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Abstract. The optimization of hyperparameters in Deep Neural Net-works is a
critical task for the final performance, but it involves a high amount of subjective
decisions based on previous researchers’ expertise. This paper presents the
implementation of Population-based Incremen-tal Learning for the automatic
optimization of hyperparameters in Deep Learning architectures. Namely, the
proposed architecture is a combina-tion of preprocessing the time series input with
Seasonal Decomposition of Time Series by Loess, a classical method for decomposing
time series, and forecasting with Convolutional Neural Networks. In the past, this
combination has produced promising results, but penalized by an incre-mental
number of parameters. The proposed architecture is applied to the prediction of the
222Rn level at the Canfranc Underground Labora-tory (Spain). By predicting the low-
level periods of 2?2Rn, the potential contamination during the maintenance
operations in the experiments hosted in the laboratory could be minimized. In this
paper, it is shown that Population-based Incremental Learning can be used for the
choice of optimized hyperparameters in Deep Learning architectures with a rea-
sonable computational cost.

Keywords: Hyperparameters optimization + Convolutional Neural Networks -
STL decomposition + PBIL - ?*2Rn measurements + Canfranc Underground
Laboratory - Forecasting

1 Introduction

Adjusting machine learning hyperparameters is a tedious but crucial task, as
the performance of an algorithm may depend on the choice of hyperparameters.
Manual optimization is a time-consuming process that can be invested in other
tasks of the algorithm development process. This paper presents an automatic
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approach for the generation of hyperparameters of a machine learning model,
which, in a few training sessions, allows to reach a local minimum among the
possible combinations.

The learning model is a combination of Seasonal Decomposition of time series
by Loess (STL) and Convolutional Neural Networks (CNN). Both methods have
been integrated and applied in the study of time series [18], but their hyperpa-
rameters need to be carefully tuned in order to obtain accurate predictions. In
order to fit some hyperparameters of CNN and parameters of STL decomposi-
tion, population-based incremental learning (PBIL) method has been used.

In our proposal, the arquitecture of the CNN is fixed and PBIL is used in
order to optimize the search of some of their hyperparameters and some of the
parameters of STL for a given task. In such way, a concrete dataset is considered
and the task is to find a combination of parameters that minimizes the loss of the
CNN on the dataset. PBIL is an optimization method of the family of genetic
algorithms and, therefore, in order to use PBIL, each set of parameters of the
CNN is encoded as a binary sequence, in other words as an individual of the
population. In order to obtain the fitness of an individual which guides the
evolutinary procees, firstly the hyperparameters encoded by the individual are
obtained. The fitness associated to the individual is the loss of a single run of
the CNN on the dataset when these parameters are considered.

The problem of automatically tuning hyperparameters in machine learning
has been considered from many different point of views. One of the simplest
approaches is the random search, which was explored in [3]. A different point of
view is based in Bayesian optimization. This method considers on an iterative
evaluation and update of promising hypermarameters [22]. Gradient-based opti-
mization [16], radial basis functions [8] and spectral methods [13] have also been
explored.

Special mention deserves the optimization of hyperparameters inspired in
evolutionary and population based methods. Evolutionary optimization consid-
ers ideas coming from evolutionary algorithms to explore a hyperparameters
space [19]. In population based methods applied to neural networks, the model
tries to optimize network weights and hyperparameters simultaneously [15]. In
our approach, an optimization method which takes ideas from competitive learn-
ing and population based methods is also considered.

1.1 Previous Efforts

In the past, the 222 Rn time series at Canfranc Underground Laboratory (LSC)
has been analysed and forecast using non-stochastic algorithms: Holt-Winters,
AutoRegressive Integrated Moving Averages, and Seasonal and STL (see [17] and
references therein). Also in [17] and [18], the forecasting capacity of Multilayer
Perceptron (MLP), Convolutional Neural Networks (CNN), and Recurrent Neu-
ral Networks is evaluated for this problem. In [5], improvements in the forecasting
capacity is reported when implementing an Ensemble Deep Learning approach.
In this study the ensemble is composed of Bidirectional Recurrent Neural Net-
works (BRNN), CNN, and a variant of CNN, termed CNN-+STL, in which the



original observations used as input are replaced by the components generated
by Seasonal and Trend decomposition using Loess (STL): trend, seasonal and
remainder components [18].

In [18] the first implementation of using STL decomposition and CNN
for improving the forecasting capacity was presented. The promising results
obtained only for some test was penalized by the lack of an optimal configu-
ration. In this work, the analysis of the 22Rn time series at LSC was based
on the monthly medians of 5 years, 60 observations. The reduced dataset also
penalized the final performance!. The sub-optimal performance achieved at the
same time that the promising results motivates the additional effort presented
in the current work.

The LSC is composed of two main experimental halls for hosting scientific
experiments with requirements of very low-background. The 222 Rn concentration
is monitored every 10 minutes in both halls. An accumulated record from July
2013 to September 2018 for Hall A is available (Fig. 1). Due to the high level
of noise of the measurements, the weekly medians are considered for composing
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Fig. 1. Weekly box-plots of ?*> Rn level at Hall A of the LSC, by week (Fig. 1(a)) and
gathering the weeks independently of the week of the year (Fig. 1(b)). Depicted data
corresponds to the period from July 2013 to June 2018.

! In the current work, the dataset is composed of weekly means of 5 years, which
increments the number of observations up to 259.



the time series (red lines in the boxplot centre in Fig. 1(a)). Finally, the dataset
contains 259 observations corresponding to the weekly medians. The faint annual
modulation observed in Fig. 1(b) embodies in the noisy observations indicates
that 222 Rn concentration at LSC is not fully random, and therefore it can be
treated by machine learning algorithms.

The paper is organized as follows: Sect. 2 gives a brief description of the
different Artificial Intelligence techniques used in this paper: PBIL as optimizer,
STL for decomposing time series into components and CNN as predictive model.
Section 3 describes the proposed approach. In Sect. 4, our application to the case
study is shown, and finally, Sect. 5 contains the conclusions of this work.

2 Methods

2.1 Population-Based Incremental Learning

Population-based incremental learning is an optimization method which com-
bines genetic algorithms with competitive learning [1,2]. It belongs to the so-
called estimation of distribution algorithms (EDAs). The main difference with
standard evolutionary algorithms is that EDAs do not create a population of
solutions from the previous generation by using crossover and mutations. EDAs
consider global information of the whole population in order to build a proba-
bilistic distribution which is updated step by step. The optimization method is
based on local search and it has been proved that it converges to local optima
[21]. In this paper, binary-valued encoding for genotypes have been used. In
our approach, PBIL is configured for using the best 5 individuals to build the
distribution.

During the execution of the algorithm, individuals, representing the hyper-
parameters and parameters being optimized, are created from a probability dis-
tribution. Through the generations, only the best individuals of a generation are
used for updating the parameters of the probability distribution. Later, based
on the updated probability distribution parameters, a new generation of individ-
uals is created by sampling the probability distribution and evaluated, restart-
ing the process. The initial value of each probability is set at 0.5. In our app-
roach, the individuals are created as binary vectors. Mean Squared Error (MSE,
MSE =3".(4; — y;)?, where y; are the observations and g; the predictions) of a
single run of the CNN is used as fitness function in PBIL algorithm.

2.2 Gray Coding

Gray coding is a type of binary conding which is usually used in order to avoid
Hamming cliffs (Table 1). A Hamming cliff is formed when two numerically
adjacent values have bit representations that are far apart by using the Ham-
ming distance. For example, number 3 and 4 differ in binary representation in
three bits: 0011 and 0100, having a Hamming distance of 3; or for 15 and 16,
corresponding the binary representations 01111 and 10000, which have a Ham-
ming distance of 5.



Table 1. Example of correspondence among decimal, binary and Gray coding.

Decimal | Binary | Gray
0 0000 | 0000
1 0001 | 0001
2 0010 |0011
3 0011 |0010
4 0100 |0110

A large Hamming distance is a barrier for the evolution of the individuals in
the evolutionary algorithm. The change of one unit in a parameter under opti-
mization requires a large amount of simultaneous modification of the individual
binary coding, but not in Gray coding. This improbable process degrades the
performance of evolutionary algorithm.

In our approach, the optimization of the hyperparameters will be performed
by PBIL and each set of parameters will be encoded as a binary sequence by using
Gray coding. For each hyperparameter to optimize, it is necessary define the
minimum and maximum feasible values, and the step for moving in this range.
This determines the size of the individual, since the binary representation must
be able to express all the feasible values and hence, also the length of the vector of
probabilities. For each parameter z, the number of bits n, used in the individual
for representing it can be calculated as n, = [loga((max — min)/step)]. For
example, if the chosen region for searching a parameter p for the CNN has the
bounds 20 and 64 and the chosen step is 4, then the number of used bits is
4 = [log2(11)]. If the 4 bits in a concrete individual are 1100, the decodification
¢ (by using Gray conding) of such sequence is 8 and hence the concrete value
of the parameter p can be obtained as p = min + (c * step). In our case p =
(8 4)+ 20 =52.

Each individual of the evolutionary algorithm is a binary vector concatenat-
ing the hyperparameters and parameters being optimized. For each generation,
decimal representation of these hyperparameters and parameters are Gray-coded
and concatenated. Later, when they have been manipulated by the evolutionary
algorithm, they are decoded and evaluated with the CNN+STL implementation.

The CNN hyperparameters optimized are:

— Batch size is number of samples per gradient update, within the range [16]
with step 1.

— Sample size is the number of observations which are used as independent
variable. ranging from 52 to 100 with step 2.

— The number of epochs for training, ranging from 20 to 140 with a step of 20.

— Size of the kernels in the convolutional blocks: ranging from 3 to 13 for the
first block, from 3 to 9 for the second one, and from 3 to 5 for the third one,
with a step of 1.



— The number of kernels in the convolutional blocks: ranging from 8 to 32 for
the first block, from 16 to 64 for the second one, and from 32 to 128 for third
one, with steps for 8, 8 and 16 respectively.

The STL decomposition parameters optimized are:

— The most significant period of the time series for STL decomposition, period,
within the range [30, 61| with step 1.

— The fraction of data used in fitting lowess regression, lo_faction, within the
range [0, 1] with step 0.1. The parameters lo_faction and lo_delta are con-
verted into integer before the Gray coding.

— The distance within which to use linear-interpolation instead of weighted
regression, lo_ delta, within the range [0, 0.2] with step 0.01.

2.3 Seasonal Decomposition of Time Series by Loess

Seasonal decomposition of time series by loess (STL) is a method of decomposing
time series [7]. The whole time series is decomposed into three components.
One of the components is the trend (7}), related to the long-term increase or
decrease of the original time series. Another component is seasonal component
(St), related to the periodicity of the data. Finally, the third component is the
remainder or random component (R;). In the case of additive decomposition,
the sum of these components results in the original time series (;), ¥; = Ty +
St + R;. In our approach, additive STL decomposition is employed using the
STLDecompose library [20].

2.4 Convolutional Neural Networks

Convolutional Neural Networks (CNN) are specialized Neural Networks with
special emphasis in image processing [12,14], although nowadays they are also
employed in time series analysis and forecasting [9,17,18,23].

The CNN consists of a sequence of convolutional layers, the output of which is
connected only to local regions in the input. These layers alternate convolutional,
non-linear and pooling-based layers which allow extracting the relevant features
of the class of objects, independently of their placement in the data example.
The CNN allows the model to learn filters that are able to recognize specific
patterns in the time series, and therefore they can capture richer information
from the series. It also embodies three features which provide advantages over the
multilayer perceptron: sparse interactions, parameter sharing and equivariance
to translation [12].

Although CNN are frequently associated to image or audio classification -2D
grid examples- or video sequence -3D grid examples-, it can also be applied to
time series analysis -1D grid examples-. When processing time series, instead of
a set of images, the series has to be divided in overlapping contiguous time win-
dows. These windows constitute the examples, where the CNN aims at finding
patterns. At the same time, the application to time series modelling requires the



application of 1D convolutional operators, whose weights are optimized during
the training process.

CNN architecture is composed of three branches handling the three compo-
nents arisen from the STL decomposition. Each branch is composed of three
convolutional blocks with relu—Rectified Linear Unit—as activation function.
Ending this, the three intermediated representations are concatenated and then
they pass through two dense layers of 64, and 16 neurons and relu as activa-
tion function; and a output layer with linear activation function. Among other
hyperparameters, the number of filters in the convolutional blocks and their size
are optimized through the PBIL algorithms. The loss function is the MSE and
the optimizer is Adam.

For the implementation of the current approach, Python3 and Keras library
have been used for the implementation of the CNN [6].

2.5 Statistics

In order to ascertain if the proposed forecasting methods applied to the test
set improve the prediction, two different types of tests can be applied: paramet-
ric and non-parametric. The difference between both relies on the assumption
that data are normally distributed for parametric tests, whereas non explicit
conditions are assumed in non-parametric tests. For this reason, the latter is
recommended when the statistical model of data is unknown [10,11].

The Kruskal-Wallis test is a non-parametric test used to compare three or
more groups of sample data. For this test, the null hypothesis assumes that
the samples are from identical populations. The procedure when using multiple
comparison to test whether the null hypothesis is rejected implies the use of a
post-hoc test to determine which sample makes the difference. The most typical
post-hoc test is the Wilcoxon signed-rank test.

The Wilcoxon signed-rank test belongs to the non-parametric category. For
this test, the null hypothesis assumes that the samples are from identical pop-
ulations, whereas the alternative hypothesis states that the samples come from
different populations. It is a pairwise test that aims to detect significant differ-
ences between two sample means.

3 PBIL for Optimizing Hyperparameters
of Convolutional Neural Networks and Parameters
of STL Decomposition

The algorithm used in this work is outlined in the flowchart of Fig. 2.

1. Initially, with a probability 0.5, v; Gray-coded individuals are randomly cre-
ated, each one with length n, being n the minimum number of bits for rep-
resenting all the hyperparameters and parameters to optimize. In the tests,
population is composed of 25 individuals.



2. Each individual is split for obtaining the hyparameters and parameters, and
the parts are translated from Gray-coded to decimal-coded representation.

3. The individuals are evaluated through the CNN+STL architecture (Fig. 3).
The test error on a single run of the implementation is used as individual
fitness.

4. The best and worse individuals are identified for creating a new probability
vector. Each component of the probability vector follows a binomial distri-
bution. Best individuals modify p of previous generation so that it is more
probable for the individuals in the next generation to obtain positive features,
whereas the worse individuals act in opposite direction over p.

5. The process is repeated until the end criterion —number of generations—is
achieved.

4 Experimental Results and Analysis

For evaluating the overall performance of the proposed approach, performance
comparisons with Multiplayer Perceptron, Convolutional Neural Network, and—
Long Short-Term Memory—Bidirection Recurrent Neural Network are made. In
those comparisons, MSE is employed as figure of merit. In Table 2, the values
of the MSE after 15 independent executions are presented. As it can be appreci-
ated, the proposed approach, CNN-STL, produces the lowest error among the
architectures evaluated. CNN+STL clearly outperforms Multilayer Perceptron
(MLP), and previous efforts in CNN; and it is competitive with BRNN which has
as excellent performance in time series forecasting for a diversity of observations,
from Radon [5] to air pollutants concentration [4].

The application of the Kruskal-Wallis test to the MSE indicates that the dif-
ferences between the medians are significant for a confidence level of 95% (p-value
under 0.05), p-value = 5-107%, which means that the differences are unlikely to
have occurred by chance with a probability of 95%. Furthermore, the application
of the Wilcoxon signed-rank test to the values of the MSE of CNN+STL and
BRNN approaches points that the differences between the median of the MSE
are not significant for a confidence level of 95% (p-value under 0.05), p-value =
0.08.

In Fig. 4, the evolution of the MSE for the PBIL population versus the
generation is shown. In this case, the final MSE is 77.83 with an initial MSE of
90.86. This initial MSE is much lower that the final MSE of other runs. This
could indicate that the initial search space is too wide, and the initial random
population plays a critical role in the performance of the run, even if PBIL has
the capability to produce improvements in all the runs.

In-detail insight on the final values of CNN hyperparameters and STL decom-
position parameters, for both excellent-performance and poor-performance runs,
offers a valuable information about outperforming configurations. For instance,
performance critically degrades when the period of decomposition is out of the
narrow range [50, 52|, while the two other parameters of STL decomposition do
not play a relevant role in the final performance.



(-

¥
Initialize a probability vector p of length n, with values 0.5.
¥

Generate multiple random vectors of 7 size by sampling p. <«

i
For each random vector generate an individual x with binary characteristics
as follows: Being a random vector v, if v; > p; then x; = 1 else x; = 0.
¥
Each individual vector represents a combination of hyperparameters. De-
compose this vector into segments of defined size, and convert them
from Gray code to decimal system, each value is a hyperparameter.

i

Evaluate the CNN architecture with the generated hyperparameters.
¥

Save the best individual of this generation if it is bet-
ter than the best individuals of previous generations.
v
Compare the best individuals and modify the vector p so that it is
more probable to obtain in the future the characteristics in which
they are equal, and in the opposite direction for the worst individuals.

¥

Generations

Completed

/ Best individual /

A 4

o

Fig. 2. Algorithm proposed for the implementation of PBIL in the optimization of
hyperparameters of CNN and parameters of STL, in which given a specific num-
ber of generations the algorithm is able to obtain a combination of hyperparameters
and parameters that approach the global optimum, improving the results with each
generation.

With regards to the hyperparameters, the sample size seems not be as criti-
cal as the period of the STL decomposition for the performance of the proposed
approach. A wide range of best MSE is achieved within the range of this hyper-
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Fig. 3. CNN architecture. It is composed of three branches for handling the three
components arising from the STL decomposition.

Table 2. Mean and standard deviation of MSE of test set (30% of the dataset) for 15
independent runs.

Architecture | MSE
MLP 113+ 10
CNN 199 + 22
BRNN 101 +£2
CNN+STL |97+9

parameter [52, 100]. A similar behaviour is observed for the number of epochs
and the batch size.

The CNN architecture of the best case is composed of the following number
of kernels: 13, 48, and 32; with sizes: 13, 4, and 5, with a sample size of 58.
Two other high-performance cases appear for number of kernels (8, 40, 32), with
kernels sizes (8, 9, 5) and (12, 3, 5), and sample sizes 96 and 100, respectively.
Oppositely, low-performance cases appear when the number of kernels are much
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Fig. 4. Boxplot with the evolution of MSE per generation for the best case of 15
independent runs.

larger, specially in the last convolutional blocks, for instance (16, 48, 96), (32,
64, 80) and (24, 64, 128) with samples sizes: 70, 54, and 58, respectively.

5 Conclusions

In this paper, an approach based on PBIL for optimizing the hyperparameters of
a CNN architecture and the parameters of a STL decomposition applied to the
time series forecasting of 222 Rn concentration at Canfranc Underground Labo-
ratory has been proposed. In the previous efforts, the performance of the time
series forecasting with CNN architecture and STL decomposition was slightly
penalized by the lack of a optimized parameters and hyperparameters set. The
promising results obtained in the past deserve of an appropriated exploration
of the parameter space. For this purpose, PBIL has been applied for finding a
high-quality sub-optimal parameters and hyperparameters set. The use of an evo-
lutionary algorithm for optimizing the hyperparameters of CNN allows replacing
human-expertise-based values by optimized values.

The results and the statistical analysis state that the proposed architec-
ture improves the previous performance of CNN and MLP algorithms being
competitive with other well-recognized as suitable for time series forecasting as
LSTM-Bidirectional Recurrent Neural Networks. Furthermore, the implementa-
tion can be used for exploring and evaluating not classical configuration of CNN
architecture for time series forecasting.

To evaluate the proposed approach in other data sets is proposed as Future
Work.
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