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Hybrid control of power converters with affine models and
pulse-width modulated inputs

Carolina Albea, Antonino Sferlazza, Francisco Gordillo, Fabio Gómez-Estern

Abstract—In this paper, hybrid dynamical systems theory is
applied to the analysis and control of switched converters with
Pulse-Width Modulated (PWM) inputs. The system is described
by a state-space model with continuous flows and discrete jumps,
without averaged equations. The modulation effects are captured
in full without using time-dependent signals, by enlarging the
state vector to include the PWM waveform generation process.
Furthermore, the sample-and-hold mechanism associated with
the sampling frequency is also taken into account with this ap-
proach. A control law is proposed based on a Lyapunov function
candidate. Furthermore, convergence sets and the steady state
jitter, inherent to PWM-based controllers, are analyzed esti-
mating limit sets for the augmented state. Consequently output
chattering can be bounded. By using hybrid control approaches,
the control designer gains a deeper understanding of the effect of
modulation in the closed-loop dynamics, avoiding the problems
associated with the use averaged models. Experimental results
validate the proposed method.

Index Terms—Converter control, PWM, hybrid dynamical
system, Lyapunov function.

I. Introduction

In electronic power converters, the output of the con-
troller is usually a discrete signal connected to the tran-
sistor gates with the aim at driving the output to the
desired value. Usually, the design of controllers for this
type of systems is based on averaged models that con-
sider the control inputs as continuous signals [1–4]. In
order to implement the resulting controller, the computed
control signal is discretized using a modulator. The most
common modulator is Pulse-Width Modulation [5, 6]. This
approach may limit the accuracy of the signals in steady
state [7] and even can fail to predict the system behavior
[8]. Besides, it is usual to ignore the discrete-time nature
of the control signals and the sample-and-hold mechanism.
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Normally, PWM-based controllers [3, 4] are commonly
based on a separation principle: a high–level control al-
gorithm, usually based on a simple model, computes a
continuous signal that is converted into a discrete input in
the PWM block. In order for this separation principle to be
tractable, the high-level controller is designed based on a
model of the plant together with the modulator block that
is simplified to keep the linear time–invariance properties.
This implies averaging or approximating the exponential
matrices by linear expressions, and generally neglecting
the specifics of the PWM waveform. The approach works
well provided that sampling rates are high. However, it
is known that PWM blocks have an effect on the output,
[4, 9]. PWM modulation of analog control signals limits
in some ways the degrees of freedom of the control ac-
tion, as signal values are discrete, and they can only be
changed once or a few limited times along the sampling
interval. This effect is often ignored, but at a micro scale
the signal mismatch causes output jitter in steady state.
Nevertheless, a modulator in the system model introduces
the challenge of dealing with time-dependent signals and,
consequently, non-autonomous dynamics.

There exist control techniques that avoid the use of
averaged models and deal directly with the discrete nature
of signals, such as sliding mode control [10] or model
predictive control [11]. Nevertheless, dealing directly with
discrete input signals, avoiding the use of PWM gives rise
to the loss of an important degree of freedom of the PWM
mechanism. With PWM, the switches can be ordered at
any instant inside the sampling interval (with a limitation
in the total number of switches in this interval); with most
of the techniques that avoid the use of averaged models,
the control input can only be changed at the sampling
instants. This makes necessary to increase the sampling
frequency.

Hybrid Dynamical System (HDS) theory can help in
building autonomous state-space models of PWM-based
switched converters, and also to design suitable controllers.
Indeed, HDS theory is a mature framework for analyzing
dynamical behaviors made of continuous dynamic fields
(flows) and discrete changes in signals (jumps). Following
notorious results from the literature [12, 13], it is easy
to ascertain the conditions for an autonomous hybrid
system to have proper solutions, to avoid conflictive be-
haviors such as Zeno dynamics, and to ensure stability
and steady-state specifications. For relevant results that
will be used here, see also [14–16] In this context, the
authors in [17] proved that, for general systems under some
assumptions, that the solutions of an averaged system
are suited approximations of the original one, mentioning
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power converters as application. Nevertheless, these hybrid
approaches suffer from the same drawback than other
techniques mentioned above: the discrete control input can
only be changed at the sampling instants.

Switched power systems often appear in the hybrid
framework as affine systems. This class of systems is
described by standard state-space equations, where ma-
trices A and B can change depending on the state of
the switches, see [18, 19]. There exist several results about
controlling switched affine systems without considering
PWM. For instance, robust and input-to-state stability
has been analyzed in [20]. In [21], and more recently in
[22, 23], this framework is presented and applied to DC-
DC converters. The main feature in these references is
the implementation of an aperiodic sampled-data control
signal with arbitrarily fast switching, making possible the
appearance of Zeno behaviour. This practical difficulty has
been overcome in [24].

This paper aims at designing a control law for power
converters with affine models using hybrid dynamical sys-
tems theory. An advantage of this approach is to provide a
rigorous state-space autonomous model that encompasses
all elements of the converter architecture: power converter,
PWM and sample-and-hold mechanism. Some results in
this paper require sufficiently small sampling intervals, but
this is not an a priori condition for modeling; it only arises
when computing the convergence set, and the relation
between chattering and the PWM-sampling period is made
explicit.

The novel idea developed here is focused on power con-
verters with only two functioning modes, which are very
common in power electronics [25–27]. A new controller is
proposed to stabilize a limit cycle, based on a rigorous
model, different from the classical averaged models used
in the literature. The stability design is obtained at the
cost of a harder analysis compared with usual controllers
based on averaged models, but the controller implemen-
tation does not grow in complexity, and it can be readily
adapted to other modulation techniques. Furthermore, an
exact estimation is provided for the chattering in steady-
state. Finally, experimental results show satisfactory per-
formance of the proposed control loop.

This paper is organized as follows. The problem state-
ment is given in Section II. The hybrid general model of
switched PWM-based converters is presented in Section
III. In Section IV, the main result is presented. Section V
and Section VI present simulation and experimental re-
sults, respectively. Finally, the paper closes with a conclu-
sion section.

Notation: Throughout the paper N denotes the set of
the natural numbers,{0, 1, 2, 3, ...}, and R the set of real
numbers, Rn the n-dimensional Euclidean space and Rn×m
the set of all real n×m matrices. The set of non-negative
real numbers is denoted by R≥0. M � 0 (resp. M ≺ 0)
represents that M is a symmetric positive (resp. negative)
definite matrix. 0 is a zero matrix of suited dimensions.
He(M) is the hermitian matrix of M , i.e. (M + M>).
Finally, satba(φ) is the standard saturation function defined

in R 7→ [a, b].

II. Problem statement

Many switched power systems made of linear compo-
nents and switching devices can be modelled as switched
affine systems, as follows

ż = Aσz + Bσ, (1)

where z ∈ Rn is the vector of physical state variables, i.e.
voltages and currents and σ ∈ {0, 1, 2, ..., N − 1} is the
control input that represents the functioning mode of the
converter according to the switching state. Finally, Aσ and
Bσ are matrices of suitable dimensions.

Model (1) covers many applications of power convert-
ers, such as the buck converter, the boost converter, the
quadratic boost converter, the half bridge converter, the
boost inverter, etc. In this paper, only two functioning
modes, N = 2, are considered.

These systems are generally managed by continuous-
time control laws, i.e., σ ∈ {0, 1} is modelled by continuous
signals λ ∈ [0, 1], obtained by using averaging approaches,
and implemented in (1) by Pulse Width Modulation
(PWM), as depicted in Fig. 1, where κ(x) (being x :=
z−ze and ze the equilibrium point) represents a continuous
control law whose output is limited to be in the interval
[0, 1]. Furthermore, the control law is usually implemented
in a digital device in discrete time by sampling the state
of the converter z(t) periodically. Thus, the value of λ in
Fig. 1 is constant during each sampling interval. The PWM
mechanism with a sawtooth carrier is illustrated in Fig.2.

ze
−

+

x λ σ z

PWMκ(x) _z = A
σ
z + B

σ

Tp

λs

Fig. 1. Feedback scheme.

The control objective is to design a function λ = κ(x) :
Rn 7→ R such that the modulated control signal, σ(λ),
ensures the convergence of z to a given operating point ze.
Due to the sampling mechanism, asymptotic convergence
to ze is not possible, and a chattering phenomenon is
unavoidable. In any case, the desired operating point ze
must satisfy the following assumption.
Assumption 1: Consider that there exists a value for

λ = λe ∈ [0, 1] such that the following equation is hold,

0 = (A0 + (A1 −A0)λe)ze + B0 + (B1 − B0)λe. (2)

y
From a practical point of view, this assumption is equiv-
alent to suppose that the desired operating point is not
beyond the physical constraints of the converter. In other
words, this assumption guarantees the existence of a
switched signal for system (1), inducing an equilibrium in
z = ze in the generalized sense of Krasovskii. This means
that, in steady state, σ is expected to be a periodic signal
of period Tp, spending a time λTp in mode 1 and (1−λ)Tp
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Fig. 2. PWM mechanism with sawtooth carrier. Top: Tp-periodic
sawtooth carrier, τ , and λ the duty cycle. Bottom: output of the
PWM block, σ.

in mode 0, corresponding to the convex combination of
the right hand of (2). Then, the time spent in each mode
will be distributed in every time period according to the
modulator shown in Fig 2. In this paper, it is assumed
without loss of generality, that at t = 0 a sawtooth carrier
as well as a sampling period start.

The error equation associated with (1) in each sampling
time tk for all k ∈ N can be written as:

ẋ = Aσx+Bσ, (3)

where Bσ := Bσ +Aσze such that Bλe = 0.

Direct integration of the dynamics of x in (3) along the
sawtooth carrier period (Fig. 2), starting from an initial
condition x(t2k) at t = t2k yields

x(t2k+1) = eA0λTpx(t2k) + (eA0λTp − I)A−1
0 B0 (4)

x(t2k+2) = eA1(1−λ)Tpx(t2k+1) + (eA1(1−λ)Tp − I)A−1
1 B1.

(5)

being t2k+2 − t2k = Tp for all k ∈ N.

The desired behavior in steady state corresponds to λ =
λe and a limit cycle for x (see Fig. 3) considered in the
following property.

Property 1: Consider a couple (x, λ) = (xe, λe) associ-
ated to (3) that satisfies Assumption 1. If there exist two
vectors xe,Tp and xe,λeTp fulfilling{

xe,λeTp = eA0λeTpxe,Tp + (eA0λeTp − I)A−1
0 B0

xe,Tp = eA1(1−λe)Tpxe,λeTp + (eA1(1−λe)Tp−I)A−1
1 B1,

(6)

then, there exists a limit cycle

χ = {(x ∈ Rn/∃τ ∈ [0, Tp) : x = xe(τ)}

x1

x2

xe,Tp

xe,λeTp

xe(τ )

Fig. 3. Example of limit cycle according to Property 1 for a case
with n = 2. The red points and the blue trajectory represent points
(6) and curve (7), respectively.

in (3) defined by


xe(τ)= eA0λeτxe,Tp +

∫ τ
0
eA0λeτ̄B0dτ̄

if 0 ≤ τ < λeTp
xe(τ)=eA1λe(τ−λeTp)xe,λeTp+

∫ τ
λeTp

eA1λe(τ̄−λeTp)B1dτ̄

if λeTp ≤ τ < Tp
(7)

Proof. Curve (7) is a closed and isolated trajectory asso-
ciated to (3). It is isolated because (xe, λe) and (6) form
a linear system of two equations with unknowns xe,Tp and
xe,λe,Tp and then, (7) is unique. Consequently, (7) is a limit
cycle. �

Then, we are in conditions of formulating the problem.

Problem 1: Consider the switched system (1) withN = 2
and a PWM with a sawtooth carrier, as shown in Fig. 2.
Then, the objectives here are

• to model the closed-loop system considering its hybrid
character, that is the existence of both discrete-time
and continuous-time signals, as well as the sample and
hold mechanism with a given periodic sampling time
Tp.

• To design a control law for the duty cycle λ, without
using averaged model.

• To achieve convergence of x(t) to limit cycle (7) and
to analyze stability properties for the hybrid system.

III. Hybrid dynamical model

In this section, we will use the framework given in [12]
about hybrid dynamical systems to model the controlled
system, considering continuous-time and discrete-time dy-
namics. Hence, we propose the following hybrid dynamical
model of the controlled switched system (3), considering
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a sawtooth carrier for the PWM mechanism,

H :




ẋ

λ̇
σ̇
τ̇

 = f(ξ), ξ ∈ C


x+

λ+

σ+

τ+

 ∈ g(ξ), ξ ∈ D,

(8)

where ξ = [x λ σ τ ]> ∈ H such that H := {Rn ×
[0, 1] × {0, 1} × [0, Tp]}. The maps f and g capture both
the continuous-time and discrete-time dynamics and are
defined as follows:

f(ξ) =


Aσx+Bσ

0
0
1

 ,

g(ξ) =


x

σ sat1
0 κ(x) + (1− σ)λ

1− σ
(1− σ)τ

 ,
(9)

The so-called flow and jump sets are

C0 := {ξ ∈ H : τ ∈ [0, λTp], σ = 0}
D0 := {ξ ∈ H : τ = λTp, σ = 0}
C1 := {ξ ∈ H : τ ∈ [λTp, Tp], σ = 1}
D1 := {ξ ∈ H : τ = Tp, σ = 1},

being

C := C0 ∪ C1 (10)

D := D0 ∪ D1. (11)

This hybrid scheme gathers the complete dynamics of
the system. Indeed, the continuous-time dynamics of x
evolves according the switching of σ. The selection of the
last one is given by a sawtooth modulator defined by λ,
τ and Tp. Variable λ ∈ [0, 1] is the duty cycle and τ is a
timer that defines a continuous-time sawtooth signal (the
carrier shown in Fig. 2); Finally, κ(x) is the control law,
to be defined, that computes the value of signal λ in every
sampling time, t2k. Inside the sampling intervals, λ is held
constant.

Solutions to H(f,G, C,D) are given on the so-called
hybrid time domain: dom(ξ) ⊂ R≥0 × N, such that,

dom(ξ) =

j̄−1⋃
j=0

([tj , tj+1], j), (12)

for some sequence 0 = t0 ≤ t1 ≤ t2 ≤ ... ≤ tj̄ with j̄ finite
(being a compact set) or infinite.

In the next section, a control law will be designed
for system (8)–(11) with stability guarantee. Now, let us
rewrite the continuous- and discrete-time dynamics of x to

establish a Lyapunov function candidate. To do so, define

Γσ =
[
Aσ Bσ
01,n 0

]
such that during the flows:

d

dt

[
x
1

]
= Γσ

[
x
1

]
. (13)

Now, the following Lyapunov function candidate is con-
sidered

V (x, λ, σ, τ) = max
{
W (x, λ, σ, τ)− x>c Pxc, 0

}
, (14)

where xc := xe(τλeTp) and W is a quadratic function of x,
which is defined as follows,

W (x, λ, σ, τ) :=

[
x
1

]>
Pσ(λ, τ)

[
x
1

]
(15)

with

P0(λ, τ) := e−Γ>
0 τ P̄ e−Γ0τ

P1(λ, τ) := eΓ>
1 (λTp−τ)e−Γ>

0 λTp P̄ e−Γ0λTpeΓ1(λTp−τ)

and

P̄ :=

[
P 0
0 0

]
where P � 0 ∈ Rn given in Property 1.

We are in position to define the compact set for which
it is desired to establish uniform globally asymptotic sta-
bility (UGAS). This desired attractor set is

A := {ξ ∈ H : V (x, λ, σ, τ) = 0}. (16)

It is worth noting that the Lyapunov function candidate
is a single-valued function and continuous in ξ ∈ H and
enjoys nice properties. The idea behind of this Lyapunov
function is to be constant during flows, to not change in the
jumps (( j2 +λj)Tp, j) for j = 2k, k ∈ N and to get ∆V < 0

in each (( j+1
2 )Tp, j) for j = 2k + 1, k ∈ N. This makes

the candidate Lyapunov function to be not increasing
(decreasing every two jumps), the state to converge to the
set A, after each jump for j = 2k + 1, k ∈ N, and x to
converge to the interior of x>Px ≤ x>c Pxc as j goes to
infinity.

IV. Main result

In this section, a controller is proposed for the hybrid
system (8)–(11) providing uniform global asymptotic sta-
bility (UGAS) of the compact set A.
Theorem 1: Consider there is a λe associated with the

operating point xe such that Assumption 1 is satisfied,
vectors xc := xe,Tp ∈ Rn and xe(τ) given in Property 1
and matrices P,Q � 0 ∈ Rn×n such that Q � P and
M ≺ Q− P ∈ Rn×n satisfying

A>0 P + PA0 ≺ −Q (17)

A>1 P + PA1 ≺ −Q. (18)

Moreover, consider system (8)–(11), with a control law
verifying

κ(x)∈

{
λe

(
1− x>Mx−x>

c Mxc
2B>

1 Px

)
if B>1 Px 6= 0

[0, 1] if B>1 Px = 0.
(19)
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Then, there exists a positive constant T ∗p such that for
0 < Tp < T ∗p the following statements hold for H
(i) A is UGAS.
(ii) set

L := {ξ ∈ H : x = xe(τ), λ = λe} (20)

is in the interior of A.

Proof.
Hybrid system H(f, g, C,D) with control law (19) is

well-posed, because it verifies:

• C and D are closed sets in H.
• f is a continuous function, thus it is locally bounded

and outer semi-continuous. Moreover, it is convex for
each ξ ∈ C.

• g is outer semi-continuous and locally bounded.

It is worth noting that the maximal solutions to H with
(19) are complete. We will consider the proof item by item.

Proof of (i): The proof of this item proceeds applying
[28, Theorem 1]. Note that the candidate Lyapunov func-
tion, V (x, λ, σ, τ) (14) is continuous in C ∪ Dp and locally
Lipschitz near each point in C\A. Moreover, V (x, λ, σ, τ)
is strictly positive definite in (C ∪ D)\A and radially un-
bounded. Likewise, it verifies, by definition V (x, λ, σ, τ) =
0, for all (x, λ, σ, τ) in A.

The next step of the proof is to ensure that the deriva-
tive of V along flows outside of A is nonpositive (or more
precisely in this case, equal to zero). More formally, the
objective is to show

〈∇V (ξ), f(x, σ)〉 ≤ 0, ∀(x, λ, σ, τ) ∈ C\A. (21)

For any (x, λ, σ, τ) ∈ C\A, it is clear, from its definition,
that V (x, λ, σ, τ) = W (x, λ, σ, τ)− x>c Pxc getting

〈∇V (x, λ, σ, τ), f(x, σ)〉

=

[
x
1

]>(
τ̇ ∂
∂τPσ(λ, τ)+λ̇ ∂

∂λPσ(λ, τ) +σ̇ ∂
∂σPσ(λ, τ)

)[
x
1

]
+2

[
x
1

]>
Pσ(λ, τ)

[
ẋ
0

]
=

[
x
1

]> (
∂
∂τPσ(λ, τ) + Pσ(λ, τ)He (Γσ)

) [x
1

]
= 0.

The last equality comes from ∂
∂τPσ(λ, τ) +

Pσ(λ, τ)He (Γλ) = 0.
Let us proceed now to analyze the second stability

condition from [28, Theorem 1]. To do so, we take into
account the special structure of hybrid system (8)–(11)
which implies that the jumps occur at the ordinary time
instants either tj = ( j2 +λj)Tp for even j or tj = j+1

2 Tp for
odd j. We adopt here the following notation according to
the hybrid time domain (12): xj = x(tj , j), λj = λ(tj , j),
τj = τ(tj , j) that correspond to the variables right before
the jump at tj ∈ { j2 + λj)Tp,

j+1
2 + λj)Tp} and x+

j =

x(tj+1, j + 1), λ+
j = λ(tj+1, j + 1) and τ+

j = τ(tj+1, j + 1)
right after the same jump. In the same way, we define
∆V = V (x+

j , λ
+
j , τ

+
j ) − V (xj , λj , τj). Note that x+

j = xj ,

(λ+
j , λj , τ

+
j , τj) ∈ {(λj , λj , λjTp, λjTp), (λ

+
j , λj , 0, Tp)}.

There are two cases where the solution is in D \ A:

• (λ+
j , λj , τ

+
j , τj) = (λj , λj , λjTp, λjTp): Here, we have

∆V = W (xj , λ, 1, λTp)−W (xj , λ, 0, Tp)

=

[
xj
1

]>
e−Γ>

0 λTp
(
P̄ − P̄

)
Pe−Γ0λTp

[
xj
1

]
= 0.

• (λ+
j , λj , τ

+
j , τj) = (λ+

j , λj , 0, Tp): In this case,

∆V = W (xj , λ
+
j , 0, 0)−W (xj , λj , 1, Tp)

=

[
xj
1

]> (
P̄ −Ψ(λj)

>P̄Ψ(λj)
) [xj

1

]
=

[
x+
j

1

]> (
P̄ −Ψ(λ+

j )>P̄Ψ(λ+
j )
) [x+

j

1

]
where Ψ(λj) := eΓ1(λjTp−Tp)e−Γ0λjTp .

Notice that the manipulable signal, λj+1 = λ+
j has to

be computed at tj = j+1
2 Tp. For this, it is convenient to

write ∆V in terms of xj instead of xj+1. Hence, from (13),
we obtain the following relationship[

x+
j

1

]
= Ψ(λ+

j )

[
xj
1

]
. (22)

We have

∆V=

[
xj
1

]>
Ψ(λ+

j )
>(
P̄ −Ψ(λ+

j )>P̄Ψ(λ+
j )
)

Ψ(λ+
j )

[
xj
1

]
=

[
xj
1

]>(
Ψ(λ+

j )
>
P̄Ψ(λ+

j )− P̄
)[
xj
1

]
, (23)

where Ψ(λ+
j ) := Ψ(λ+

j )−1, which has been adopted for

readability. We highlight that λ+
j , which depends on xj

according to the definition of H, is associated with the
value of x at the jump instant. Indeed, (xj , λ

+
j , 0, 0) refers

here to the initial value in each hybrid arc. In the sequel,
with abuse of notation we will use λ and x to represent
λ+
j and xj , respectively.
From (23), it is not easy to verify that ∆V < 0. However,

we are interested in small values of Tp. Therefore, one just
can analyse the following limit

lim
Tp→0

∆V = lim
Tp→0

[
x
1

]> (
Ψ(λ+

j )
>
P̄Ψ(λ+

j )− P̄
)[x

1

]
.

As we are interested in the limit for Tp → 0, the
following approximation can be used

Ψ̄(λ+
j ) ≈

[
I +Aλ+Tp Bλ+Tp

01×n 1

]
, (24)

with Aλ+ := A1 + (A0 − A1)λ+ and Bλ+ := B1 + (B0 −
B1)λ+. Then, it holds that

lim
Tp→0

∆V = lim
Tp→0

[
x
1

]> (
Ψ̄(λ+

j )
>
P̄ Ψ̄(λ+

j )− P̄
)[
x
1

]
= lim
Tp→0

[
x
1

]>[
He(PAλ+)Tp (PBλ+)Tp

(B>λ+P )Tp 0

][
x
1

]
= lim
Tp→0

2x>A>λ+PxTp + 2B>λ+PxTp = 0, (25)

which is achieved neglecting T 2
p terms.
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Moreover, to evaluate the behavior of ∆V for small Tp
we can compute additionally,

lim
Tp→0

∆V

Tp
≤ x>He(A>λ+P )x+ 2B>λ+Px

= x>He(A>λ+P )x+2(B>1 +λ+(B0−B1)>)Pxn

= x>He(A>λ+P )x+ 2

(
1− λ+

λe

)
B>1 Px. (26)

The last step is reached from the next property

B1 + (B0 −B1)λe = 0⇒ B0 = −1− λe
λe

B1, (27)

stemmed from Assumption 1 and the error equation (3).
Remember that λ+ ∈ [0, 1]. First, consider that B>1 Px =
0, then

lim
Tp→0

∆V

Tp
≤ x>He(A>λ+P )x < −x>Qx < −x>Px (28)

< −x>Px+ x>c Pxc < 0

applying LMIs (17)–(18) and Q � P . Then, (28) is
negative for all ξ ∈ D1\A.

Now, we take into account B>1 Px 6= 0 and we distin-
guish 3 cases:

• 0 < λ+ < 1: Inserting (19) in (26), applying condi-
tions LMI (17)–(18), M ≺ Q− P and assuming that
λ+ is not saturated in (26), yields

lim
Tp→0

∆V

Tp
≤ x>He(A>λ+P )x+x>Mx−x>c Mxc

< −x>(Q−M)x− x>c Mxc

< −x>Px+ x>c Pxc < 0 ∀ξ ∈ D1\A.

• λ+ = 0: This case takes place when κ(x) ≤ 0 such
that (26) becomes

lim
Tp→0

∆V

Tp
= x>He(A>0 P )x+ 2B>1 Px. (29)

There are two possibilities, either 0 �M � Q or M �
0. First, let us consider M � 0. Here, the saturation
in λ+ = 0 is reached if B>1 Px < 0 (necessary for the
argument of (19) to be negative or zero), being (29)
negative for all ξ ∈ D1\A from the fact that condition
(17) is satisfied.
Secondly, if 0 �M � Q, then

λe

(
1− x>Mx− x>c Mxc

2B>1 Px

)
≤ 0

⇒ 2B>1 Px ≤ x>Mx− x>c Mxc

which implies, from (17),

lim
Tp→0

∆V

Tp
≤ x>He(A>0 P )x+ x>Mx− x>c Mxc

< −x>(Q−M)x− x>c Mxc.

Consequently, from M ≺ Q− P the following holds

lim
Tp→0

∆V

Tp
≤ −x>Px+ x>c Pxc < 0 ∀ξ ∈ D1\A.

• λ+ = 1: In this case, corresponding to the case when
κ(x) is saturated in its upper bound, being (26) equal
to

lim
Tp→0

∆V

Tp
= x>He(A>1 P )x+ 2B>0 Px. (30)

Once again, two situations are particularized, 0 �
M � Q or as well as M � 0. The saturation of the
expression of κ(x) at λ+ = 1 with M � 0 can only
happen because B>1 Px > 0, which implies from the
equilibrium equation (27) that

2B>0 Px = −2
1− λe
λe

B>1 Px < 0. (31)

Therefore, (30) is negative for all ξ ∈ D1\A, if (18) is
satisfied.
Noting that 0 �M � Q and

λe

(
1− x>Mx−x>c Mxc

2B>1 Px

)
≥ 1,

we obtain the following condition

x>Mx− x>c Mxc ≥ −2
1− λe
λe

B>1 Px = 2B>0 Px.

The last step comes from (27). Then, considering the
same development than for the case 0 < λ+ < 1, we
get

lim
Tp→0

∆V

Tp
< −x>(Q−M)x− x>c Mxc

< −x>Px+ x>c Pxc.

Hence, for κ(x) saturated in λ+ = 1, we get

lim
Tp→0

∆V

Tp
< 0 ∀ξ ∈ D1\A.

Consequently, the solution jumps keep lim
Tp→0

∆V
Tp

< 0

∀(x, λ, σ, τ) ∈ D1\A ⊂ D, which ensures that set A is
attractive for small enough values of Tp.

The last step is to prove that A is an invariant set, i.e.,
g(A∩D1) ⊂ A (remember that W does not change when
(x, λ, σ, τ) ∈ C∪D0). To do so, remember that we obtained

W (x, λ+, 0, 0)−W (x, λ, 1, Tp) < −x>Px+ x>c Pxc.

Moreover, note that W (x, λ+, 0, 0) = x>Px. Then, after
some manipulations, we get

W (x, λ+, 0, 0)− x>c Pxc <
1

2
(W (x, λ, 1, Tp)− x>c Pxc).

Therefore, W (x, λ+, 0, 0)−x>c Pxc is negative in the jumps
for any (x, λ, σ, τ) ∈ A. Hence, if the solution to H reaches
A, it will remain therein.

Finally, applying the nonsmooth invariance principle
given in [28], and using the well posedness result estab-
lished at the beginning of the proof, we can conclude that,
for small enough values of Tp, A is UGAS.

Proof of (ii): Now, we desire to prove that L ⊂ A. This
is direct noting that V (ξ) is only updated in each x(t2k) of
(4)–(5) that means when x is in A∩D1. Therefore, W (ξ)
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takes the same value for each couple (x(t2k−1), x(t2k)),
ensuring that xe(τλeTp) is inside A.

�
Remark 1: It is worth noting that the particular case

M = 0 means an open-loop control

κ(x) = λe.

Indeed, Theorem (1) proves UGAS property of the attrac-
tor even with this particular control law. Nevertheless, the
open-loop character of this case makes this control law
unsuitable for practical applications. y
Remark 2: The maximum amplitude of the chatter-

ing in steady state for each variable of x is defined by
max{xe,Tp , xe,λeTp}. y

A. Adjusting M

This tuning parameter adjusts the transient time, modi-
fying the response time, voltage oscillations, current peak,
among others. Indeed, if M � 0, the system response can
be faster and/or can present current peaks and voltage
oscillations, with tendency to saturate the control signal.
Conversely, if 0 � M � Q, the system can reduces the
oscillations, diminishing the current peaks.

V. Simulations

Some simulations are performed to validate the results
proposed here. For this, we select a boost converter whose
model matrices are [29]:

A1 =

[
−R/L 0

0 −1/R0C0

]
, A2 =

[
−R/L −1/L
1/C0 −1/R0C0

]
,

B1 = B2 =

[
Vin/L

0

]
.

where the parameters are given in Table I. The state is

TABLE I
Boost converter parameters.

COMPONENT NOMINAL VALUE
Vin 24 V
R 11.5 mΩ
L 470 µH
C 20 µF
R0 50 Ω

z = [iL vC ], being iL and vC the inductor current and
capacitor voltage, respectively.

The selected operating point is ze =
[
8.4 100

]T
,

which is associated with λe = 0.76. The simulations are
performed with Tp = 10µs.

The feasibility problem (17)–(18), provides

Q =

[
1.07 0.03
0.03 2.53

]
· 106, P =

[
4.23 0

0 0.18

]
· 104.

Now, we want to adjust matrix M . For this, we perform
some simulations with different choices of M . Fig. 4 com-
pares the state evolutions with M = −0.5Q, M = 0.1Q
and M = 0. As mentioned in Section IV-A, if M ≺ 0 the

rise time decreases but the control signal has tendency to
saturate. Conversely, choosing M � 0 the current peak
is reduced and the control input is not saturated but the
system dynamics become slower. Moreover, note that the
particular case M = 0, provides λ+ = λe, as mentioned
in Remark 1. This control law yields a strong oscillating
behavior in transient time with current peaks that can
damage the circuit.

Figure 5 shows a zoom of the state variables, the control
input σ and the Lyapunov function V (ξ) in transient time.
It can be observed that the Lyapunov function is constant,
excepts in the time instants t = kTp with k ∈ N when it
jumps a step down. Moreover, the control input σ evolves
by switching between the functioning modes σ ∈ {0, 1}.
Finally, the steady state of z is plotted in the state space
in Fig. 6. Note that the state z evolves in a limit cycle
between ze(tλeTp) and ze(tTp), which corresponds to the
chattering behavior of the voltage and current.

0 0.005 0.01 0.015 0.02
0

50

100

150

0 0.005 0.01 0.015 0.02
0

5

10

15

20

0 0.005 0.01 0.015 0.02

0

0.5

1

Fig. 4. State and control input (λ+) evolutions, with M ≺ 0, in
green, M = 0, in red, and M � 0, in blue. The reference is in yellow.

VI. Experimental setup

A test setup was built to validate the proposed hybrid
control scheme. It is composed of:

• A boost converter whose electrical parameters are
given in Table II. These parameters correspond to the
ones used in the simulations of Sect. V.

• An electronic card (model LEM LTS 15-NP) for the
measurements of the inductor current and voltage
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Fig. 5. Zoom of the state, control input (σ) and Lyapunov function
evolutions, with M � 0 in transient time.
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Fig. 6. Steady of the state z in blue, the operating point in red, the
chattering extremes in green and yellow.

TABLE II
Circuit parameters values

Component Value Model
VIN 24V
L 470µH AGP4233-474ME
rL 11.5mΩ
C1 20µF MKP1848C62090JP4
rC 5mΩ
R0 50Ω
Diode C3D06060A
switch C3M0065090D
Driver 1EDI20N12AF

sensor for the measurement of the output voltage.
We built the voltage sensor by means of a resistor
divider connected with operational amplifier in buffer
configuration.

• A dSPACE cardboard (DS1103) with a PowerPC 604e
at 400 MHz and a fixed-point DSP TMS320F240.

The complete control scheme was implemented in the
dSPACE card by means of Matlab-Simulink.

Fig. 7. Evolutions of the voltage, current and duty cycle in the start
up.

We selected for these tests M = 0.1Q, corresponding to
the best results obtained in Sect V.

Fig. 7 shows a start up transient from a initial con-
dition equal to x0 =

[
0 VIN

]
to a reference operating

point computed by imposing an output voltage equal to
Vout = 100V. The voltage and the current signals present a
smooth behavior, as performed in simulation (see Fig. 4).
Likewise, the steady state operation is shown in Fig. 8.

Finally, a perturbation in the load was introduced. The
load R0 was changed from R0 = 50Ω to R0 = 75Ω at 0.02s.
The proposed algorithm does not provide a voltage output
regulation, and an error in the voltage output is exhibited
in steady state. However, if an external loop is added with
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a PI control as in [30], the output voltage is regulated in
its reference value, maintaining a good performance.

Fig. 8. Evolutions of the voltage, current and duty cycle in the steady
state.

Fig. 9. Evolutions of the voltage, current and duty cycle without PI
controller (in red) and with PI controller (in blue) for regulating the
voltage output with a perturbation of R0.

VII. Conclusion

A hybrid model of switched power converters with PWM
inputs and sample-and-hold mechanism is proposed here.

The study is particularized for two functioning modes,
which is a common power converter application. Moreover,
a new control algorithm that chooses the value of the duty
cycle at the beginning of each PWM-sampling interval is
designed from a rigorous model. For this choice of con-
troller, HDS stability analysis is done, proving convergence
to a limit set that can be bounded based on the choice of
the size of the sampling period. The hybrid analysis also
provides a Lyapunov function for the closed-loop system.
Finally, an upper and lower bound for the chattering peaks
obtained by the signals is provided. Experimental results
show satisfactory closed-loop performance.

PWMs with different carriers and converters with more
than 2 modes will be considered in future works. Moreover,
a stability analysis with an external control loop that
control the output voltage is expected. The consideration
of more switches is left for future research.
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[17] A.R. Teel and D. Nešić. PWM hybrid control systems: averaging
tools for analysis and design. In IEEE International Conference
on Control Applications, 2010.

[18] L. Hetel and E. Bernuau. Local stabilization of switched affine
systems. IEEE Trans. on Automatic Control, 60(4):1158–1163,
2015.

[19] G. S. Deaecto and J. C. Geromel. Stability analysis and control
design of discrete-time switched affine systems. IEEE Trans. on
Automatic Control, 62(8):4058–4065, 2017.

[20] P. Hauroigne, P. Riedinger, and C. Iung. Switched affine
systems using sampled-data controllers: Robust and guaranteed
stabilization. IEEE Trans. on Automatic Control, 56(12):2929–
2935, 2011.

[21] G. S. Deaecto, J. C. Geromel, F. S. Garcia, and J. A. Pomilio.
Switched affine systems control design with application to dc-dc
converters. IET Control Theory Applications, 4(7):1201–1210,
2010.

[22] C. Albea-Sanchez, G. Garcia and L. Zaccarian. Hybrid
dynamic modeling and control of switched affine systems:
application to DC-DC converters. In 54th IEEE Con-
ference on Decision and Control, Osaka, Japan, December
2015. An extended version is avaible in: https://hal.archives-
ouvertes.fr/hal-01220447v3/document.

[23] A. Sferlazza, C. Albea-Sanchez, L. Mart́ınez-Salamero, G. Gar-
cia, and C. Alonso. Min-type control strategy of a dc–dc
synchronous boost converter. IEEE Trans. on Industrial Elec-
tronics, 67(4):3167–3179, 2019.

[24] C. Albea-Sanchez, G. Garcia, S. Hadjeras, W. P. M. H. Heemels,
and L. Zaccarian. Practical stabilization of switched affine
systems with dwell-time guarantees. IEEE Trans. on Automatic
Control, 64(11):4811–4817, 2019.

[25] C. Albea Sanchez, O. Lopez Santos, D. Prada Zambrano,
F. Gordillo, and G. Garcia. Hybrid control algorithm for a
DC-AC converter. IEEE Trans. on Control System Technology,
2018.

[26] C. Albea-Sanchez and G. Garcia. Robust hybrid control law
for a boost inverter. Control Engineering Practice, 101:104492,
2020.

[27] A. Sferlazza, C. Albea-Sanchez, and G. Garcia. A hybrid control
strategy for quadratic boost converters with inductor currents
estimation. Control Engineering Practice, 103:104602, 2020.

[28] A. Seuret, C. Prieur, S. Tarbouriech, A.R. Teel, and L. Zaccar-
ian. A nonsmooth hybrid invariance principle applied to robust
event-triggered design. IEEE Trans. on Automatic Control,
64(5):2061–2068, 2018.

[29] C. Albea Sanchez, G. Garcia, and L. Zaccarian. Hybrid
dynamic modeling and control of switched affine systems: appli-
cation to DC-DC converters. In IEEE Conference on Decision
and Control (CDC), 2015.

[30] A. Sferlazza, C. Albea Sanchez, L. Martinez-Salamero, G.
Garcia, and C. Alonso. Min-type control strategy of a dc-
dc synchronous boost converter. IEEE Trans. on Industrial
Electronics, 2019.

Carolina Albea received her Ph.D. in Auto-
matic Control in 2010 from the University of
Sevilla, Spain, and the University of Grenoble,
France. From 2010 to 2011, she held a post-
doctoral position at the CEA-LETI Minatec
campus in Grenoble, France, on the control
of nanoelectronic circuits. Then, from 2011 to
2020 she became Associate Professor at the
University of Toulouse III (Université Paul
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