Wright State University
CORE Scholar

Computer Science and Engineering Faculty

Publications Computer Science & Engineering

1-1-2002

ILP Operators for Propositional Connectionist Networks

Miguel Angel Gutierrez-Naranjo

Pascal Hitzler
pascal.hitzler@wright.edu

Follow this and additional works at: https://corescholar.libraries.wright.edu/cse

Cf Part of the Bioinformatics Commons, Communication Technology and New Media Commons,
Databases and Information Systems Commons, OS and Networks Commons, and the Science and
Technology Studies Commons

Repository Citation

Gutierrez-Naranjo, M. A., & Hitzler, P. (2002). ILP Operators for Propositional Connectionist Networks.
Proceedings of the WLP: Workshop Logische Programmierung, 103-108.
https://corescholar.libraries.wright.edu/cse/64

This Conference Proceeding is brought to you for free and open access by Wright State University’s CORE Scholar.
It has been accepted for inclusion in Computer Science and Engineering Faculty Publications by an authorized
administrator of CORE Scholar. For more information, please contact library-corescholar@wright.edu.

https://corescholar.libraries.wright.edu/
https://corescholar.libraries.wright.edu/cse
https://corescholar.libraries.wright.edu/cse
https://corescholar.libraries.wright.edu/cse_comm
https://corescholar.libraries.wright.edu/cse?utm_source=corescholar.libraries.wright.edu%2Fcse%2F64&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/110?utm_source=corescholar.libraries.wright.edu%2Fcse%2F64&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/327?utm_source=corescholar.libraries.wright.edu%2Fcse%2F64&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/145?utm_source=corescholar.libraries.wright.edu%2Fcse%2F64&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/149?utm_source=corescholar.libraries.wright.edu%2Fcse%2F64&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/435?utm_source=corescholar.libraries.wright.edu%2Fcse%2F64&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/435?utm_source=corescholar.libraries.wright.edu%2Fcse%2F64&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:library-corescholar@wright.edu

ILP Operators for Propositional Connectionist
Networks
EXTENDED ABSTRACT

Miguel Angel Gutiérrez-Naranjo* and Pascal Hitzler

! Dpto. Ciencias de la Computacién e Inteligencia Artificial
Universidad de Sevilla
magutierQus.es
% Institut fiir Kiinstliche Intelligenz, Fakultit fiir Informatik
Technische Universitdt Dresden
phitzler@inf.tu-dresden.de

1 Introduction

The study of the integration of symbolic logic and connectionist systems is an
active area of research. Its general objective is appealing: Since biological neural
networks are able to process symbolic information, it should be possible to do the
same with artificial ones. This research should, so one of the visions, also shed
light on the way in which neural networks represent symbolic information. Hence,
researchers have set out to study the interplay between logic and connectionist
systems, however with rather limited success so far, both on the theoretical and
on the applied side, see [BS01] for a recent survey. It is conjectured [H6100],
that entirely new methods need to be developed in order to obtain satisfactory
theoretical or practical results. In this extended abstract, we present preliminary
results which relate inductive logic programming and connectionist systems. To
the best of our knowledge, such a relation has not been studied before.

One approach to learning refered to in the literature on logic and connec-
tionist systems proceeds along the following three steps [dGZ99]: (1) Insertion
of knowledge into an artificial neural network, (2) training of this network with
one of the standard learning algorithms and (3) extraction of rules from the
trained network. This way, it is attempted to achieve learning of logical rules
via learning algorithms which act on connectionist systems, i.e. artificial neural
networks.

In this paper, we take a different perspective. In the inductive logic program-
ming (ILP) paradigm, learning operators have been developed which perform
learning on sets of logical rules in the form of logic programs. Since the tasks of
knowledge insertion into and rule extraction from certain kinds of connectionist
networks are fairly well understood, we can also carry over ILP operators to con-
nectionist paradigms, thus obtaining learning operators on these systems. This

* The first named author acknowledges support by the International Quality Network
“Rational mobile agents and systems of agents” at Technische Universitat Dresden,
funded by the DAAD.

transformation of ILP learning operators to operators which act on connectionist
networks will be undertaken in the sequel. We will display the technique for the
“identification” operator, and further results will be contained in the full version
of the paper.

2 Preliminaries

A 83-layer feedforward artificial neural network with threshold activation consists
of sets V,C,Y of nodes or units, weight functions (or weights) wr : V x C — R,
wo : C xY — R, threshold functions (or thresholds) to : Y = R, tg : C = R,
and a threshold activation function o : R — {0,1} with o(z) =0 for z < 0 and
o(x) =1for x > 0.V is called the input layer, Y is called the output layer, and
C is called the hidden layer of the network.

Units are considered to hold the numbers 0 or 1, which we call activations,
where “1” stands for “active” and “0” for “inactive”. Computation is performed
by propagating values through the network, from the input to the output layer.
The activation of a unit vy in the output layer is calculated by

yp =0 Z wo(cj,yr) -0 (Z wr(vi, cj)vi — tH(Cj)> —to(yk) (1)

c;€C v; €V

A propositional (normal) logic program is a finite set of propositional clauses
or rules of the form p < ¢i,...,q, where p is an atom (i.e. a propositional
variable), g;, for each i, is either an atom or a negated atom, and the commata
stand for conjunctions. We call p the head of the clause and q, ..., g, the body
of the clause. We impose the mild condition that for any atom p occuring in
the body of a clause, =p does not occur in the same clause. For our purpose,
we can abstract from the order of the literals in the bodies of clauses. A definite
propositional program is a propositional program in which no negation occurs.

3 Propositional Networks

In order to formalize representations of logic programs by connectionist systems,
we will use certain kinds of three-layer feedforward neural networks.

Definition 1 (Propositional Network (PN)). A propositional network (PN)
is a septuple (V, C,w,wr,wo,tm,to) consisting of two finite sets V and C, a real
number w, and four functionsto : V = R, tg : C = R, wr : VxC = {—w,0,w}
and wo : C xV = {0,w}.

For a given propositional network and ¢ € C, we define the following sets.

ey ={v eV :wr(v,c) =w} ct={veV:wo(cv) =w}
cc ={veV:wr(v,c) = —w}

We can interpret a propositional network as a three-layer feedforward network
with binary threshold activation functions in the following way: The input and
ouput layers each consist of a copy of V. The hidden layer consists of a copy
of C'. The functions tp, and tp, respectively, yield the thresholds for the out-
put and hidden layer, respectively. The functions w; and wo yield the weights
between the input and hidden, respectively the hidden and output layer. Propa-
gation in the network is via weighted sums, as usual, following equation (1) with
threshold activation function o. We will transform propositional logic programs
into propositional networks using a transformation due to [HK94]. After such a
transformation V' will represent the set of propositional variables in the program
and C will represent the set of clauses in the program.

Definition 2 (Propositional Program Network (PPN¢)). A propositional
program network with binary threshold activation function (PPNy) is a propo-
sitional network in which to s constant with value %, w=1, |c"| =1, and
tr(c) = |eq| — & for all ¢ € C. A definite propositional network with binary
threshold activation function (DPNy) is a PPN, where wr maps to {0,1} only.

Note that every quadruple (V,C,wr, wo) gives rise to a PPNy, i.e. to a sep-
tuple (V,C,w,wr,wo,tH,to), by setting w = 1, to = %, and computing tg as
in Definition 2, provided that |¢*| = 1 for all ¢ € C'. We next recall the trans-
formation due to [HK94]. In its original form, it was stated as an algorithm.

Transformation 1 Let P be a propositional (normal) logic program. Let V =

{v1,...,um} be the set of all propositional variables occuring in P and let C =
{c1,...,cn} be set set of all clauses in P. The PPN, associated with P is the
quadruple (V,C,wr,wo), where wy(v,c) = 1, respectively wy(v,c) = —1, if v

appears as a body atom, repectively as a negated body atom, in ¢, and wr(v,c) =0
otherwise, and wo(c,v) = 1 if ¢ has head v, and wo(c,v) = 0 otherwise. The
resulting PPN, is denoted by PPN(P).

The intuition underlying the construction in Transformation 1 is, that to
each program a network is associated whose input-output function captures the
immediate consequence operator of the program (see [HK94]).

Proposition 1. For every PPN; N there exists a unique program P such that
PPN(P) = N, and for every DPN; N there exists a unique definite program P
with PPNy(P) = N.

4 ILP Operators for Propositional Networks

We selected operators of the propositional ILP system DUCE [Mug87] for the
transfer to propositional program networks, more specifically, identification, ab-
sorption, intra-construction, inter-construction, and truncation. We will display
the technique on the identification operator, and the others will be covered in
the full version of the paper.

q+ B p+ A q

Identification:
p+ A B p+Ag
q+ B p+ Aq

p«— AB

Fig. 1. Identification

Identification is a so-called V-operator, i.e. it is based on the idea of inverting
resolution. In DUCE, the identification operator takes as input two clauses p <
A, B and p + A, q and yields the two clauses p + A, q and q < B, see Figure 1,
where p, ¢ are propositional variables and A, B are conjunctions of propositional
variables.

We can translate identification to DPNys and PPNys as follows, where W
denotes disjoint union.

Operator 1 (Identification on DPNs) Lete,d € C,p,q € V,and A,BCV
be such that the following conditions hold:

(I1) pe ct nd*.
(12) dy ={q} WA and cy = AW B.

Then the transformed network is the same quadruple as the original one, but for
the weights (the mappings wo and wy), which have to be adjusted as follows.

— Set to 0: wy(a,c), for all a € A and xo(c,p)
— Set to 1: wo(c,q)

Operator 2 (Identification on PPNys) Let ¢,d € C, v,z € V, A, A", B and
B' subsets of V' be such that (I1), (I2) and (13) hold.

(13) d_ = A" and c_ = A" ¥ B'.

Then the transformed network is the same quadruple as the original one, but for
the weights, which have to be adjusted as follows.

— All changes listed in Operator 1.
— Also set to 0: wr(a,c) for alla € A'.

The network transformation is depicted in Figure 2. The following two results
follow easily from the definitions.

Proposition 2. Let P be a propositional logic program and let Q be a program
obtained from P by applying identification. Then one can apply identification to
PPN(P) in order to obtain PPN(Q).

RO [elq[4] 5]
LY » A3
RN b BN AN
Y x Y x
[7le] 4] B [p[e] 4] B

Fig. 2. Scheme for identification

Proposition 3. Let M, N € PPN; such that N can be obtained from M by
applying identification. For M = PPNy(P) and N = PPN(Q), we have that Q
can be obtained from P wvia identification.

The other V-operator of the DUCE system, absorption, can be treated simi-
larly. Like identification, it leaves the number of nodes in the layers unchanged.
The operators intra-construction and inter-construction, which are also called
W-operators since they can be understood as a combination of two V-operators,
and truncation, differ from the V-operators in that their connectionist represen-
tation changes the number of nodes in the network. More specifically, inter- and
intra-construction add nodes to all layers, while truncation removes nodes from
the hidden layer. As already noted, details will be contained in the full version
of the paper. For all the operators, results corresponding to Propositions 2 and
3 hold.

5 Conclusions and Further Work

We have presented some first observations on relating inductive logic program-
ming and connectionist systems. Starting from these observations, it can be
attempted to develop a connectionist inductive learning system based on ILP
operators. By the nature of the identification operator as depicted in Figure 2,
it should be noted that such a learning system will necessarily be based on a
recurrent architecture, with recursive links from the output to the input layer,
as used in [HK94].

This said, it is straightforward to extend our approach to networks with
sigmoidal activation functions as in [dGZ99]. This makes it possible, in principle,
to combine ILP learning operators, or more general operators of the same spirit,
with backpropagation or other learning algorithms based on gradient descent.

Whenever continuous activation functions are involved, the casting of ILP
operators into operators which transform networks is also related to a “fuzzifi-
cation” of the underlying logic. Connections with work on Fuzzy ILP, as e.g. in
[SIK*99], or on quantitative logic programming, as in [Voj01], may guide the
developments.

Other possible lines of extending the investigations concern generalizations
towards predicate logic, e.g. along the lines of the SHRUTI system [SA93], which
can deal with variable binding but is restricted to a subset of Datalog, i.e. first-
order logic programs without function symbols. Attempts to represent first-order
terms with function symbols in connectionist systems include the RAAM family,
see [AD99], and topological approaches, see [HS0x], though it remains unclear
at this stage how to carry over ILP operators to these settings.

References

[AD99)]

[BSO1]

[AGZ99)]

[HK94]

[H5100]

[HS0x]

[Mug87]

[SA93]

M.J. Adamson and R.I. Damper. B-RAAM: A connectionist model which
develops holistic internal representations of symbolic structures. Connection
Science, 10(1):41-71, 1999.

A. Browne and R. Sun. Connectionist inference models. Neural Networks,
14(10):1331-1355, 2001.

A.S. d’Avila Garcez and G. Zaverucha. The connectionist inductive lerarning
and logic programming system. Applied Intelligence, Special Issue on Neural
Networks and Structured Knowledge, 11(1):59-77, 1999.

S. Holldobler and Y. Kalinke. Towards a massively parallel computational
model for logic programming. In Proceedings of the ECAI94 Workshop on
Combining Symbolic and Connectionist Processing, pages 68—77. ECCAI,
1994.

S. Holldobler. Challenge problems for the integration of logic and connec-
tionist systems. In F. Bry, U. Geske, and D. Seipel, editors, Proceedings
14. Workshop Logische Programmierung, volume 90 of GMD Report, pages
161-171. GMD, 2000.

P. Hitzler and A. K. Seda. A note on relationships between logic programs
and neural networks. In P. Gibson and D. Sinclair, editors, Proceedings of
the Fourth Irish Workshop on Formal Methods (IWFM’00), Electronic Work-
shops in Comupting (eWiC). British Computer Society, 200x. To appear.

S. Muggleton. Duce, an oracle based approach to constructive induction. In
Proceedings of the 10th International Joint Conference on Artificial Intelli-
gence, pages 287-292. Morgan Kaufmann, 1987.

L. Shastri and V. Ajjanagadde. From simple associations to systematic rea-
soning: A connetionist encoding of rules, variables and dynamic bindings
using temporal synchrony. Behavioral and Brain Sciences, 16(3):417-494,
1993.

[SIK*99] D. Shibata, N. Inuzuka, S. Kato, T. Matsui, and H. Itoh. An induction algo-

[Voj01]

rithm based on fuzzy logic programming. In N. Zhong and L. Zhou, editors,
Proceedings of the Third Pacific-Asia Conference on Knowledge Discovery
and Data Mining, volume 1574 of Lecture Notes in Artificial Intelligence,
pages 268-273. Springer-Verlag, April 1999.

P. Vojtas. Fuzzy logic programming. Fuzzy Sets and Systems, 124(3):361-370,
2001.

	ILP Operators for Propositional Connectionist Networks
	Repository Citation

	lop02.dvi

