley proof forevery lo
al peak proof. See again item (b) in �gure 1 for a statement of this assumedproperty.



Having established the assumptions, in order to prove Newman's lemma we mustshow 
on
uen
e of this general redu
tion relation assumed to be terminating andlo
ally 
on
uent. Instead of 
on
uen
e, we prove the Chur
h-Rosser property, whi
his equivalent. Therefore, we must prove that for every proof there exists an equivalentvalley proof, i.e., we have to de�ne a fun
tion transform-to-valley and prove that(transform-to-valley p) is a valley proof equivalent to p. This is the statement ofNewman's lemma:(defthm Newman-lemma(let ((valley (transform-to-valley p)))(implies (equiv-p x y p)(and (steps-valley valley) (equiv-p x y valley)))))A suitable de�nition of transform-to-valley and a proof of this theorem inACL2 is shown in the following subse
tion. The hard part of the proof is to showtermination of transform-to-valley. It will be done with the help of a well-foundedmultiset relation.An ACL2 proof of Newman's lemma: The proof 
ommonly found in the litera-ture [1℄, is done by well-founded indu
tion on the terminating redu
tion relation. Ourapproa
h is more 
onstru
tive and is based on a proof given in [7℄. We have to de�nea fun
tion transform-to-valley whi
h transforms every proof in a equivalent valleyproof. For that purpose, we 
an use the fun
tion transform-lo
al-peak, assumed totransform every lo
al peak proof in a equivalent valley proof. Thus, the fun
tion weneed is de�ned to iteratively apply repla
e-lo
al-peak, (whi
h repla
es the �rst lo-
al peak subproof by the equivalent subproof given by transform-lo
al-peak) untilthere are no lo
al peaks (
he
ked by exists-lo
al-peak). The following is the de�-nition of transform-to-valley (we omit here the de�nition of repla
e-lo
al-peakand exists-lo
al-peak):;(defun transform-to-valley (p); (if (not (exists-lo
al-peak p)); p; (transform-to-valley (repla
e-lo
al-peak p))))This fun
tion is not admitted without help from the user. The reason is that whena lo
al peak in a proof is repla
ed by an equivalent valley subproof, the length of theproof obtained may be larger than the length of the original proof. Nevertheless,the key point here is that every element of the new subproof is smaller (w.r.t. thewell-founded relation rel) than the greatest element of the lo
al peak. If we mea-sure a proof as the multiset of the elements involved in it, then repla
ing a lo
alpeak subproof by an equivalent valley subproof, we obtain a proof with smaller mea-sure with respe
t to the well-founded multiset relation indu
ed by rel. The fun
tionproof-measure returns this measure for a given proof: it 
olle
ts the elt1 elementsof every proof step in a proof.(defun proof-measure (p)(if (endp p)nil(
ons (elt1 (
ar p)) (proof-measure (
dr p)))))



Using defmul, we de�ne the well-founded relation mul-rel, indu
ed by the well-founded relation rel introdu
ed in the previous subse
tion:(defmul (rel rel-well-founded-relation-on-mp t fn x y))The main result we proved states that the proof measure de
reases (with respe
tto the well-founded relation mul-rel) if a lo
al-peak is repla
ed by an equivalentvalley subproof:(defthm transform-to-valley-admission(implies (exists-lo
al-peak p)(mul-rel (proof-measure (repla
e-lo
al-peak p))(proof-measure p))):rule-
lasses nil)With this theorem, admission of the fun
tion transform-to-valley is now pos-sible, giving a suitable hint:(defun transform-to-valley (p)(de
lare (xargs :measure (proof-measure p):well-founded-relation mul-rel:hints(("Goal" :use(:instan
e transform-to-valley-admission)))))(if (not (exists-lo
al-peak p))p(transform-to-valley (repla
e-lo
al-peak p))))On
e transform-to-valley is admitted (whi
h is the hard part of the theorem),the following two theorems are proved, and this trivially implies Newman's lemma asstated at the end of subse
tion 3.3.(defthm equiv-p-x-y-transform-to-valley(implies (equiv-p x y p)(equiv-p x y (transform-to-valley p))))(defthm valley-transform-to-valley(implies (equiv-p x y p)(steps-valley (transform-to-valley p))))The me
hani
al proof of Newman's lemma is the most diÆ
ult of the three exam-ples presented here. Lemmas have to be proved to simplify the multiset di�eren
esappearing in the 
onje
ture generated by the termination proof of transform-to--valley. See the �le newman.lisp in the web page for details. We also provide booksproving de
idability of the equivalen
e relation generated by a terminating and lo
ally
on
uent redu
tion relation. To see how this result 
an be exported to the study ofequational theories, see [9℄.



4 Con
lusionsWe have presented a formalization of multiset relations in ACL2, showing how they
an be used as a tool for proving non-trivial termination properties of re
ursive fun
-tions in ACL2. We have de�ned the multiset relation indu
ed by a given relationand proved a theorem establishing well-foundedness of the multiset relation indu
edby a well-founded relation. This theorem is formulated in an abstra
t way, so thatfun
tional instantiation 
an be used to prove well-foundedness of 
on
rete multisetrelations.We have presented also a ma
ro named defmul, implemented to provide a 
onve-nient tool to de�ne well-founded multiset relations indu
ed by well-founded relations.This ma
ro allows the de�nition of these multiset relations in a single step.Three 
ase studies are presented, to show how this tool 
an be useful in obtainingproofs of non-trivial termination properties of fun
tions de�ned in ACL2. The �rst
ase study is the de�nition of a tail-re
ursive version of A
kermann's fun
tion. These
ond is the admissibility of a de�nition of M
Carthy's 91 fun
tion, and a study of itsproperties. The third is a proof of Newman's lemma for abstra
t redu
tion relations.This work arose as part of a larger proje
t, trying to formalize properties of ab-stra
t redu
tion relations, equational theories and term rewriting systems [8, 9℄. Inthat work, ACL2 is used as a meta-logi
 to study properties of a formal proof system,namely equational logi
. Newman's lemma is a key result needed to prove de
idabilityof equational theories given by 
omplete term rewriting systems [1℄. On
e formalizedmultiset relations and used in the proof of Newman's lemma, we de
ided to make atool (defmul) whi
h allowed to export the results on multisets to other 
ontexts. Totest this implementation, we applied it to two examples des
ribed in [4℄: A
kermann'sfun
tion and M
Carthy's 91 fun
tion.Further work has to be done to provide a good library of lemmas to handle mul-tisets and their operations. We plan also to improve the use of defmul, in order toprovide only the name of the well-founded relation, avoiding to give the fun
tions,variables and event asso
iated with it. Updated versions of the books will be in theweb page.The examples presented here are all of a theoreti
al nature. Nevertheless, a re-mark given at the end of se
tion III in [4℄, pointing an heuristi
 pro
edure for provingtermination of loops using multisets, suggests that this kind of orderings 
ould beapplied to a wider 
lass of termination problems and that the sear
h for a suitablemultiset measure 
ould be me
hanized to some extent. Another appli
ation of multi-sets orderings is to provide the basis for some proofs of termination of term rewritingsystems [1℄. We intend to make further resear
h following these two lines.Referen
es1. Baader, F., and Nipkow, T. Term rewriting and all that. Cambridge University Press, 1998.2. Bro
k, B. defstru
ture for ACL2 version 2.0. Te
hni
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