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 The Journal of Symbolic Logic

 Volume 78, Number 4. Dec. 2013

 ON THE OPTIMALITY OF CONSERVATION RESULTS FOR LOCAL

 REFLECTION IN ARITHMETIC

 A. CORDÓN-FRANCO. A. FERNÁNDEZ-MARGARIT. AND F. F. LARA-MARTÍN

 Abstract. Let T be a recursively enumerable theory extending Elementary Arithmetic EA. L. D.
 Beklemishev proved that the I2 local reflection principle for T, Rfn^ (T), is conservative over the Zi local

 reflection principle, Rfn^ (T), with respect to boolean combinations of E 1 -sentences; and asked whether
 this result is best possible. In this work we answer Beklemishev's question by showing that Ü2 -sentences

 are not conserved for T - EA + "f is total " where / is any nondecreasing computable function with

 elementary graph. We also discuss how this result generalizes to n > 0 and obtain as an application that

 for n > 0. /11"., is conservative over /!„ with respect to n„+2 -sentences.

 §1. Introduction. This work was motivated by a question of L. D. Beklemishev
 on the optimality of a conservation result for reflection principles in first order
 arithmetic. Reflection principles for a given theory T are axiom schemes expressing
 the soundness of T. More precisely, if T is a recursively enumerable (r.e.) arithmetic
 theory extending Elementary Arithmetic E A and Or M = Prfr(x, y) denotes a
 standard provability predicate for T , the local reflection principle for T is the axiom
 scheme given by

 Rfn(r): D7(r(^n) - >> </?,

 where tp ranges over all sentences of the language of T and rv?n denotes (the numeral
 of) the Godei number of ip. The term local refers to the fact that the scheme is
 restricted to sentences, in contrast with the uniform reflection principle for 7' where
 formulas with free variables are allowed:

 RFN(r):

 In [3], using provability logic techniques, Beklemishev showed that over T, full lo-
 cal reflection Rfn (T) is T -conservative over local reflection restricted to T-sentences,
 denoted Rfnr(7"), for T = or n„. More precisely,

 Theorem 1.1 (Beklemishev, [3]). 1. Forn > 1, r + Rfn(T) is conservative over
 T + Rfn z„(T) with respect to Tn-sentences ( and dually for n„).

 2. T + Rfn(r) is conservative over T + Rfn^, (7") with respect to &ÇL') (= boolean
 combinations ofL') sentences.
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 1 026 CORDÓN-FRANCO, FERNÁNDEZ-MARGARIT, AND LARA-MARTÍN

 In [3] Beklemishev noted that part (1) in the above theorem is best possible with
 respect to arithmetic complexity and in [6] he raised the problem of determining
 the optimality of part (2). In general, T + Rfn(r) is neither II2 nor Z2 conservative
 over T + Rfni, ( T) , for otherwise T + Rfnn2 ( T ) (resp. T + Rfni2 ( 7") ) would collapse
 to T + Rfns, (T) and it is known that the local reflection hierarchy is proper unless
 its £1 level is already inconsistent. Nevertheless, it follows from part (2) that both
 T + Rfnn2(^) and T + Rfni2(r) are & (Si)- -conservative over T + Rfns, (T) and
 now there could be room for improvement. In fact, by Proposition 4.5 in [5]
 conservativity of T + Rfnn2(7") over T + Rfni, (7") can be extended to ^-sentences
 if T Ç n2. In contrast, the corresponding question for T + Rfni2 (7") seems to have
 been open.

 Question 1 (Beklemishev). Is T + Rfns2 (T) conservative over T + Rfns, (T) with
 respect to II2 -sentences?

 Typically, non ^-conservation can be shown by exhibiting a computable function
 provably total in a theory and not in the other. However, Rfni2(7) has quantifier
 complexity I2 and so T+ Rfns2 ( T ) and T + Rfni, ( T ) share the same class of provably
 total functions. This motivates the following problem on general arithmetic theories,
 of which Beklemishev's Question 1 for T C ¿P(E 1) is a particular case (Thr(S)
 denotes the T-consequences of a theory S):

 Question 2. Suppose S contains EA. Are Thn2(Ths2(5)) and Th^^S) de-
 ductively equivalent?

 In this work we solve in the negative both questions for a wide class of theories and
 apply the proof ideas to obtain some new results on local reflection. Our methods
 are model-theoretic and we exploit the connections between reflection principles
 and induction schemes in the spirit of Kreisel and Lévy' [13].

 The paper is organized as follows. Sections 1 and 2 are introductory. Section 3
 presents a preliminary result that puts in context the negative answer to Question 2.
 In Section 4 we show that Question 1 has the negative answer for T = EA +
 "/ is total" where / is any nondecreasing computable function with elementary
 graph; and, similarly, we solve in the negative Question 2 for every consistent, r.e.
 extension of EA+Rfnz2(EA). Both results are derived from Theorem 4.4, which
 is an unboundness theorem of independent interest. In Section 5, we deal with
 results à la Kreisel-Lévy relating local reflection and various forms of induction.
 We improve known results for Rfns2 (T) and Thni (T + Rfn(r)) as well as we fill an
 obvious gap in our understanding of partial local reflection by obtaining a Kreisel
 and Lévy-like theorem for Rfni,(r). Finally, in Section 6 we discuss how our
 results generalize to n > 0 and obtain a new conservation theorem for parameter
 free induction: / n~+1 is n„+2-conservative over 7Z„.

 §2. Basic notions and notation. Our notation is standard and we assume that the
 reader is familiar with the basic notions of first order arithmetic (we recommend
 [11] and [10] for a detailed introduction to the subject; [12] for results on parameter
 free schemes; and [6] for information on reflection principles). To a large extent, our
 results are independent of the language we are working in. Nevertheless, for the sake

 of definiteness we assume that we work in the language Jz?exP = {0, 1,4-,-, <, exp}
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 ON THE OPTIMALITY OF CONSERVATION RESULTS 1 027

 extending that of Peano Arithmetic PA with a symbol for the function 2X. Also,
 we assume that all the theories we shall deal with are extensions of Elementary
 Arithmetic EA, which is axiomatized by a finite set of defining axioms for the
 symbols in j?ex p plus the scheme of induction for bounded (elementary) formulas
 of -S^exp- Finally, we also assume, sometimes without explicit mention, that every
 theory T for which we consider reflection principles is an elementary presented
 extension of EA; the set of its axioms being represented by an elementary formula
 of the form Axea(x) V Axt(x).

 We recall some notation on parameter free induction schemes from [12]. If T is
 a class of formulas, the scheme IY~ is given by

 y>(0) A Vx ((p{x) - » (p(x + 1)) - > Vx (p(x),

 where (p(x) G T~ (we write (p(x) G T~ to mean that ip is in Y and contains no
 other free variables than x).

 We will be also concerned with a number of inference rules associated to induction

 principles. Given an inference rule R and a theory 7' T + R denotes the closure
 of T under R and first order logic; while [T, R] denotes the closure of T under
 non-nested applications of R and first order logic. A rule R' is reducible to Ri
 if [T,Ri] C [T,R2] for every theory T extending EA; two rules R' and Ri are
 congruent , written R' = R2, if they are mutually reducible to each other.

 Finally, if 21 and 03 are S?exp -structures we write 21 03 to mean that 21 is a
 -elementary substructure of 03, i.e., for all <p(x) G and a G 21, 21 ļ= <p(a)

 iff © 1= <p(a). Natural examples of X„ -elementary substructures are provided by
 submodels of !„■ -definable elements, JT,,(2l). Recall that a is a -definable element
 of a model 21 if there is <p{x) GÏ„ such that a is the unique element satisfying ip{x)
 in 21, and

 • 3?n{ 21) denotes the set of all -definable elements of 21; J^(2l) denotes the
 initial segment of 21 determined by ^„(21).

 • ^(21) = ^„(21,^(21)) denotes the set of all elements of 21 which are In-
 definable with a parameter from J^(2t).

 Note that for n > 1, if 21 1= EA +/!"_! then 3Tn( 21) <n 21, see e.g., [10].

 §3. A preliminary result. At first glance the negative answer to Question 2 might
 seem to be rather obvious. However, it should be compared with the following result
 stating that a dual version of that question has a positive answer. Thus, our work
 also brings into evidence the different behavior of the dual classes Thn2(Th22(5))
 and Th£2(Thn2(S)) for a general arithmetic theory S.

 Proposition 3.1. If S implies EA then Thi2(Thn2(S)) = Th^(£l)(5).

 Proof. It is obvious that Th^(£l)(S) C Thz2(Thn2(S)). For the opposite direc-
 tion, assume that 21 is a model of Th^(I])(5'). Consider the theory

 5:' = ThSl (21) + Thn, (21) -h .S,

 where Thp(2l) denotes the set of all T-sentences which are true in the model 21.
 Clearly, Sr is consistent. Let 03 be a model of S' . Then 3£' (21) -<1 21 and 3£' (03)
 03; and, as a consequence, 3£' (03) 1= Thn2(S) and2l |= Thi2(^i(2l)). Butitfollows
 from the fact that 21 and 03 satisfy the same Si -sentences that «3Ti(2l) and ^(03)
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 1028 CORDÓN-FRANCO, FERNÁNDEZ-MARGARIT, AND LARA-MARTÍN

 are isomorphic (if <p{x) defines a G 21, map a to the unique b G 93 satisfying </?(x)
 in 93). Consequently, 21 1= Thi2(Thn2(S)). H

 Note that the presence of the exponentiation in S is irrelevant and the result easily

 generalizes to Th£ll+2(ThnJ1+2(S)) ee Th«(Xn|)(S) if S contains /I".
 Proposition 3.1 provides us with a recipe for lifting a .'3Í (X i ) -conservation result

 to ^-conservation. Namely, if T' is a Il2-theory extending Ao-induction and T' is
 (I i) -conservative over 72, then I^-sentences are also conserved. In particular,

 this gives us a simple proof of the known fact that the dual version of Question 1
 has a positive answer for ri2-theories, i.e., T + Rfnn2(r) is I2 -conservative over
 r + RfnZl(r) ifrcn2.
 Despite its simplicity it seems that Proposition 3.1 has not been widely known,

 although some cases of theories that turn out to have axiomatizations of unexpect-
 edly low quantifier complexity have been observed in the literature. For example,
 in [12] it is proved that, for n > 0, the &8(Ln+' ) -consequences of axiomatize the
 I„+2-consequences of /£„. Also, in [5] it is shown that over T, the ^-consequences
 of RFNi, (T) (uniform reflection restricted to 1 1 formulas) can be axiomatized by
 Rfns, (T) Ç Both results can be seen as particular cases of Proposition 3.1.

 §4. An unboundedness theorem for Thn2 ( T + Rf ni2 ( T ) ) . The so-called unbound-
 edness theorems due to Kreisel and Lévy [13] state that Rfnn„(r) is not contained
 in any consistent finite extension of T of complexity (and dually for Rfn^ (T)).
 Here we obtain a variant of these results for the II2 -consequences of T + Rfns2 (T).
 To this end, a crucial fact is that, somewhat surprisingly, Rfni2(r) allows for a
 modicum of parametric Si -induction. In [8], we proved that Iīl~ is equivalent to
 the following local variants of the -induction scheme, where the conclusion of the
 induction axiom is relativized to definable elements:

 • The scheme 7(1" , S£n) is given by

 </?(0) A Vx (<p(x) - > (p{x + 1)) - > Vx G 9Zn </?(x),

 where ip(x) G and a quantifier of the form Vx G 3ťn in front of a formula
 *P(x) is intended as a shorthand for the scheme:

 {Vx [Defc(x) ->¥(*)]:<* GX„}

 (we write Def¿(x, i>) to denote S (x, v ) A Vx, x' (ô(x9v) Aô(x',v) x = x '),
 for a formula ô(x, v), or Def«$(x) if ô(x) does not contain any parameters).

 • The scheme / (E„ , Sn , ) is given by:

 Vv G [<p{0, v) A Vx (<¿>(x, v ) - > cp(x + 1, v)) -> Vi G cp(x, v)],

 where <p(x, v) a quantifier Vxg/«T(^) unravels to

 {Vx, j [Defsiy) A * < y -+ ¥(x)]: Ö G !„},

 and a quantifier of the form '/x G *F(x) unravels to

 {Vx, y, z [Defo, (z) A y < z A Def¿2(x, y) *F(x)]: ö',ö2 G S„}.

 The equivalence between Iīl~ and the above schemes was essentially proved
 in [8], see (the proofs of) Proposition 2.1 and Theorem 2.3 there.

 Proposition 4. 1 . Over EA +/E~_ x , Iīl~ = I (S~ , Xn ) = / (I„ , ) .
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 ON THE OPTIMALITY OF CONSERVATION RESULTS 1029

 Since T + Rfn i2(r) contains / by Theorem 1 of [4], it follows that

 Proposition 4.2. T + Rfnz2 ( T ) implies / (S ',*f',9£').

 Equipped with /(Si, S',9£') a proof of the desired unboundness theorem pro-
 ceeds as follows. Suppose T = EA + "/ is total" where / is a computable function.
 Then a natural candidate for "a hardest Ü2 -problem" for the theory T + Rfni2 (T) is:
 Vx G S' Vz G X' "fx{z) exists ," where fx is the x-th iterate of /. In what follows,
 we shall show that this is actually the case whenever the graph of / is defined by an
 E A -honest formula:

 Definition 4.3. We say that a formula y = f(x) is EA -honest if

 1. y = f(x) is elementary,
 2. EA h y = f(x) -+y> 2X, and
 3. EA h xi < *2 A y' = f(x i) A y2 = f(x2) y' < yi-

 By Proposition 5.4 of [2] a theory T can be written as E A + "/ is total ," where
 y - f(x) is EA-honest, if and only if T is a finite ^-extension of EA closed under
 the Si -collection rule

 s -CR- Vx3y<p(x,y)
 Vz 3u Vx < z 3y < u <p(x, y) '

 where <p(x,y) G Si . In addition, if y = f (x) is an EA-honest formula then, using
 elementary coding of sequences, the iteration of / can be expressed by the following
 elementary formula (denoted by y - fx (z)):

 3s < bt [length (^) = x + 1 A (s) 0 = z A V/ < x ((s)i+ ' = f((s)¡)) A y = {s)x],

 where bt is a bounding term for the code of a sequence consisting of (x + l)-many
 ^'s. We are now in a position to state the main result of this section:

 Theorem 4.4 (Unboundedness). Suppose T is a finite IÏ2- extension of EA closed
 under I<'-CR. Then , Thn2(T 4- Rfni2(r)) is not contained in any consistent , r.e.
 extension of T by â&ÇL' )-sentences.

 Proof. Put T = EA+Vx3!j; (y = f(x))9 where y = f(x) is EA-honest. Let
 r be an r.e. set of ^ (Si) -sentences satisfying that T + T is consistent. We shall
 construct a model of T + F in which Thn2(Z" + Rfni2(r)) fails. First of all, note
 that r + r does not imply the set of all true III sentences Thn, (N), for otherwise it
 would follow that Thn,(r + r) = Thn,(N) and this is impossible since the first set is
 r.e. and the second one is īlļ -complete. Thus, there is 21 1= T + Y in which Thn, (N)
 fails and so 3Î' (21) is nonstandard. By considering an elementary extension of 21 if
 necessary, we may also assume that J^i(2l) is bounded above in 21. Then, it holds
 that 9[' (21) S' (21), for otherwise S' (21) would have a proper Si -elementary end
 extension and hence ^(21) f= by Theorem B of [16]. But /Si ç 5S2 and
 /Si is well-known to fail in S' (21) whenever S' (21) is nonstandard. It thus follows
 that there is a G ^/(21) such that ^(21) < a. Consider (p(x,y,v) elementary
 and b G ^i(2l) such that 3y <p(x,y,b) defines a in 21. Since ip is bounded, there
 is a minimal c satisfying <p((z)o, (z)i, b) in 21. It is clear that (c)o = a and so
 ^1 (21) < a < c. Now define 53 to be initial segment of 21 determined by the
 standard iterations /*(c),i.e.,

 ® - {d G 21: 3k G co, 21 h 3^ {y = fk(c) A d < y)}.
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 1 030 CORDÓN-FRANCO, FERNÁNDEZ-MARGARIT, AND LARA-MARTÍN

 It follows that 03 is an initial substructure of 21, 03 -<o 21, and 3ť' (21) ç 03.

 In addition, we have 03 1= T + T. Note that 03 |= 7", since y = f{x) defines a
 total function in To see 03 (= F, consider 6 e T. By logical operations,

 e = (0? V 3x 0%{x)) A ... A (9Ï W3x0^(x)),

 with 0' G III and 02{x) G Ao. Fix i < n. Since 21 satisfies T, 21 1= 0' V 3x 02{x).
 Case 1 : 21 1 = 0[. Then 0' is also valid in 03 since 03 -<o 21.
 Case 2: 21 '= 3x02(x). Then there is a¡ G «3Ti(2l) such that 21 1= 0l2(ai). But

 a¡ G 03 since a¿ < c. So, 03 f= 3x 02(x).
 Hence, 03 '= 0, as required.
 Finally, we prove that 03 ^ Thn2(7" + Rfni2(r)).
 First, let us observe that

 Thn2(r + Rfnl2(r)) h Vx G S' Vz G 3C' 3y ( y = /x(z)). (f)

 Indeed, by Proposition 4.2, r + Rfri£2(r) proves Vx G S' Vz G «ar/ = /*U)).
 and a quantifier of the form Vx G or Vz G 9Z' in front of a Il2-formula unravels
 to a scheme of Il2-formulas; hence, (f) follows.

 Now observe that c G ^/(03). In fact, c = (juz) (y>((z) o, (z)',b)) in 03, with
 b G ^i(2l). But it follows from 03 -<o 21 and ^i(2l) Ç 03 that «3?i(03) = ^i(2l).
 So, b G ^(03) and hence c G ^/(03).

 Pick eGli (21) nonstandard. Since / (x) > 2X > x, EA proves that y = /*(z)
 defines a nondecreasing function in the variable %. So, fe(c) does not exist in 03.
 Consequently, Thn2(T -f Rfn^ir)) fails in 03 by (f). H

 We can now derive the answers to Question 1 and 2 as direct corollaries.

 Corollary 4.5 (Answer to Question 1). Suppose T' is a finite IT2 -extension of
 EA closed under Y,'-CR, T2 is an r.e. set of &(T,') -sentences and T = T' + T2. Then
 T + Rfni2(r) is not II2- conservative over T + Rfns,(!T) provided T + Rfn^(T) is
 consistent.

 Proof. It follows from Theorem 4.4 for T' , because T + Rfn^, (T) is a consistent,
 r.e. extension of T' by ^ (Si) -sentences. H
 Corollary 4.6 (Answer to Question 2). Suppose S is a consistent , r.e. extension

 of EA +RfriE2 (EA). Then Thn2 (Thi2 (S)) is strictly stronger than Th#(£l ) (S).

 Proof. Since EA is closed under Ii-CR, by Theorem 4.4 for T = EA,

 EA + Th*(Zl ) (S) 'f Thn2 (EA +Rfnl2 (EA))

 andsoTh^(Il)(S) 'f Thn2(ThS2(5)). H

 §5. Some results à la Kreisel-Lévy. In [13] Kreisel and Lévy showed that PA
 is equivalent to the full uniform reflection principle over primitive recursive arith-
 metic. D. Leivant and H. Ono [14, 15] sharpened that result by showing that
 EA +RFNsw+1 (EA) = /E„ for each n > 0. Later Beklemishev [2, 4] extended this
 correspondence to parameter free induction schemes and to theories described in
 terms of induction rules. In particular, he proved the following result over the
 base theory EA+ (which is E A plus a II2 -axiom declaring the totality of the su-
 perexponentiation function). EA+ is needed because the proof uses formalized
 Cut-elimination Theorem.
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 Theorem 5.1. [2, 4] Suppose T is a finite XVi-extension of EA+.

 1. r + Rfnl2(r) = r + /nf.
 2. r + Thn,(r + Rfn(r)) = T + Ili-IR= T + TW.
 In the above theorem Tœ denotes the so-called co times iterated consistency

 assertion for T, i.e., Con{T ) + Con{T + Con(T)) H

 In this section we improve Theorem 5.1 in two ways. On the one hand, we show
 that it also holds over the weaker base theory EA. On the other hand, we obtain a
 new Kreisel and Lévy-like result for Rfn^, (T).
 We begin by showing that EA+ can be dropped in part 1 in the above theorem

 thanks to a simple but useful trick. A similar result has been obtained by A. Visser
 (private communication).

 Theorem 5.2. IfT is a finite Hi-extension of EA, T + Rfni2(r) = T + /Ilj".

 Proof. We only have to prove that T + / n¡~ implies Rfn i2(r), as the opposite
 direction is already proved in [2] over EA. Suppose 21 '= T + /Tlj". It suf-
 fices to show that local ^-reflection for Predicate Calculus PC is valid in 21, for
 T + Rfns2(r) = T + Rfns2(PC) by the formalized Deduction theorem. Assume
 21 h 37 PrfpcOV1, j>). Since X i (21) 21, ¿Ti (21) h PrfPC0~,,.y). But it
 follows from 21 f= EA+/IIJ" and Proposition 4.1 that 3ť' (21) f= EA+. Hence, Cut-
 elimination is available and 9Z' (21) 1= 3y Prf$>fc(r<¿?n, y), where Prf^fc(x, y) denotes

 cut-free provability. So, 21 | = 3y Prf£fc(r<¿?n, j;) as well and the result follows since
 the proof of Theorem 1 in [4] (see also Theorem 10 in [6]) shows that /Ilj" implies
 local S2 -reflection for PC w.r.t. cut-free provability. H

 Now we turn to the promised theorem characterizing Rfni, (T) by some form of
 induction. To this end, let T -IR and T -IRo denote the inference rules

 , y?( 0) A Vx (y?(x) -> (p{x + 1)) . Vx (<p(x) cp(x + 1))
 Vxcp(x) ° <¿>(0) - > Vx <p(x)

 where <p(x) G T. In his detailed analysis of inference rules in arithmetic [2] Bek-
 lemishev proved that, if parameters are allowed, IRo is congruent with the usual
 formulation of the induction rule: £„-IRo = EĻ-IRo = SW-IR. The parameter
 free version of IRo was not considered there, however. It turns out that, whereas
 I~-IRo is easily seen to be congruent with L„-IRo, n„-IRo and n~-IRo cease to be
 equivalent. In fact, we have

 Theorem 5.3. IfT is a finite Hi-extension of EA, then T + Rfni,(r) = T +
 U^-IR0 = [r,n¡"-/Ro].

 Proof. Write S for T + RfnZl (T), R~ for T + Ilf-IRo, and R f for [ T ' n"-IR0].
 First, observe that R~ is an extension of T by ^ (I i) -sentences. Hence, S '- R~
 follows, since T + Rfri£2(r) implies /Ilj" and is ^(Zi) -conservative over S. Second,
 the implication R~ h R^ is trivial. Finally, we prove that R j~ h S . Suppose
 21 |= R^. It follows that ^(21) '= [T, Si-IR]. To see this, let (p{x) e Ii and
 assume T b </?(0) A Vx (<¿>(x) - » ip(x + 1)) and <p(a) fails with a e ^Ti(2l). Let
 ô{z) be a Si-formula defining a. Applying n^-IRo to Vz (ô(z) - > -*p(z - x)) we
 get a contradiction and the result follows. But [T, Xi-IR] implies T + RFNi, (T) by
 Theorem 2 of [2]. Hence, 21 |= T + Thl2 (T + RFNSl (T)) and so 21 '= S . H
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 1 032 CORDÓN-FRANCO, FERNÁNDEZ-MARGARIT, AND LARA-MARTÍN

 Now we show that EA+ can also be dropped in part 2 of Theorem 5.1. This is
 interesting because in [2] Beklemishev remarked that, for characterizing 111 -IR by
 iterated consistency modulo EA one should replace Con(T) with a weaker notion
 of consistency based on cut-free provability. Nonetheless, Theorem 5.4 below will
 show that this result is true even for the usual notion of consistency.

 Theorem 5.4. IfT is a finite ĪI2 -extension of EA, T + Thn, ( T + Rfn(r)) =
 T + Ih-IR= T + Tœ.

 Proof. Write S for T 4- Rfn(T) and Rœ for T + IIi-IR. First, note that T +
 Thn, (S) = T + Tœ is proved over EA in Proposition 2.33 of [6] (a result that
 goes back to S. V. Goryachev's [9]). Second, T + Thn, (S) I- Rœ because Rœ is an
 extension of T by III -sentences and S h /II¡~ by Theorem 5.2. Finally, we must
 prove that Rœ h Thn, OS). By Theorem 1.1, S is III -conservative over T + Rfn£1(r)
 and so, by Theorem 5.3, it is sufficient to show that [ T ' Ilf-IRo] is III -conservative
 over Rœ.

 To this end, we use a model- theoretic method inspired by J. Avigad's [1] who, in
 turn, builds on some previous ideas of Visser (unpublished) and D. Zambella, [17].
 The key notion is that of a Si -closed model. We say that 21 is Z 1 -closed with respect
 to (w.r.t.) a theory U if 21 1= U and, for every 03 |= (/, 21 -<o ® implies 21 -^1 03. By
 a union of chain argument every model of U ç II2 can be So-elementarily extended
 to a Si -closed model w.r.t. U. Thus, if every Si -closed model w.r.t. U ç n2 is a
 model of a theory W, then W is 111 -conservative over U (see [7] for further details
 and applications of this method).

 Turning back to the proof of the theorem, suppose 2t is Ij -closed w.r.t. R0J.
 Assume T I- Vx {<p(x) -> tp(x + 1)), with <p(x) 6 Ilj", and <p(0) holds in 21. It
 follows from the Ei-closedness condition that there is ô(a) in the Flo-diagram of 21
 such that Rœ h ô(v) -¥ <p( 0). Put <p'{x) = 3vô(v) -> <p{x). Clearly, <p'{x) € Ilf
 and R„, proves the antecedent of the induction axiom for ip'. Hence, 21 1= Vx <p'(x)
 and so 21 1= Vx <p(x) since 21 |= ô(a). Therefore, 21 f= [71 Ilf-IRo]. H

 §6. The case n > 0. It is natural to ask ourselves how our results generalize to
 Rfns„+2(^) and /n~+1 for an arbitrary n > 0. First of all, it should be noticed
 that, in order to characterize /n~+1 in terms of reflection principles, one needs to
 consider relativized local reflection. For each n > 0, the relativized local reflection
 principle for T is the scheme given by

 Rfn"r(r): [nJrOV) -► ¥>,

 where <p ranges over all sentences in F and [n}T{x) denotes a Z„+i -formula express-
 ing "x is provable from T + Thn„(N)." That is [n]T{x) = Ot/čx), where

 Axu(x) = (Axt(x) VTruen„(x))

 and Truen„ (x) is a truth-definition for n„-sentences in EA (see Section 2.3 of [6] for
 details). ItisatheoremofBeklemishev(see[4])thatoverEA, /II~+1 = Rfn£ (EA)
 and = Rfny^ (EA) for each n > 0. In addition, a relativization of Theorem 1 . 1
 holds, i.e., T + Rfn£n+2(r) is ^(Z„+i)-conservative over T + Rfn£n+I (T). Thus, a
 relativized version of Question 1 is in order.

 Question 3 (n > 0). Is T + Rfn^+2(r) conservative over T + Rfn^+|(7) with
 respect to n„ . 2-sentences?
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 It turns out that the ideas in the previous sections apply equally well to the case
 n > 0 for theories T extending the -induction scheme /E„ and closed under
 L„+i -collection rule. Such a theory T can be reformulated as /Sw 4- "/ is total",
 where / is a nondecreasing function with a Hn -graph. Thus, considering the Hn+2
 separation property Vx G *Jn+ 1 Vz G ^J+1 " fx{z ) exists ," allows us to obtain an
 analog of the unboundedness Theorem 4.4 for the class Thn„+2(r 4- Rfn^+2(r))
 and, in turn, a negative answer to Question 3.

 It will be useful, however, to obtain an answer to Question 3 for theories T
 extending EA rather than extending /£„ . To this end we have to use a different
 separation property. Now the key point is the following local variant of the finite
 axiom of choice for Hn-' -formulas, denoted

 '/v G ^J+1 Vz G 3£' Ņx < z3y <p(x,y,v) -> 3s Vx < z <p(x , (s)x,v)),

 where <p is in n„_i.
 It is easy to check that FAC(Hn-'t3f',3f^+i) can be reexpressed as a set of

 n„+2-sentences which are provable from / n~+1 by Proposition 4.1 (and hence also
 from T 4- Rfn^w+2(r)). By using this separation property we get:

 Theorem 6.1 (n > 0, Unboundedness). SupposeT isa&(£n+')-extensionofEK.
 Then , Thn„+2(Rfn£w+?(r)) is not contained in any consistent , r.e. extension of T by
 â&(Ln+' )-sentences.

 Proof. It is similar to that of Theorem 4.4 so we skip some details. Towards
 a contradiction, assume that there is an r.e. set of áš?(E„+i)-sentences T such that

 T 4- r is consistent and contains Thn„+2(Rfn£w+2(r)). In particular, T 4- T 4-
 is consistent, for /!„ is -conservative over 7S~ by Theorem 2.1 of [12]. Let
 21 1= r+r+/I„ with ¿Ti (*) / coandJVn(2l) 21. Picka G (21)- -/„+i(2l).
 By overspill inside (21) there is a sequence coded by b < a such that,

 ^+1(2l) h < a Sat n(r9^,x,y) (b)re, = (jut) (Sat„(rér, (Oo, (00).
 for all 0(x,y) G II", where Sat„ is a truth predicate for EĻ -formulas in EA and
 (Oo> (Oi denote the inverse of the Cantor pairing function. Note that 3?n+i(%)
 is included in any substructure of 21 containing è, for in models of /!„ every
 Iw+i -definable element can be obtained as the projection of a rĻ -minimal one.
 Since b G ^wl+1(2l), there are b' G (21) and bi G Jn' i (2t) satisfying that
 ¿>i = {ßt) (<p((t) o, (ř) i , ¿>2)) and b = (¿>1)0 for some ip G II„. Put c = (¿>1,62) and
 define <8 to be &„(*, c). Then 03 ļ= T + T and c € Jr„'+1 (S3).

 Finally 53 ^ F/lC(n„_i , 3Z' , ^„'+1 ). We argue as in Paris-Kirby' proof that the
 S„ -collection scheme fails in Jfn(<ä) (see Proposition 7 of [16]). Let Min„_i (z, y, v )
 formalize "z is the least element satisfying the n„_i-formula y with a parameter v."
 If © were to satisfy FAC{YV„-' , 9£' , ^„'+1) then, for any nonstandard S 1 -definable
 element d , there would be an element e such that

 ® 1= Vx < d 3y < d [3z < e (Min B_i(z,j>,c) Ax = (z)0)],

 violating the pigeon-hole principle for Eo(£«-i )-functions in models of EA +/E„_ 1 .
 It follows that r + r does not imply FAC{Yi„-',3ť', 3?l+ , ) , which contradicts our
 assumption that T + r contains Thn„+2(Rfri2„+2(r)). H

 As a consequence, we obtain the corresponding negative answer to Question 3.
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 Corollary 6.2 (n > 0). SupposeT isa&ÇLn+')-extensionof EA. T+Rfnļ^T)
 is not n n+2 -conservative over T + Rfn£w+1 ( T ) provided that the latter theory is con-
 sistent .

 In addition, taking T = EA, Theorem 6.1 gives us that

 Corollary 6.3 (n > 0). I n~+1 is not Hn+2-conservative over 7X~.

 In [8] we gave another proof of Corollary 6.3 that uses a different separation
 property, namely, a formalized version of the model-theoretic property

 {A) = V« e 3ť„+ 1 "cTn(2t, a) is bounded above in 21."

 This approach has the small advantage that it allows one to prove that I II~+1 is not
 n„ +2 -conservative over 7£~ + B*Ln for each n > 0 (see the proof of Theorem 5.5
 in [8] for details). Note that both FAC(Yln-',Jť',JÍ^+i) and property (A) above
 are provable from 7ZW. This is no accident, as we shall infer from the following
 conservation result.

 Let Rfrip(r) coincide, by definition, with its non-relativized analog Rfn r(r) and
 let Rfnw(7") denote the full relativized local reflection principle for T.

 Theorem 6.4 (n > 0).

 1. T + Rfnw(jT) is īln+2-conservative over T + RFNsn+1 (T).

 2. T + /n-+1 is īln+2-conservative over [T, £„+i -//?].

 Proof. (1): Let cp be a Iln+2-sentence such that T + Rfn"(!T) h (p. Then, by
 a relativized version of Theorem 1.1, T -f Rfnn„+2(^) Using formalized
 Deduction theorem for n > 0, we get T + RFNnn+2(3n) h (p. Finally, note that over
 EA, RFNn^ir) = RFNsn+1 (T) and hence the result follows.

 (2): Let <p be a Il„+2-sentence provable in T + /n~+1. Since /n~+ļ ç S„+ 2, by
 compactness there is a finite nw+2-axiomatized subtheory 7o Ç T satisfying that

 7b+/n~+1 h (p. Then, by a relativized version of Theorem 1.1, ro+Rfn^M+2(7o) I- (p.
 Then, trivially, Tq + Rfnw(7o) h <p and, by part (1), To + RFNiw+I(7o) h (p. But
 [7o, £w+i-IR] = 7o + RFNsn+1 (7b) by Theorem 4 of [2] and the result follows. H

 By using a model-theoretic construction Kaye, Paris and Dimitracopoulos proved
 that, when formulated in the usual language of arithmetic, /Ilj" is II2 -conservative
 over/Ao + exp = [7Ao,Ei-IR] (see Theorem 2.9 of [12]). Thus, Theorem 6.4 can be
 seen as a reflection principle counterpart of Kaye-Paris-Dimitracopoulos' result.
 Since [EA,£w+i-IR] = EA +RFNsn+1 (EA) = 7Zn, taking T = EA in Theorem 6.4
 yields the following new conservation result for induction schemes.

 Corollary 6.5 (n > 0). /n~+1 is Hn+2-conservative over 7Z„.

 Corollary 6.5 explains why any Il^-property separating 7I1~+1 and 7E~ turns
 out to be provable from 7S„ as well as, combined with Corollary 6.3, settles the
 question of the optimality of conservativity between 7I1~+1 and 7E~ for n > 0.
 On the one hand, 7I1~+1 is ^(Sw+i)-conservative over 7E~ and this result is best
 possible; on the other hand, conservativity of 7II~+1 over 7EW can be extended to
 n„+2-sentences and this is, again, best possible.
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