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Miguel A. GUTIÉRREZ-NARANJO4, Alberto LEPORATI5

1Research Group on Computational Topology and Applied Mathematics
Department of Applied Mathematics - University of Sevilla, 41012, Spain

E-mail: sbdani@us.es
2Institute of Mathematics and Computer Science, Academy of Sciences of Moldova
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Abstract. In this paper, we consider recognizer P systems with antimat-

ter and the influence of the matter/antimatter annihilation rules having weak

priority over all the other rules or not. We first provide a uniform family of P

systems with active membranes which solves the strongly NP-complete problem

SAT, the Satisfiability Problem, without polarizations and without dissolution,

yet with division for elementary membranes and with matter/antimatter anni-

hilation rules having weak priority over all the other rules. Then we show that

without this weak priority of the matter/antimatter annihilation rules over all

the other rules we only obtain the complexity class P.
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1. Introduction and preliminary results

In [11], a solution of the Subset Sum problem in the polynomial complexity class
of recognizer P systems with active membranes without polarizations, without dis-
solution and with division for elementary membranes endowed with antimatter and
matter/antimatter annihilation rules, having weak priority over all the other rules,
was provided. Then in [10] even the strongly NP-complete problem SAT was shown
to be solvable by such recognizer P systems. On the other hand, in [9] it was proved
that recognizer P systems of that kind, yet without matter/antimatter annihilation
rules having weak priority over all the other rules characterize exactly the complexity
class P. In this way, antimatter has been shown to be a frontier of tractability in
membrane computing. In this paper, we combine the results from [9] and [10] to
show in which way antimatter and matter/antimatter annihilation rules constitute a
frontier of tractability depending on the role of the matter/antimatter annihilation
rules, i.e., depending on them having the feature of weak priority or not.

The Subset Sum problem belongs to the class of so-called weakly NP-complete
problems, since its intractability strongly depends on the fact that extremely large
input numbers are allowed [12]. The reason for this weakness is based on the encoding
scheme of the input, since every integer in the input denoting a weight wi should be
encoded by a string of length O(log wi).

On the other hand, strongly NP-complete problems are those which remain NP-
complete even if the data are encoded in a unary way. The best-known one of these
problems is the satisfiability problem (SAT for short). SAT was the first problem
shown to be NP-complete, as proved by Stephen Cook at the University of Toronto
in 1971, see [7], and it has been widely used in membrane computing to prove the
ability of a P system model to solve NP-complete problems, for example, see [13, 15,
16, 18, 21, 22].

In this paper, following the proof given in [10] we provide a solution to the SAT
problem in the polynomial complexity class of recognizer P systems with active mem-
branes without polarizations and without dissolution, yet with division for elementary
membranes as well as endowed with antimatter and matter/antimatter annihilation
rules, those having weak priority over all the other rules. The details of the im-
plementation may also provide new tools for a better understanding of the problem
of searching new frontiers of tractability in membrane computing. Then, based on
the arguments elaborated in [9], we show that the polynomial complexity class of
recognizer P systems with active membranes without polarizations and without dis-
solution, but with division for elementary membranes as well as with antimatter and
matter/antimatter annihilation rules, yet those not having weak priority over all the
other rules, exactly characterize the complexity class P.

The paper is organized as follows. In Section 2 we discuss the results about P
systems found in the literature on the power and the limitations of antimatter. A
short overview on the relationship of model ingredients used in different solutions for
solving computationally difficult problems by P systems with active membranes and
the emerging computational power is given in Section 3. In Section 4, we recall the
P systems model used in this paper, the main new ingredient being antimatter and
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matter/antimatter annihilation rules as well as their semantics with respect to the
matter/antimatter annihilation rules having weak priority over all the other rules or
not. In Section 5, some basics on recognizer P systems are recalled, and in Section 6
our solution for the SAT problem is provided. Based on the arguments exhibited in [9],
in Section 7 we show that for each problem in the complexity class P we can construct
a uniform family of polynomial recognizer P systems with active membranes without
polarizations and without dissolution, but with division for elementary membranes
as well as with antimatter and matter/antimatter annihilation rules, yet those not
having weak priority over all the other rules. The paper finishes with some conclusions
and hints for future work.

2. Antimatter Overview

The concept of antimatter has been introduced in the framework of membrane
computing as a control tool for the flow of spikes in spiking neural P systems, for
example, see [24] and [19, 29, 30]. In this context, when one spike and one anti-
spike appear in the same neuron, the annihilation occurs and both, spike and anti-
spike, disappear. Antimatter and matter/antimatter annihilation rules later have
been adapted to other models of membrane systems, and currently this is an active
research area.

The concept of matter/antimatter annihilation rules in transitional P systems ini-
tially appeared in [2]. It turned out that combining annihilation rules, which are a
specific form of cooperative erasing, with non-cooperative rules yields an elegant com-
putationally complete model. Note that immediate annihilation precisely corresponds
to weak priority of annihilation. It has been shown that this priority may be removed
at the price of adding one catalyst. Then, it has also been shown that P systems with
non-cooperative rules and matter/antimatter annihilation are computationally com-
plete even in the deterministic case. A variant with annihilation generating energy
was considered, too.

The work of [2] has been continued in [1]. In particular, the computational com-
pleteness results were generalized to computing vectors over Z instead of N, as well
as to computing languages, or even subsets of groups (as languages over symbols and
anti-symbols). A number of universality results involving small computing devices
was obtained in [3], in particular, a universal accepting P system with 53 rules, simu-
lating a model called generalized counter automata introduced there for that purpose.

Besides being studied for computational completeness and universality results in-
volving small computing devices, matter/antimatter annihilation rules have been con-
sidered in the model of P systems with active membranes, for instance, see [11]. Un-
der the basic settings, i.e., with weak priority of the matter/antimatter annihilation
rules over all the other rules, uniform families of recognizer P systems with active
membranes solve Subset Sum, a well-known weakly NP-complete problem, and in
[10] even a solution for SAT, the famous strongly NP-complete problem, has been
described. Recently it has been shown in [9] that without the weak priority of the
matter/antimatter annihilation rules over all the other rules, only the complexity class
P is characterized within the framework of recognizer P systems.
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3. Computation Theory Remarks

A computation is a sequence of configurations which starts from an initial config-
uration. A configuration describes the current status of the computing machine; this
may include instances of objects, instances of membranes, and any other entity bearing
information. A computation step consists of transformations of symbols by applying
specific kinds of rules. Clearly, computations using rules without cooperation of sym-
bols are quite limited in power; for example, it is known that E0L-behavior (i.e., the
parallel use of non-cooperating rules as in Lindenmayer systems) with standard halt-
ing yields PsREG (i.e., semi-linear sets), and accepting P systems are considerably
more degenerate.

In this sense, interaction of symbols is a fundamental part of membrane computing,
or of theoretical computer science in general. Various ways of interaction of symbols
have been studied in membrane computing. For the models with active membranes,
the most commonly studied ways are various rules changing polarizations (or even
sometimes labels) and membrane dissolution rules. One object may engage such a
rule, which would affect the context (polarization or label) of other objects in the
same membrane, thus affecting the behavior of the latter, e.g., in case of dissolution,
such objects find themselves in the parent membrane, which usually has a different
label.

In the literature on P systems with active membranes, normally only the rules
with at most one object on the left side were studied. Since recently, the model with
matter/antimatter annihilation rules, e.g., see [1] and [3], have attracted the attention
of researchers. It provides a form of direct object-object interaction, albeit in a rather
restricted way (i.e., by erasing a pair of objects that are in a bijective relation).
Although it is known that non-cooperative P systems with antimatter are universal,
studying their efficiency turned out to be an interesting line of research. So how does
matter/antimatter annihilation compare to other ways of organizing interaction of
objects?

First, all known solutions of NP-complete (or more difficult) problems in mem-
brane computing rely on the possibility of P systems to obtain exponential space
in polynomial time; note that object replication alone does not count as building
exponential space, since an exponential number can be written, e.g., in binary, in
polynomial space. Such a possibility to obtain exponential space in polynomial time
is provided by either of membrane division rules, membrane separation rules, see
[4, 23, 25], membrane creation rules, see [20], (or string replication rules, but string-
objects lie outside of the scope of the current paper). In tissue P systems, one may
apply a similar approach to cells instead of membranes.

Note that in case of cell-like P systems, membrane creation alone (unlike the
other types of rules mentioned above) makes it also possible to construct a hierar-
chy of membranes, let us refer to it as structured workspace, which is used to solve
PSPACE-complete problems. The structured workspace can be alternatively cre-
ated by elementary membrane division plus non-elementary membrane division (plus
membrane dissolution if we have no polarizations).

Besides creating workspace, to solve NP-complete problems we need to be able to
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effectively use that workspace by making objects interact. For instance, it is known
that even with membrane division, without polarizations and without dissolution,
only problems in P may be solved. However, already with two polarizations (the
smallest non-degenerate value) P systems can solve NP-complete problems. What
can be done without polarizations?

One solution is to use the power of switching the context by membrane dissolu-
tion. Coupled with non-elementary division, a suitable membrane structure can be
constructed so that the needed interactions can be performed solving NP-complete
or even PSPACE-complete problems [6]. It is not difficult to realize that elementary
and non-elementary division rules can be replaced by membrane creation rules, or
elementary division rules can be replaced by separation rules.

Finally, an alternative way of interaction of objects considered in this paper follow-
ing [2] is matter/antimatter annihilation. What are the strengths and the weaknesses
of these ingredients (the weaker is a combination of ingredients, the stronger is the
result, while sometimes weaker ingredients do not let us do what stronger ones can
do)?

Using matter/antimatter annihilation makes it possible to carry out multiple si-
multaneous interactions (for example, the checking phase in our solution for SAT is
constant-time instead of linear with respect to the number of clauses), and it is a
direct object-object interaction.

The power of dissolution and polarizations is the possibility of mass action (not
critical for studying computational efficiency within PSPACE as all multiplicities
are bounded with respect to the problem size) by changing context.

Using non-elementary division lets us build structured workspace (probably nec-
essary for PSPACE if membrane creation is not used instead of membrane division,
unless PPP=PSPACE, see [17]), and change non-local context (e.g., the label of the
parent membrane).

In the present paper we focus on using antimatter and matter/antimatter annihi-
lation rules and on the significantly bigger power coming up when letting these rules
having weak priority over all the other rules.

4. The P Systems Model

In this paper, we use the usual rules of evolution, communication, and division
of elementary and non-elementary membranes which are common in P systems with
active membranes. The main novelty in the model is the use of antimatter and
matter/antimatter annihilation rules.

Inspired by physics, we consider the annihilation of two objects a and b from the
alphabet O in a membrane with label h, with the annihilation rule for a and b written
as [ ab → λ ]

h
. The meaning of the rule follows the idea of annihilation: If a and

b occur simultaneously in the same membrane, then both are consumed (disappear)
and nothing is produced (denoted by the empty string λ). The object b is called the
antiparticle of a and it is usually written a instead of b.

With respect to the semantics, let us recall that this rule must be applied as many



206 D. Dı́az-Pernil et al.

times as possible in each membrane, according to the maximal parallelism. Following
the intuition from physics, if a and a occur simultaneously in the same membrane h
and the annihilation rule [ aa→ λ ]

h
is defined, then it has to be applied, regardless

any other option. In this sense, any annihilation rule has (weak) priority over all rules
of the other types, see [11] and [10]. Yet we may also relax this condition of weak
priority, for instance, see [9].

A P system with active membranes without polarizations, without dissolution and
with division of elementary and non-elementary membranes and with annihilation
rules is a cell-like P system with rules of the following kinds (following [5], we use
subscript 0 for the rule type to represent the restriction that such a rule does not
depend on the polarization and is not allowed to change it; if all rules have this
subscript, this is equivalent to saying that the P system is without polarizations):

(a0) [ a → u ]
h
for h ∈ H, a ∈ O, u ∈ O∗ (object evolution rule). An object

a ∈ O belonging to a membrane h evolves to a multiset represented by the
string u ∈ O∗.

(b0) a[ ]
h
→ [ b ]

h
for h ∈ H, a, b ∈ O (send-in rule). An object a from the region

immediately outside a membrane labeled by h is taken into this membrane,
possibly being transformed into another object b.

(c0) [ a ]
h
→ b[ ]

h
for h ∈ H, a, b ∈ O (send-out rule). An object a is sent out

from a membrane labeled by h to the region immediately outside, possibly being
transformed into another object b.

(e0) [ a ]
h
→ [ b ]

h
[ c ]

h
for h ∈ H, a, b, c ∈ O (division rule for elementary mem-

branes). An elementary membrane can be divided into two membranes with the
same label, possibly transforming one original object a into a different one in
each of the new membranes.

(f0) [ [ ]h1
[ ]h2

]h0
→ [ [ ]h1

]h0
[ [ ]h2

]h0
, for h0, h1, h2 ∈ H (division rules

for non-elementary membranes). If the membrane with label h0 contains other
membranes than those with labels h1, h2, then such membranes and their con-
tents are duplicated and placed in both new copies of the membrane h0; all
membranes and objects placed inside membranes h1, h2, as well as the objects
from membrane h0 placed outside membranes h1 and h2, are reproduced in the
new copies of membrane h0.

(g0) [ aa → λ ]
h
for h ∈ H, a, a ∈ O (matter/antimatter annihilation rule). The

pair of objects a, a ∈ O belonging simultaneously to a membrane labeled by h
disappears.

Let us remark that dissolution rules - type (d0) - are not considered in this model.

These rules are applied according to the following principles (with the special
restrictions for annihilation rules specified above):
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– All the rules are applied in parallel and in a maximal manner. In one step,
one object of a membrane can be used by at most one rule (chosen in a non–
deterministic way), and each membrane can be the subject of at most one rule
of types (b0), (c0), (e0), and (f0).

– If at the same time a membrane labeled with h is divided by a rule of type
(e0) triggered by some object a and there are other objects in this membrane
to which rules of type (a0) or (g0) can be applied, then we suppose that first
the rules of type (g0) and only then those of type (a0) are used, before finally
the division is executed. This process in total takes only one step.

– The rules associated with membranes labeled by h are used for all copies of
membranes with label h.

5. Recognizer P Systems

Recognizer P systems are a well-known model of P systems which are basic for the
study of complexity aspects in membrane computing. Next, we briefly recall some
basic ideas related to them. For a detailed description, for example, see [26, 27]. In
recognizer P systems all computations halt; there are two distinguished objects tradi-
tionally called yes and no (used to signal the result of the computation), and exactly
one of these objects is sent out to the environment (only) in the last computation
step.

Let us recall that a decision problem X is a pair (IX , θX) where IX is a language
over a finite alphabet (the elements are called instances) and θX is a predicate (a total
Boolean function) over IX . Let X = (IX , θX) be a decision problem. A polynomial
encoding of X is a pair (cod, s) of polynomial time computable functions over IX
such that for each instance w ∈ IX , s(w) is a natural number representing the size
of the instance and cod(w) is a multiset representing an encoding of the instance.
Polynomial encodings are stable under polynomial time reductions.

A family of P systems Π is said to be sound with regard to X if for each instance
of the problem w ∈ IX , if there exists an accepting computation of Π(w), then
θX(w) = 1, and Π is complete with regard to X if for each instance of the problem
w ∈ IX , provided that θX(w) = 1, then every computation of Π(w) is an accepting
computation.

LetR be a class of recognizer P systems with input membrane. A decision problem
X = (IX , θX) is solvable in a uniform way and polynomial time by a family Π =
{Π(n)}n∈N of P systems from R – we denote this by X ∈ PMCR – if the family Π
is polynomially uniform by Turing machines, i.e., there exists a polynomial encoding
(cod, s) from IX to Π such that the family Π is polynomially bounded with regard
to (X, cod, s); this means that there exists a polynomial function p such that for each
u ∈ IX every computation of Π(s(u)) with input cod(u) is halting and, moreover, it
performs at most p(|u|) steps; the family Π is sound and complete with regard to
(X, cod, s). Moreover, we write X ∈ PMC⋆

R if a decision problem X = (IX , θX) is
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solvable only in a semi-uniform way and polynomial time by a family Π, i.e., for each
instance of the problem w ∈ IX we need a recognizer P system on its own.

By following the standard notation, in [11] the class of polarizationless recognizer
P systems with active membranes without dissolution and with division of elementary
and non-elementary membranes, and with antimatter and matter/antimatter annihi-
lation rules has been denoted by AM0

−d,+ne,+ant, without using a symbol in the name
to specify the priority, as this was assumed to be part of the model definition. The
class of P systems which uses the same model of P systems, but without priority for
the application of the annihilation rules, as in [9], is denoted byAM0

−d,+ne,+ant NoPri.
If division of non-elementary membranes is not used and only division of elementary
membranes is used, we write +e instead of +ne.

6. Solving SAT

By constructing a uniform family of deterministic recognizer P systems with active
membranes, without polarizations, without non-elementary membrane division and
without dissolution, yet with matter/antimatter annihilation rules, for solving SAT,
in this section we show the following result:

Theorem 1. NP ⊆ PMCAM0
−d,+e,+ant

.

Propositional Satisfiability is the problem of determining, for a formula of the
propositional calculus, if there is an assignment of truth values to its variables for
which that formula evaluates to true. By SAT we mean the problem of propositional
satisfiability for formulas in conjunctive normal form (CNF). In the following we
describe a uniform family of P systems which solves it. As usual, we will address the
resolution via a brute force algorithm, which consists of the following stages (some of
the ideas for the design are taken from [8] and [28]):

– Generation and Evaluation Stage: All possible assignments associated with the
formula are created and evaluated (in this paper we have subdivided this group
into Generation and Input processing groups of rules, which take place in par-
allel).

– Checking Stage: In each membrane we check whether or not the formula evalu-
ates to true for the assignment associated with it.

– Output Stage: The system sends out the correct answer to the environment.

Let us consider the pairing function ⟨ , ⟩ defined by

⟨n,m⟩ = ((n+m)(n+m+ 1)/2) + n.

This function is polynomial-time computable (it is primitive recursive and bijective
from N2 onto N). For any given formula in CNF, φ = C1 ∧ · · · ∧ Cm, with m clauses
and n variables V ar(φ) = {x1, . . . , xn} we construct a P system Π(⟨n,m⟩) solving it,
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where the multiset encoding the problem to be the input of Π(⟨n,m⟩) (for the sake
of simplicity, in the following we will omit m and n) is

cod(φ) = {xi,j : xj ∈ Ci} ∪ {yi,j : ¬xj ∈ Ci}.

For solving SAT by a uniform family of deterministic recognizer P systems with
active membranes, without polarizations, without non-elementary membrane divi-
sion and without dissolution, yet with matter/antimatter annihilation rules, we now
construct the members of this family as follows:

Π = (O,Σ, H = {1, 2}, µ = [ [ ]2 ]1, w1, w2, R, iin = 2), where

Σ = {xi,j , yi,j | 1 ≤ i ≤ m, 1 ≤ j ≤ n},
O = {d, t, f, F, F , T, non+5, Fn+5, yesn+6, yesn+6, non+6, yes, no}
∪ {xi,j , yi,j | 1 ≤ i ≤ m, −1 ≤ j ≤ n} ∪ {xi,−1, yi,−1 | 1 ≤ i ≤ m}
∪ {ci, ci | 1 ≤ i ≤ m} ∪ {ej | 1 ≤ j ≤ n+ 3}
∪ {yesj , noj , Fj | 0 ≤ j ≤ n+ 5},

w1 = no0 yes0 F0, w2 = dn e1,

and the rules of the set R are given below, presented in the groups Generation, Input
Processing, Checking, and Output, together with explanations about how the rules
in the groups work.

Generation

G1. [ d ]2 → [ t ]2[ f ]2;

G2. [ t→ y1,−1 · · · ym,−1 ]
2
;

G3. [ f → x1,−1 · · ·xm,−1 ]
2
;

G4. [ xi,−1 → λ ]2, 1 ≤ i ≤ m;

G5. [ yi,−1 → λ ]
2
, 1 ≤ i ≤ m.

In each step j, 1 ≤ j ≤ n, every elementary membrane is divided, one new mem-
brane corresponding with assigning true to variable j and the other one with assigning
false to it. One step later, proper objects are produced to annihilate the input ob-
jects associated to variable j: in the true case, we introduce the antimatter object
for the negated variable, i.e., it will annihilate the corresponding negated variable,
and in the false case, we introduce the antimatter object for the variable itself, i.e.,
it will annihilate the corresponding variable. Remaining barred (antimatter) objects
not having been annihilated with the input objects, are erased in the next step.

Input Processing

I1. [ xi,j → xi,j−1 ]
2
, 1 ≤ i ≤ m, 0 ≤ j ≤ n;

I2. [ yi,j → yi,j−1 ]2, 1 ≤ i ≤ m, 0 ≤ j ≤ n;
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I3. [ xi,−1 xi,−1 → λ ]2, 1 ≤ i ≤ m;

I4. [ yi,−1 yi,−1 → λ ]
2
, 1 ≤ i ≤ m;

I5. [ xi,−1 → ci ]2, 1 ≤ i ≤ m;

I6. [ yi,−1 → ci ]2, 1 ≤ i ≤ m.

Input objects associated with variable j decrement their second subscript during
j+1 steps to −1. The variables not representing the desired truth value are eliminated
by the corresponding antimatter object generated by the rules G2 and G3, whereas
any of the input variables not annihilated then, shows that the associated clause i is
satisfied, which situation is represented by the introduction of the object ci.

Checking

C1. [ ej → ej+1 ]
2
, 1 ≤ j ≤ n+ 1;

C2. [ en+2 → c1 · · · cmen+3 ]
2
;

C3. [ ci ci → λ ]2, 1 ≤ i ≤ m;

C4. [ ci → F ]2, 1 ≤ i ≤ m;

C5. [ en+3 → F ]
2
;

C6. [ F F → λ ]
2
, 1 ≤ i ≤ m;

C7. [ F ]
2
→ [ ]

2
T .

It takes n+2 steps to produce objects ci for every satisfied clause, possibly multiple
times. Starting from object e1, we have obtained the object en+2 until then; from this
object en+2, at step n+2 one anti-object is produced for each clause. If any of these
clause anti-objects ci is not annihilated, then it is transformed into F , showing that
the chosen variable assignment did not satisfy the corresponding clause. It remains
to notice that object T is sent to the skin (at step n + 4) if and only if an object F
did not get annihilated, i.e., no clause failed to be satisfied.

Output

O1. [ yesj → yesj+1 ]1, 0 ≤ j ≤ n+ 5;

O2. [ noj → noj+1 ]1, 0 ≤ j ≤ n+ 5;

O3. [ Fj → Fj+1 ]1, 0 ≤ j ≤ n+ 4;

O4. [ T → non+5Fn+5 ]1;

O5. [ non+5 non+5 → λ ]1;

O6. [ non+6 ]1 → [ ]1no;
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O7. [ Fn+5 Fn+5 → λ ]1;

O8. [ Fn+5 → yesn+6 ]1;

O9. [ yesn+6 yesn+6 → λ ]
1
;

O10. [ yesn+6 ]
1
→ [ ]

1
yes.

If no object T has been sent to the skin, then the initial no-object can count up
to n+ 6 and then send out the negative answer no, while the initial object F counts
up to n + 5, generates the antimatter object for the yes-object at stage n + 6 and
annihilates with the corresponding object yes at stage n + 6. On the other hand, if
(at least one) object T arrives in the skin, then the object no is annihilated at stage
n + 5 before it would be sent out in the next step, and the object F is annihilated
before it could annihilate with the object yes, so that the positive answer yes can be
sent out in step n+ 6.

Finally, we notice that the solution is uniform, deterministic, and uses only rules
of types (a0), (c0), (e0) as well as matter/antimatter annihilation rules. The result is
produced in n+ 6 steps.

7. Characterizing P by Removing the Priority
for the Annihilation Rules

In this section, rules of type (g0) (matter/antimatter annihilation rules) have no
priority over all the other types of rules. If at the same time a membrane labelled
with h is divided by a rule of type (e0) or (f0) and there are objects in this membrane
which are chosen to be annihilated by means of rules of type (g0), then we assume that
first the annihilation is performed and then the division is produced. Of course, this
process takes only one step. On the other hand, we now even allow non-elementary
membrane division, and still we can show that we cannot go beyond the deterministic
polynomial class P.

The main result elaborated in this section is the following claim; its proof follows
the one already exhibited in [9].

Theorem 2. PMCAM0
−d,+ne,+ant NoPri

= P.

Proof. It is well known, for example, see [14], that

PMCAM0
−d,+ne

= PMC⋆
AM0

−d,+ne
= P.

On the other hand, the following inclusion obviously holds:

PMCAM0
−d,+ne

⊆ PMCAM0
−d,+ne,+ant NoPri

,

therefore
P ⊆ PMCAM0

−d,+ne,+ant NoPri
.
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Thus it only remains to prove that also the converse inclusion holds, i.e., that

PMCAM0
−d,+ne,+ant NoPri

⊆ P .

In order to prove this inclusion, since PMC⋆
AM0

−d,+ne
= P, it suffices to prove

that
PMCAM0

−d,+ne,+ant NoPri
⊆ PMC⋆

AM0
−d,+ne

.

Hence, let X ∈ PMCAM0
−d,+ne,+ant NoPri

be a decision problem. By definition,

there exist a polynomial encoding (cod, s) and a family of P systems {Π(i)}i∈N in
AM0

−d,+ne,+ant NoPri such that for each instance u of the problem X:

– all computations of Π(s(u)) on input cod(u) halt;

– in all computations, the system sends out either one copy of the object yes or one
copy of the object no (but not both), and only in the last step of computation.

Let us first provide an informal idea of the proof. Given an instance u ∈ IX , we
know that all computations of Π(s(u)) on input cod(u) halt, and that they all answer
yes or all answer no. Let C = {C0, . . . , Cn} be one of these halting computations,
and let us assume that the answer is yes (the other case is analogous). Then there
exists an object a1 and a rule r1 ≡ [ a1 ]skin → yes [ ]skin which has been applied in
the last step of the computation. There are two possibilities: either object a1 is in
the skin membrane since the beginning of the computation, or there exists a rule r2
which must have produced it inside or moved it into the skin membrane. Note that
there may be several rules which produce object a1 in the skin membrane; in such a
case, just pick one of them as r2. Rule r2 is triggered by the occurrence of an object
a2 in a membrane with label h2. Obviously, r2 cannot be an annihilation rule, since
no object is produced by such rules, then rule r2 must belong to types (a0) to (e0).
Going back with the reasoning, either a2 appears in the membrane with label h2 since
the beginning of the computation, or it is produced or moved there by the application
of a rule r3, and so on.

Finally we have a chain

(yes, env)
r1←− (a1, skin)

r2←− (a2, h2)
r3←− · · · rk←− (ak, hk)

where k ≤ n and ak appears in a membrane with label hk in the initial configuration
(possibly as part of the input multiset). The key idea here is two-folded. On the
one hand, annihilation rules do not produce any object; the objects that trigger an
annihilation rule disappear and nothing is produced. On the other hand, for any
halting configuration there must exist a finite sequence of rules (rk, rk−1, . . . , r2, r1)
where rk is triggered by an object from the initial configuration, r1 produces yes and
each ri produces an object that triggers ri−1. Therefore, none of rules r1, . . . , rk is an
annihilation rule.

To formally prove the result we have to check that the amount of resources for
finding the sequence of rules is polynomially bounded. With this aim, we will start
by considering the dependency graph associated with Π(s(u)), but considering only
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evolution, communication and division rules, i.e., only rules which can produce new
occurrences of objects (see [14] for the details about polynomial resources).

Now, if R is the set of rules associated with Π(s(u)), we consider the corresponding
directed graph G = (V,E) defined as follows, where the function f : H → H returns
the label of the parent membrane:

V = V L ∪ V R,

V L = {(a, h) ∈ Γ×H : ∃u ∈ Γ∗ ([a→ u]h ∈ R) ∨
∃b ∈ Γ ([a]h → [ ]hb ∈ R) ∨
∃b ∈ Γ ∃h′ ∈ H (h = f(h′) ∧ a[ ]h′ → [b]h′ ∈ R) ∨
∃b, c ∈ Γ ([a]h → [b]h[c]h ∈ R)},

V R = {(b, h) ∈ Γ×H : ∃a ∈ Γ ∃u ∈ Γ∗ ([a→ u]h ∈ R ∧ b ∈ u) ∨
∃a ∈ Γ ∃h′ ∈ H (h = f(h′) ∧ [a]h′ → [ ]h′b ∈ R) ∨
∃a ∈ Γ (a[ ]h → [b]h ∈ R) ∨
∃a, c ∈ Γ ([a]h → [b]h[c]h ∈ R)},

E = {((a, h), (b, h′)) : ∃u ∈ Γ∗ ([a→ u]h ∈ R ∧ b ∈ u ∧ h = h′) ∨
([a]h → [ ]hb ∈ R ∧ h′ = f(h)) ∨
(a[ ]h′ → [b]h′ ∈ R ∧ h = f(h′)) ∨
∃c ∈ Γ ([a]h → [b]h[c]h ∈ R ∧ h = h′)}.

Such a dependency graph can be constructed by a Turing machine working in
polynomial time with respect to the instance size (see [14]). Finally, let us consider
the set

∆Π = {(a, h) ∈ Γ×H : there exists a path (within the dependency graph)
from (a, h) to (yes, env)} .

It has also been proved that there exists a Turing machine that constructs ∆Π

in polynomial time; the proof uses the Reachability Problem in order to prove the
polynomially bounded construction (again we refer to [14]).

From this construction we directly obtain that the set of rules used in the chain

(yes, env)
r1←− (a1, skin)

r2←− (a2, h2)
r3←− · · · rk←− (ak, hk)

described above can be found in polynomial time.
Finally, for the instance u ∈ IX , let us consider the P system Π(u′) with only one

membrane with label s and only one object (ak, hk) in the initial configuration. The
set of rules is

– [(ai, hi)→ (ai−1, hi−1)]s for each i ∈ {3, . . . , k − 1}
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– [(a2, h2)→ (a1, skin)]s

– [(a1, skin)]s → yes [ ]s

Moreover, we observe that a similar construction can be carried out for the answer
no.

The system Π(u′) can be built in polynomial time by a deterministic Turing ma-
chine. A direct inspection of the rules shows that Π(u′) ∈ AM0

−d,+ne (in fact, we
are not even using membrane division rules at all). The behavior of the system is
deterministic, and it computes the correct answer for the instance u ∈ IX , sending
out the object yes to the environment in the last step of computation.

Notice that any multiplicity of object a in a membrane h is represented by one
node (a, h) in the dependency graph. Since the labels cannot be renamed and mem-
branes cannot be dissolved, we can safely assume that each membrane label uniquely
determines its parent’s label and so on until the skin (e.g., by starting with all mem-
branes having different labels). Recall, however, that the result of computation comes
from moving/renaming one (a, h) into (yes, env) or (no, env). Hence, there is no need
to distinguish different instances of membranes with the same label. It follows that
rules of type (f0) do not lead to any transitions in the dependency graph, hence, the
result also holds with allowing for non-elementary membrane division rules.

In sum, we conclude that X ∈ PMC⋆
AM0

−d,+ne
= P.

Remark 1. Let us finally explain the idea how to even get a uniform family of
recognizer P systems from the family constructed in the preceding proof by making
some preprocessing: For any input of length n, we include all possible input symbols
in the dependency graph. If there is a path from some symbol to yes and from another
symbol to no, then by the definition of confluence, an input containing both of these
symbols simultaneously cannot be a valid input. So, once we get an input of length n,
we first check if it has symbols deriving yes and symbols deriving no. This certainly
is possible within polynomial time.

8. Conclusions

In this paper we have considered polarizationless recognizer P systems with an-
timatter and annihilation rules, without dissolution, and with division of elementary
(and non-elementary) membranes. We have proved that by removing priority in po-
larizationless recognizer P systems with antimatter and matter/antimatter annihila-
tion rules, without dissolution, and with division of elementary (and non-elementary)
membranes, we obtain a new characterization of the standard complexity class P. On
the other hand, we have proved that polarizationless recognizer P systems without
dissolution and with division of elementary membranes as well as with antimatter and
matter/antimatter annihilation rules, those having weak priority over all the other
types of rules, can solve the strongly NP-complete problem SAT. In total we have
shown that this weak priority plays an important role in the computational power
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of these recognizer P systems, which indeed is the most interesting aspect of our re-
sults. We thus have proved that the semantics of a model can be a useful tool for
studying problems of tractability. To the best of our knowledge, this is the first time
that two models of P systems syntactically identical were shown to correspond to two
(presumably) different complexity classes simply because they use different semantics.

This opens a new research area in the study of tractability in membrane comput-
ing. Not only new ingredients or new models must be studied in order to find new
frontiers: classical results can also be revisited in order to explore the consequences
of considering alternative semantics.

Let us finally remark the important role of the definition for recognizer P systems
we have used in this paper, as this definition is quite restrictive, since only one object
yes or no is sent to the environment in any computation. In the literature one can
find other definitions of recognizer P systems and therefore other definitions of what
it means to solve a problem in the framework of membrane computing. Hence, the
study of the complexity classes in membrane computing deserves further investigations
under these specific definitions.
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branes, In: R. Freund, Gh. Păun, G. Rozenberg, A. Salomaa (Eds.): Workshop on
Membrane Computing. 6th International Workshop, WMC 2005, Vienna, Austria, July
18-21, 2005, Revised Selected and Invited Papers. Lecture Notes in Computer Science
3850, Springer, 2005, pp. 224–240.
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