
Skeletonizing Digital Images with Cellular
Automata

Daniel Díaz-Pernil, Francisco Peña-Cantillana, and Miguel A. Gutiérrez-Naranjo

Abstract. The skeletonization of an image consists of converting the initial image 
into a more compact representation. In general, the skeleton preserves the basic 
struc-ture and, in some sense, keeps the meaning. The most important features 
concerning a shape are its topology (represented by connected components, holes, 
etc.) and its geometry (elongated parts, ramifications, etc.), thus they must be 
preserved. Skele-tonization is usually considered as a pre-processing step in pattern 
recognition algo-rithms, but its study is also interesting by itself for the analysis of 
line-based images such as texts, line drawings, human fingerprints classification or 
cartography.

Since the introduction of the concept by Blum in 1962 under the name of me-
dial axis transform, many algorithms have been published in this topic and there are 
many different approaches to the problem, among them the ones based on distance 
transform of the shape and skeleton pruning based on branch analysis. In this chap-
ter, we focus on how the skeletonization of an image can be studied in the Cellular 
Automata framework and, as a case study, we consider in detail the Guo and Hall 
skeletonizing algorithm.

3.1 Introduction

Skeletonization is one of the approaches for representing a shape with a small 
amount of information by converting an image into a more compact representa-
tion and keeping the meaningful features. The conversion should remove redundant
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information, but it should also keep the basic structure. The concept of skeleton
was introduced by Blum in [10, 11], under the name of medial axis transformation,
but other previous approaches can be found in the literature (see, e.g., [16, 28]).
The skeleton of an image is useful to characterize objects by compact represen-
tation while preserving the connectivity and topological properties of any image.
The most important features concerning a shape are its topology (represented by
connected components, holes, etc.) and its geometry (elongated parts, ramifications,
etc.), thus they must be preserved.

Currently, there are many different definitions of the skeleton of a black and white
image and, according to Saeed et al. [39], more than one thousand algorithms have
been published on image skeletonization. Nevertheless, roughly speaking, we can
say that the image B is a skeleton of the black and white image A, if the former has
fewer black pixels than the latter, preserves its topological properties and, in some
sense, keeps its meaning. Figure 3.1 illustrates this idea. The skeletonized image
keeps the meaning of the original one and it uses fewer black pixels. It keeps the
basic geometry of the original image and also its topology. Let us remark that the
white regions inside the hand-made words are also white regions in the skeletonized
one and the connectedness is preserved.

As pointed out by Rosenfeld [36], the concept of skeletonizing1 is not easy to be
defined mathematically; however it seems reasonable to require that any skeletoniz-
ing algorithm should preserve the connectedness for both objects and their comple-
ment; leave unchanged 1-pixel wide and isolated points; and change objects whose
length and width are both greater than 1.

From the computational side, a digital image can be roughly defined as a function
from a two dimensional surface which maps each point from the surface onto a set
of attributes as brightness or color. Technically, a digital image can be considered as
a bi-dimensional array of n×m pixels. Each pixel can be characterized by a triplet
(i, j,a) (usually written as ai j) where (i, j) represents its position in the array and a
encodes brightness, color or any other feature associated to the position (i, j). As in
many other image processing algorithms, the basic procedure for skeletonizing an
image involve a discrete transformation of the features associated with the position
(i, j) according to the current values of such features (i.e., the current value of a)
together with the values of the features of the neighbour positions. From this point
of view, a cellular automaton can be considered as a natural computer device for
such transformations [23, 40]. As usual, pixels are identified with cells of the cellular
automaton and the encoding a represent the current state of the pixel. In many cases,
the transformation of all the pixels can be done in parallel, since the state of a pixel
at the step i only depends on the states of a set of pixels at the step i−1.

Such parallelism in skeletonizing algorithms has been broadly studied (see, e.g.,
[21, 32, 43, 45]). The development of new hardware architectures has also con-
tributed to new parallel implementations of these algorithms [19, 24, 26]. Recently, a
parallel implementation of a cellular automata skeletonizing algorithm developed by

1 Rosenfeld used the word thinning instead of skeletonizing. In this paper, both terms are
considered synonymous. Nevertheless, in the literature many different definitions of skele-
tonizing and thinning can be found, not all of them equivalent.



Fig. 3.1 Hand-written words and their skeletonization. This skeletonization has been per-
formed with the parallel implementation on GPU of the cellular automata adaptation of the
Guo and Hall algorithm presented in [35].

using a device architecture called Compute Unified Device Architecture (CUDATM)
has been presented [35]. CUDATM is a general purpose parallel computing architec-
ture that allows the parallel NVIDIA2 Graphics Processors Units (GPUs) to solve
many complex computational problems in a more efficient way than on a Central
Processing Unit (CPU). In Section 3.5, we explore how this new computer architec-
ture can be used in order to improve the efficiency of the algorithms from a practical
point of view.

Skeletonization has been found useful for data compression and pattern recogni-
tion in a wide range of applications in the industrial and scientific fields. It is usually
considered as a pre-processing step in pattern recognition algorithms, but its study is
also interesting by itself for the analysis of line-based images such as coronary arter-
ies [17], human fingerprints classification [27], cartography [29], data compression
and data storage [20], automated inspection of printed circuit boards [44] or optical
character recognition (OCR) [42] among others.

The chapter is organized as follows: Firstly, a brief overview on different skele-
tonizing algorithms is presented (Section 3.2). In Section 3.3, as an example, the
Guo and Hall skeletonizing algorithm is studied in detail. Next, some hints on a
general skeletonizing algorithm on cellular automata are shown (Section 3.4) and,
as a case study, the Guo and Hall algorithm is adapted to cellular automata. In Sec-
tion 3.5, some hints for a parallel implementation in CUDA are presented. Finally,
some examples and some conclusions are provided.

3.2 Skeletonizing Algorithms

The first definition of the skeleton of a region was provided by Blum as the medial
axis transformation (MAT) [10, 11]. According to the original definition, in order
to find the MAT region with border B from a region R, the closest neighbor in B

2 http://www.nvidia.com



of each pixel in R should be found. If the pixel has more than one such neighbor,
it is said to belong to the medial axis (skeleton) of R. The definition of closest
depends, of course, on the definition of distance. Obviously, the implementation of
such definition is typically prohibitive computationally. Many algorithms have been
proposed for improving computational efficiency while at the same time attempting
to produce a medial axis representation. Such skeletonizing algorithms iteratively
delete edge points of a region subject to the constraints that deletion of these points
(1) does not remove end points, (2) does not break connectedness and (3) does not
cause excessive erosion of the region.

Due to the enormous amount of algorithms, it is not easy to classify them. Differ-
ent criteria can be used in a a preliminary approach. A first classification can be done
according to the method used to obtain the skeleton. Following this criterion, the al-
gorithms are split into iterative and non-iterative. A second classification method
focuses on the properties which a black pixel must satisfy in order to be marked as
erasable. In this way, the properties can be local or global.

According to the first criterion, the skeletonizing algorithms can be classified
as either iterative or non-iterative. In iterative methods, skeletonizing algorithms
produce a skeleton by examining and deleting contour pixels through an iterative
process in either sequential or parallel way. Parallel algorithms may also be fur-
ther classified according to their performance, i.e., in 4-, 2-, or 1-subcycle manners.
The latter (1-subcycle parallel algorithms) have always received more considerable
attention in the research area of parallel skeletonizing as they have reduced the com-
putation time in the number of iterations, and that is why they are sometimes called
one-pass or fully parallel algorithms [14, 15, 22]. In sequential skeletonizing al-
gorithms, contour points are examined for deletion in a predetermined order. In
parallel skeletonizing algorithms, pixels are examined for deletion on the basis of
results obtained only from the previous iteration. That is why parallel skeletoniz-
ing algorithms are suitable for implementation in parallel processors. Non-iterative
(non-pixel based) skeletonizing algorithms produce a certain median or centre line
of the pattern to be thinned directly in one pass, without examining all the individual
pixels.

According to the second criterion, (see [19]), two different methods of pattern
analysis can be applied to determine the skeleton of an image or scene: Global
Pattern Analysis, where pixels are labeled depending on their distance from the
contours and Local Pattern Analysis, based on the repetition of the simultaneous
deletion of border points verifying certain conditions. This classification is not strict,
and some hybrid methods can be found in the literature, as Liu’s method [30, 31],
based on the notion of cell complex. This method combines an iterative process
where outer cells are removed with two difference measures which provide some
ideas of the size of the maximum disk inscribed in the object.

Since Dinneenn [16] found in the 1950s that an averaging operation over a square
window with a high threshold resulted in a skeletonizing of the input image and later
Blum presented his definition of medial axis transformation [10, 11], many different
authors have contributed to the skeletonizing theory. After some attempts of defin-
ing the skeleton of an image and different skeletonizing algorithms, (e.g. [25, 38]),



Rosenfeld [36] was the first to evaluate the necessary and sufficient conditions
for preserving topology while deleting border points in parallel process. Only a
few years later, Pavlidis [34] proposed a combination of parallel and sequential
operations.

In 1980s, many other algorithms were proposed (see, e.g., [3, 18, 45]). Among
them, it is Baruch’s remarkable algorithm [7]. It is a non iterative, non pixel-based
algorithm. The skeleton is produced in one pass, by line following. Another impor-
tant contribution is the Guo and Hall algorithm, which will be showed in detail in
Section 3.3. In this algorithm, the contour pixels are examined for deletion in an iter-
ative process and it has been the basis for further refinements (see, e.g., [46]). There
are many different approaches to the problem of skeletonizing and a detailed survey
of the different methods is out of the scope of this chapter3. Among the different
research areas around the skeletonization problem, we can cite the studies based on
distance transform of the shape and skeleton pruning based on branch analysis (see,
for example, [4–6, 9, 41]). The research of skeletonizing algorithms also includes
different computational models, as the algorithm presented by Altuwaijri and Bay-
oumi [2] where self-organizing neural networks are used or the use of skeletonizing
in color images [33].

As pointed out above, there exists an enormous amount of skeletonizing algo-
rithms. Generally, each of the presented algorithms has its own advantages and
disadvantages, and each has its applications where it performs better than others.
Therefore, it is often difficult to directly compare the results.

3.3 Guo and Hall Algorithm

As an example of skeletonizing algorithm, we will see the implementation of a
classical algorithm, the Guo and Hall algorithm [21, 22]. It is a so-called 1-subcycle
parallel algorithm or fully parallel algorithm. It is an iterative edge-point erosion
algorithm where a 3× 3 window is considered around each pixel of the image with
a set of rules applied to the contents of the window. In a sequential simulation of
the algorithm, a unique window is moved along the image, whereas in the parallel
one, all the windows are considered simultaneously. The skeleton is obtained by an
iterative procedure of skeletonizing: the border points are removed as long as they
are not considered significant. The remaining set of points is called the skeleton.

In this algorithm, the contour pixels are examined for deletion in an iterative
process. The decision is based on a 3×3 neighbourhood. The image is divided into
two disjoint areas (sub-sections), similarly to a chess board. One of the sections
is composed by the pixels ai j such that i+ j is even. Alternatively, the second sub-
section corresponds to the pixels ai j such that i+ j is odd. The algorithm consists on
two sub-iterations where the removal of redundant pixels from both sub-sections are
alternated, i.e., in each step only the pixels of one of the subsections are evaluated
for its deletion. This is repeated until there are no redundant pixels left.

3 A good introduction can be found in [39].
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Fig. 3.2 (a) Enumeration of the pixels in a 3× 3 neighborhood. (b) An example of 3× 3
neighborhood where the central pixel P0 has B(P0) = 3 and C(P0) = 1.

Given a pixel P0, a clockwise enumeration P1, . . . ,P8 of its eight neighbor pix-
els is considered, as shown in Fig. 3.2 (a). As usual, for each i ∈ {1, . . . ,8}, Pi is
considered as a Boolean variable, with the (truth) value 1 if Pi is black and 0 if Pi is
white.

In order to decide if a pixel P0 is deleted in the corresponding iteration subcycle,
two parameters are evaluated:

B(P0) = ∑i=8
i=1 Pi

C(P0) = (¬P2∧ (P3∨P4))+ (¬P4∧ (P5∨P6))
+(¬P6∧ (P7∨P8))+ (¬P8∧ (P1∨P2))

B(P0) counts how many pixels in the neighborhood of P0 are black. C(P0) eval-
uates the connectivity of the pixel P0. Notice that for isolated black pixels, the con-
nectivity is 0. If the pixel is surrounded by eight black pixels, the connectivity is also
0. According to the Guo and Hall algorithm, in each iteration, an evaluated black
pixel P0 is deleted (changed to white) if and only if all of the following conditions
are satisfied.

Guo and Hall Conditions

1. B(P0)> 1;
2. C(P0) = 1; This condition is necessary for preserving local connectivity when P

is deleted.
3. (P1∧P3∧P5∧P7)∨ (P2∧P4∧P6∧P8) = FALSE; Intuitively, this condition

is satisfied if P0 is not the central pixel of a cross.

For example, let us consider as P0 the central pixel in the image of Fig. 3.2 (b). In
this case, B(P0) = 3 > 1, C(P0) = 1, and the third condition is also satisfied. Hence,
P0 will be deleted in the corresponding subcycle iteration.



3.4 Cellular Automata

Cellular automata (CA) are dynamical systems discrete in time and space. These
features make CA suitable for dealing with some problems in the analysis of digital
images, where pixels are identified with cells and the changes in a cell depends on
the current state plus the current state of its neighbours [13, 23, 37, 40].

The dynamics of CA has been extensively studied across a variety of disciplines
from different perspectives (see, e.g., [1, 8, 12]). Technically, a CA consists of two
components. The first one is a cellular space: a lattice of N identical finite-state
machines (cells) each with an identical pattern of local connections to other cells,
with boundary conditions if the lattice is finite. The second component is a set of
transition rules that gives the update state of each cell. The formal description of the
algorithm in the framework of CA requires to provide the cellular space and the set
of rules.

Given a n×m image, we will consider as cellular space a rectangular grid (n+
2)× (m+2) with 8-adjacency. We will consider a cell of the cellular space for each
pixel on the image plus two extra columns and rows surrounding such cells. The
intuition behind these extra pixel lines is to consider that they are white pixels, which
do no affect to the skeletonizing process. The states in these extra cells never change
and we will consider that the rules are not applied on them, but they contribute to
the neighborhood of the border pixels of the original image.

With respect to the set of states, they must encode the information of each pixel
along all the steps of the algorithm. The basic information for the skeletonizing pro-
cess of a black and white image is, of course, the color of the pixel, but, depending
on the algorithm, different features can be associated to the pixel. If these features
change dynamically along the skeletonizing process, they should be encoded in the
set of states.

In order to fix ideas, we will consider the Guo and Hall algorithm. On the one
hand, the set of states should inform about the color B or W (black or white) of the
pixel at each discrete step, but, according to the algorithm, the set of pixels are split
into two subsections and only one of them is evaluated at each step. In this way, the
state of a cell at time t should inform if the cell corresponds to an evaluable pixel or
to a non-evaluable pixel. Putting together both pieces of information, the color and
the evaluable situation (E for evaluable and N for non evaluable), we obtain four
possible states for each cell of the cellular space: BE , WE , BN and WN.

Bearing in mind this interpretation for the states, the initial state of each cell
is determined by the color of the corresponding pixel in the input image and the
corresponding sub-section. In the initial configuration, we will take the pixels of the
first sub-section, corresponding to the pixels ai j such that i+ j is even, are evaluable
and the pixels corresponding to the second sub-section, i.e., pixels ai j such that i+ j
is odd, are non evaluable4 (see Fig. 3.3).

In the description of the set of rules, it is necessary to describe the conditions
necessary for changing the state of a cell. Such conditions are taken directly from

4 If the second subsection is taken as evaluable in the initial configuration, the pixels of the
final skeleton are different.
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Fig. 3.3 A toy example of black and white image and the initial configuration of the associ-
ated CA for skeletonizing it according to the Guo and Hall algorithm

the Guo and Hall algorithm. A cell will change its state if the corresponding pixel in
the image satisfies the Guo and Hall conditions. Since each cell can be in one of four
different states, a full description of the rules needs to consider all the possibilities
of the 3×3 neighborhood, i.e., 49 = 218 rules. Obviously, they are too much from a
practical point of view. Nevertheless, we can provide an intensive description.

• If the central pixel is in the state WN, the next state is WE , regardless the states
of the surrounding pixels.

• If the central pixel is in the state WE , the next state is WN, regardless the states
of the surrounding pixels.

The intuition is clear. If the cell corresponds to a white pixel, it remains white to
the end of the process. The unique change is that the pixel alternates the condition
of evaluable and non evaluable in each step.

• If the central pixel is in the state BN, the next state is BE , regardless the remaining
cells of the neighborhood.

If a cell correspond to a black pixel and the pixel belongs to the non evaluable
section, it remains black, but in the next step it will be evaluable.

With these descriptions, it only remains to describe the rules in case of the central
pixel is BE . In this case, it should be evaluated according to the Guo and Hall condi-
tions in order to decide if the next state will be BN or WN. Nevertheless, the number
of possibilities is enormous. By fixing the state of the central pixel, four possibilities
for the remaining eight cells, i.e., 48 = 216 possibilities, should be considered.

In order to reduce the number of different CA rules, we observe than the decision
of change the current state BE (to the state BN or WN) only depends on the color
of the surrounding pixels and not on the evaluable or non evaluable condition. This
consideration reduces drastically the number of possibilities, since only 28 = 256
cases should be considered.

In order to encode each of these cases, we can use the enumeration of the pixels
used in the Section 3.3 to represent the neighborhood of the pixel P0 in (i, j). Given
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Fig. 3.4 Set of the codings for erasing a black pixel in an evaluable section

a cell (i, j) at a time t, the states of its eight surrounding pixels will be represented
as a list [H1, . . . ,H8], where, for r ∈ {1, . . . ,8}, Hr = 1 if the state of the cell is
BE or BN (i.e., if the cell corresponds to a black pixel) and Hr = 0 if the state of
the cell is WE or WN (a white pixel). This representation of the neighborhood can
be done in a more compact way, by encoding the neighborhood as a number5 in
{2i : i ∈ {0, . . . ,255}}:

cod(i, j) =
8

∑
r=1

Hr×2r

For example, in Fig. 3.2 (b), the states of the cells surrounding the central one
can be encoded as [1,1,1,0,0,0,0,0, ], or, shortly, 21 +22 +23 = 14.

Since the decision of removing a black pixel (changing to white) depends on its
surrounding pixels and there is a bijective correspondence among the sets of all the
possibilities and the possible encodings {2i : i ∈ {0, . . . ,255}}. It is easy to check
that the cell in (i, j) must change its state to WN (i.e., the corresponding black
pixel must be deleted) if the encoding of the surrounding cells belong to the set
DEL showed in Fig. 3.4. A quick check on the set DEL will decide if the state BE
changes to W N or BN.

3.5 Parallel Implementation

The parallel iterative algorithms are the result of processing a pixel at the i-th iter-
ation just depending on the value of the neighbor pixels in the (i− 1)-th iteration.
Thus parallel iterative algorithms can process all pixels in the image simultaneously.

As pointed above, the parallelism in skeletonizing algorithms has been deeply
studied, but the real implementation is associated to the development of new parallel
hardware [19, 24, 26]. Recently, in [35], a parallel implementation of a cellular
automata skeletonizing algorithm developed by using CUDATM has been presented.

5 Similar ideas are also used in [39].



Fig. 3.5 Scheme of threads for the CUDA implementation

It shows some important features that make this new hardware architecture suitable
for further implementations of CA algorithms.

CUDATM is a general purpose parallel computing architecture that allows the par-
allel NVIDIA Graphics Processors Units (GPUs) to solve many complex computa-
tional problems in a more efficient way than on a Central Processing Unit (CPU).
GPUs constitute nowadays a solid alternative for high performance computing, and
the advent of CUDA allows programmers a friendly model to accelerate a broad
range of applications. The way GPUs exploit parallelism differs from multi-core
CPUs, which raises new challenges to take advantage of its computing power. GPU
is especially well-suited to address problems that can be expressed as data-parallel
computations.

3.5.1 Examples

In [35], a parallel implementation of the Guo and Hall algorithm for CA based on
the principles described above was presented. It has been implemented by using
Microsoft Visual Studio 2008 Professional Edition (C++) with the plug-in Parallel
Nsight (CUDATM) under Microsoft Windows 7 Professional with 32 bits. CUDATM

C, an extension of C for implementations of executable kernels in parallel with
graphical cards NVIDIA has been used to implement the CA. It has been necessary
to use the nvcc compiler of CUDATM Toolkit and some libraries from openCV for
image input and output.

The experiments have been performed on a computer with a CPU AMD Athlon II
x4 645, which allows to work with four cores of 64 bits to 3.1 GHz. The computer
has four blocks of 512KB of L2 cache memory and 4 GB DDR3 to 1600 MHz
of main memory. The used graphical card (GPU) is an NVIDIA Geforce GT240



Fig. 3.6 Flowchart of the implementation on CUDATM of the CA algorithm

Fig. 3.7 The binarized STOP signal, its skeletonization, its inverted binarization and its
skeletonization

composed by 12 Stream Processors with a total of 96 cores to 1340 MHz. It has 1
GB DDR3 main memory in a 128 bits bus to 700 MHz. So, the transfer rate obtained
is by 54.4 Gbps. The used Constant Memory is 64 KB and the Shared Memory is 16
KB. Figure 3.6 shows a flowchart of the implementation on CUDA of the algorithm.

Next, we show the results of some experiments of skeletonizing with our parallel
CA implementation of the Guo and Hall algorithm. As a first example6, Fig. 3.7,
shows the skeletonization of the STOP traffic signal. This example illustrates an
old problem in black and white images. In such images, the meaning is usually
associated to black pixels, whereas white pixels constitute the background. In this

6 These examples are borrowed from [35].



Fig. 3.8 The binarization of a real photograph and its skeleton

case, the skeletonization of the image with inverted colors is more meaningful. In
Fig. 3.8, we can see two black and white images of 789×1317 pixels. On the left,
the result of the binarization of a real photograph and its skeletonization on the right.

A last example is presented in Fig. 3.9. On the left, a fingerprint is shown and
on the right, its skeletonization. The basic problem with fingerprints is to determine
whether two fingerprints come from the same finger. There exist multiple algorithms
that do fingerprint matching in many different ways. Some methods involve match-
ing minutiae points between the two images, while others look for similarities in the

Fig. 3.9 A fingerprint and its skeleton



Fig. 3.10 Experimental time obtained for the Guo and Hall algorithm applied on 36 totally
black images of n× n pixels, from n = 125 to n = 4500 with a regular increment of 125
pixels. Top image shows the time of our parallel implementation in CA. Bottom image shows
the time for a sequential implementation.

bigger structure of the fingerprint. In many cases, the thickness of each line print
is not important and the skeletonized image provides the same information as the
original one.

We finish this section by showing the results of some experiments performed with
our CA implementation. We have taken 36 totally black images of n×n pixels, from
n= 125 to n= 4500 with a regular increment of 125 pixels of side. Figure 3.10 (top)
shows the time in milliseconds of the application of our implementation of the Guo
and Hall algorithm in CA for 1, 30, 60 and 90 steps in the skeletonizing process.
Figure 3.10 (bottom) shows the same study for a sequential implementation of the
algorithm. Finally, Figure 3.11 shows a comparison of our implementation vs. the
sequential one by taking 90 steps in the Guo and Hall algorithm.



Fig. 3.11 A comparison of our implementation vs. the sequential one by taking 90 steps in
the Guo and Hall algorithm

3.6 Conclusions

Computer vision is a hard task and a challenge in the next years. Classical sequential
algorithms need to be revisited and adapted to the novel technologies, but the new
developments also need the support of deep theoretical foundations. On the one
hand, it is necessary to develop new algorithms in the framework of CA or other
computational paradigms which can put a new light on classical problems. A deep
study of the properties of such algorithms can improve their practical efficiency and
accelerate their use in digital image industry.

On the other hand, the inherent features of CA for dealing with Image Analysis
have found the limits of sequential computers. The theoretical parallel framework of
CA could not be efficiently implemented in one-processor computers. In this way,
the theoretical study should be also oriented to the most recent advances in hardware
architecture. In this chapter, we have considered the implementation on GPUs. It is
a good alternative for future implementations for CA algorithms, but many other
possibilities should be explored. A strong link between the research on theoretical
models and the development of new hardware architectures is the key for realistic
answers to the challenges of the future in digital image areas.
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