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Abstract
Nowadays, the success of neural networks as reasoning systems is doubtless. Nonetheless, one 
of the drawbacks of such reasoning systems is that they work as black-boxes and the acquired 
knowledge is not human readable. In this paper, we present a new step in order to close the 
gap between connectionist and logic based reasoning systems. We show that two of the most 
used inference rules for obtaining negative information in rule based reasoning systems, the 
so-called Closed World Assumption and Negation as Finite Failure can be characterized by 
means of spiking neural P systems, a formal model of the third generation of neural networks 
born in the framework of membrane computing.

Keywords P systems · Logic negation · Membrane computing

1 Introduction

Neural networks are nowadays one of the most promising tools in computer sciences. They 
have been successfully applied to many real-world domains and the number of application 
fields is continuously increasing [15]. Beyond this doubtless success, one of the main draw-
backs of such systems is that they work as black-boxes, i.e., the learned knowledge through 
the training process is not human-readable. Learning process in neural networks consists 
basically of optimizing parameters (usually a huge amount of them) guided by some type 
of gradient-based method and the resulting model is usually far from having semantic sense 
for a human researcher. In fact, the problem of explainability is becoming a new research 
frontier in artificial intelligence systems, even beyond machine learning [1,14]. Due to this 
lack of readability, new studies about the integration of neural network models (the so-
called
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connectionist systems) and logic-based systems [4,6,17,27,31,35] can shed a new light on 
the future development of both research areas.

In this context, the computational framework known as spiking neural P systems [20,21]
(SN P systems, for short) provides a formal framework for the integration of both disciplines: 
on the one hand, they use spikes (electrical impulses) as discrete units of information as 
in logic-based methods and, on the other hand, their models consist of graphs where the 
information flows among nodes as in standard neural network architectures. SN P systems 
belong to the third generation of neural network models [26], the so-called integrate-and-fire 
spiking neuron models [13]. The integration of logic and neural networks via spikes takes 
advantage from an important biological fact: all the spikes inside a biological brain look alike. 
By using this feature, a computational binary code can be considered: sending one spike is 
considered as a sign for true and if no spikes are sent, then it is considered as a sign of false. 
These features were exploited in [10] where SN P systems were used to bridge bioinspired 
connectionist systems with the semantics of reasoning systems based on logic.

The main contribution of this paper is to add new elements for dealing with negation in 
the interplay of bridging neural networks and logic. Bridges between both areas can help to 
enrich each other.

In this study, we go on with the approach started in [10] by focusing on logic negation. 
Using negation in computational logic systems is often a hard task [3] since pure derivative 
reasoning systems have no way to derive negative information from a set of facts and rules. 
This problem is solved by adding to the reasoning system a new inference rule which allows 
to derive negative information. In this paper, two of such inference rules are studied in the 
framework of SN P systems: Closed World Assumption (CWA) and Negation as Finite Failure 
(NFF).

Loosely speaking, given a deductive database K B, CWA considers false all the atomic 
sentences which are not logical consequence of K B. The attempts to check whether a sentence 
is a logical consequence of K B  or not can fall into an infinite loop, and therefore, a different 
effective rule is needed. Such rule is NFF. It considers false a sentence if all the attempts to 
prove it fail (according to some protocol). This is a quite restrictive definition of negation, 
but it is on the basis of many reasoning systems used in Artificial Intelligence as the Logic 
Programming paradigms [23] or planning systems [24].

The recent development of SN P systems involves SN P systems with communication on 
request [28], applications of fuzzy SN P systems [19,37], cell-like SN P systems [38], SN P 
systems with request rules [33], SN P systems with structural plasticity [8], SN P systems 
with thresholds [40] or SN P systems with rules on synapses [34] among many others. Some 
applications of Membrane Computing to real-life problems (including SN P systems) can be 
found in the literature (see, e.g., [16,41]).

The paper is organized as follows: Sect. 2 recalls some basics on SN P systems and the 
procedural and declarative semantics of deductive databases. The following section shows 
how the inference rules CWA and NFF can be characterized via SN P systems. Finally, some 
conclusions are showed in Sect. 4.



2 Preliminaries

In this section, we recall briefly some basic concepts on SN P systems and the declarative
and procedural semantics of deductive databases.

2.1 Spiking Neural P Systems

SN P systems were introduced as a model of computational devices inspired by the flow of
information between neurons. This model keeps the basic idea of encoding and processing
the information via binary events used other spiking neuron models (see, e.g., Ch. 3 in [11]).
Such devices are distributed and work in a parallel way. They consist of a directed graph with
neurons placed on the nodes. Each neuron contains a number of copies of an object called
the spike and it may contain several firing and forgetting rules. Firing rules send spikes to
other neurons. Forgetting rules allow to remove spikes from a neuron. In order to decide if
a rule is applicable, the contents of the neuron is checked against a regular set associated
with the rule. In each time unit, if several rules can be applied in a neuron, one of them,
non-deterministically chosen, must be used. In this way, rules are used in a sequential way in
each neuron, but neurons function in parallel with each other. As usual, a global clock with
discrete time steps is assumed and the functioning of the whole system is synchronized.

Formally, an SN P system of the degree m ≥ 1 is a construct3

Π = (O, σ1, σ2, . . . , σm, syn)

where O = {a} is the singleton alphabet (a is called spike) and σ1, σ2, . . . , σm are neurons.
Each neuron is a pair σi = (ni , Ri ), 1 ≤ i ≤ m, where:

1. ni ≥ 0 is the initial number of spikes contained in σi ;
2. Ri is a finite set of rules of the following two kinds:

(1) firing rules of type E/a p → aq , where E is a regular expression over the spike a
and p, q ≥ 1 are integer numbers ;

(2) forgetting rules of type as → λ, with s an integer number such that s ≥ 1;

The set of synapses (edges) syn is a set of pairs syn ⊆ {1, 2, . . . ,m} × {1, 2, . . . ,m},
verifying that (i, i) does not belong to sys for any i ∈ {1, . . . ,m}.

Let us suppose that the neuron σi contains k spikes and a rule E/a p → aq with k ≥ p.
Let L(E) be the language generated by the regular expression E . In these conditions, if ak

belongs to L(E), then the rule E/a p → aq can be applied. The application is performed by
sending q spikes to all neurons σ j such that (i, j) ∈ syn and deleting p spikes from σi (thus
only k − p spikes remain into the neuron). In this case, it is said that the neuron is fired.

Let us now suppose that the neuron σi contains exactly s spikes and the forgetting rule
as → λ. In such case, the rule can be fired by removing all the s spikes from σi . If the
regular expression E in a firing rule E/a p → aq is equal to a p , then the firing rule can
be expressed as a p → aq . In each time unit, if a neuron σi can use one of its rules, then
one of them must be used. If two or more rules can be applied in a neuron, then only one
of them is non-deterministically chosen regardless of its type. The SN P system evolves
according to these type of rules and reaches different configurations which are represented
as vectors C j = (t j1 , . . . , t jm)where t jk stands for the number of spikes at the neuron σk in the

3 In the literature, many different SN P systems models have been presented. In this paper, a simple model is
considered.



j− th configuration. It will be useful to consider only the first components of a configuration.
Let us define C j [1, . . . , n] = (t j1 , . . . , t jn ) as the n-dimensional vector composed by the n
first components of C j . The initial configuration is the vector with the number of spikes in
each neuron at the beginning of the computation C0 = (n1, n2, . . . , nm). By using the rules
described above, transitions between configurations can be defined. A sequence of transitions
which starts at the initial configuration is called a computation.

2.2 Declarative Semantics of Rule-Based Deductive Databases

Reasoning based on rules can be formalized according to different approaches. In this paper,
propositional logic is considered for representing knowledge. Different formal representation
systems where the number of available terms is finite (as those based on pairs attribute-value
of first order logic representations without function symbols) can be bijectively mapped onto
propositional logic systems and therefore the presented approach covers many real-life cases.

Next, some basics on propositional logic are provided. Let {p1, . . . , pn} be a set of vari-
ables. A literal is a variable or a negated variable. An expression L1 ∧ · · · ∧ Ln → A, where
n ≥ 0, A is a variable and L1, . . . Ln are literals is a rule. The conjunction L1∧· · ·∧Ln is the
body and the variable A is the head of the rule. If n = 0, the body of the rule is empty. A finite
set of rules K B is called a deductive database. A mapping I : {p1, . . . , pn} → {0, 1} is an
interpretation, which is usually represented as a vector (i1, . . . , in) with I (pk) = ik ∈ {0, 1}
for k ∈ {1, . . . , n}. The interpretations I↓ and I↑ are defined as I↓ = (0, . . . , 0) and
I↑ = (1, . . . , 1). The set of all the interpretations on a set of n variables denote by 2n . Given
two interpretations I1 and I2, I1 ⊆ I2 if for all k ∈ {1, . . . , n}, I1(pk) = 1 implies I2(pk) = 1;
I1 ∪ I2 and I1 ∩ I2 are new interpretations such that (I1 ∪ I2)(pk) = max{I1(pk), I2(pk)}
and (I1 ∩ I2)(pk) = min{I1(pk), I2(pk)} for k ∈ {1, . . . , n}. An operator S : 2n → 2n is
monotone if for all interpretations I1 and I2, if I1 ⊆ I2, then S(I1) ⊆ S(I2). An inter-
pretation I is extended in the following way: I (¬pi ) = 1 − I (pi ) for a variable pi ;
I (L1 ∧ · · · ∧ Ln) = min{I (L1), . . . , I (Ln)} and for a rule4

I (L1 ∧ · · · ∧ Ln → A) =
{
0 if I (L1 ∧ · · · ∧ Ln) = 1 and I (A) = 0
1 otherwise

Next, we recall the notions of model and F-model of a deductive database. The concept
of F-model is one of the key ideas in this paper. To the best of our knowledge, it was firstly
presented in [39]. The definition used in this paper is adapted from the original one.

Definition 1 Let I be an interpretation for a deductive database K B

– I is a model if for all rule L1 ∧ · · · ∧ Ln → A verifying that min
i∈{1,...,n} I (Li ) = 1, the

equality I (A) = 1 holds; in other words, if I (R) = 1 for all rule R ∈ K B.
– I is a F-model if for all rule L1 ∧ · · · ∧ Ln → A verifying that I (A) = 1, the equality

max
i∈{1,...,n} I (Li ) = 1 holds.

Next example illustrates these concepts.

Example 1 Let K B be the deductive database on the set {p1, p2, p3, p4, p5, p6, p7, p8, p9}
defined as follows:

R1 ≡ → p1 R4 ≡ p3 ∧ p6 → p4 R7 ≡ p6 → p5 R9 ≡ p7 → p2
R2 ≡ p1 → p2 R5 ≡ p4 → p5 R8 ≡ p8 → p9 R10 ≡ p9 → p8
R3 ≡ p1 ∧ p2 → p3 R6 ≡ p7 → p6

4 Let us remark that, according to the definition, I (→ A) = 1 if and only if I (A) = 1. 



then, the interpretation represented by the vector I1 = (1, 1, 1, 0, 0, 0, 0, 0, 0) is a model of
K B.

In this case, the rules verifying

min
i∈{1,...,n} I (Li ) = 1

are R1, R2 and R3 and all of them satisfies I (A) = 1.
The interpretations I2 = (0, 0, 0, 1, 1, 1, 1, 0, 0) and I3 = (0, 0, 0, 1, 1, 1, 1, 1, 1) are

F-models of K B. In both cases, for all rule L1 ∧ · · · ∧ Ln → A verifying that I (A) = 1, the
equality

max
i∈{1,...,n} I (Li ) = 1

holds. If we consider the interpretation I2, then I2(p4) = I2(p5) = I2(p6) = I2(p7) = 1
and all the rules with variables p4, p5, p6 or p7 in their heads (R4, R5 and R6) verify that
there exists a variable q in the body of the rule with I (q) = 1. The case of I3 is analogous.

In a certain sense, F-models keep a duality with respect the concept of models. If IA and
IB are models, then IA ∩ IB is also a model and if they are F-models, then IA ∪ IB is also
a F-model [39]. Next, the definition of Failure Operator FK B of a deductive database FK
is recalled. It can be seen as a dual of the Kowalski’s immediate consequence operator TK B

[36].

Definition 2 Let {p1, . . . , pn} be a set of variables and K B a deductive database on it. The
failure operator of K B is the mapping FK B : 2n → 2n such that for I ∈ 2n , FK B(I ) is
an interpretation FK B(I ) : {p1, . . . , pn} → {0, 1} where FK B(I )(pk) = 1 if for each rule
L1 ∧ · · · ∧ Ln → pk in K B, maxi∈{1,...,n} I (Li ) = 1 holds (for k ∈ {1, . . . , n}); otherwise,
FK B(I )(pk) = 0.

Let us remark that, according to the definition, if there is no rule in K B with pk in its
head, then FK B(I )(pk) = 1, for all interpretation I .

Kowalski’s operator TK B allows to characterize the models of K B (see, e.g. [18]) in the
sense that an interpretation I is a model of K B if and only if TK B(I ) ⊆ I . Proposition 1
shows that the failure operator FK B also allows to characterize the F-models. The intuition
behind the failure operator is to capture the idea of immediate failure in a similar way that
the operator TK B captures the idea of immediate consequence.

Proposition 1 [39] Let K B be a deductive database.

– An interpretation IF is an F-model of K B if and only if IF ⊂ FK B(I ).
– The failure operator FK B is monotone, over the set of the interpretations of K B.

Since the image of an interpretation by the FK B operator is an interpretation itself, it can
be iteratively applied.

Definition 3 Let K B be a deductive database and FK B its failure operator.

(a) The mapping FK B ↓: N → 2n is defined as follows: FK B ↓ 0 = I↓ and FK B ↓ n =
FK B (FK B ↓ (n − 1)) if n > 0. In the limit, it is also considered

FK B ↓ ω =
⋃
k≥0

FK B ↓ k



(b) The mapping FK B ↑: N → 2n is defined as follows: FK B ↑ 0 = I↑ and FK B ↑ n =
FK B (FK B ↑ (n − 1)) if n > 0. In the limit, it is also considered

FK B ↑ ω =
⋂
k≥0

FK B ↑ k

Bearing in mind that the number of rules and variables in a deductive database are finite,
the next Proposition is immediate.

Proposition 2 Let K B be a deductive database and FK B its failure operator.

(a) There exists n ∈ N such that FK B ↑ n = FK B ↑ k for all k ≥ n.
(b) There exists n ∈ N such that FK B ↓ n = FK B ↓ k for all k ≥ n.

Let us remark that Proposition 2 implies that the number of computation steps for reaching
the above limits is finite.

Example 2 Let us consider again the database K B used in Example 1 and its failure operator.
The following interpretations are obtained.

FK B ↓ 0 = I↓ = (0, 0, 0, 0, 0, 0, 0, 0, 0)
FK B ↓ 1 = FK B(FK B ↓ 0) = (0, 0, 0, 0, 0, 0, 1, 0, 0)
FK B ↓ 2 = FK B(FK B ↓ 1) = (0, 0, 0, 0, 0, 1, 1, 0, 0)
FK B ↓ 3 = FK B(FK B ↓ 2) = (0, 0, 0, 1, 0, 1, 1, 0, 0)
FK B ↓ 4 = FK B(FK B ↓ 3) = (0, 0, 0, 1, 1, 1, 1, 0, 0)

Since FK B ↓ 5 = FK B ↓ 4, then FK B ↓ ω = (0, 0, 0, 1, 1, 1, 1, 0, 0)

FK B ↑ 0 = I↑ = (1, 1, 1, 1, 1, 1, 1, 1, 1)
FK B ↑ 1 = FK B(FK B ↑ 0) = (0, 1, 1, 1, 1, 1, 1, 1, 1)
FK B ↑ 2 = FK B(FK B ↑ 1) = (0, 0, 1, 1, 1, 1, 1, 1, 1)
FK B ↑ 3 = FK B(FK B ↑ 2) = (0, 0, 0, 1, 1, 1, 1, 1, 1)

Since FK B ↑ 4 = FK B ↑ 3, then FK B ↑ ω = (0, 0, 0, 1, 1, 1, 1, 1, 1)

2.3 Procedural Semantics of Rule-based Deductive Databases

The main result of this paper is the characterization of the set of variables obtained by the
non-monotonic inference rules CWA and NFF via the procedural behaviour of an SN P
system. Let us recall that a rule R is said non-monotonic if there exist two interpretations I1
and I2 with I1 ⊆ I2 such that R(I1) � R(I2).

For the sake of completeness, some basics of the procedural semantics of deductive
databases are recalled.5 A goal is a formula ¬B1 ∨ · · · ∨ ¬Bn where Bi are atoms. As
usual, the goal ¬B1 ∨ · · · ∨ ¬Bn will be represented as B1, . . . , Bn →. We also consider
the empty clause � as a goal. Given a goal G ≡ A1, . . . , Ak−1, Ak, Ak+1, . . . , An → and
a rule R ≡ B1, . . . , Bm → Ak , the goal

G ′ ≡ A1, . . . , Ak−1, B1, . . . , Bm, Ak+1, . . . , An →
is called the resolvent of R and G. It is also said that G ′ is derived from R and G. Let K B
be a deductive database and G a goal. An SLD-derivation of K B ∪ {G} consists of a (finite
or infinite) sequence G0,G1, . . . of goals with G0 = G and a sequence of rules R1, R2, . . .

5 A detailed description can be found in [25].



from K B such that Gi+1 is derived from Ri+1 and Gi . It is said that K B ∪ {G} has a finite
failed tree if all the SLD-derivations are finite and none of them has the empty clause � as
the last goal of the derivation. The failure set of K B is the set of all variables A for which
there exists a finite failed tree for K B ∪ {A →}.
Example 3 Let K B be the same deductive database fromExample 1. Next, some SLD deriva-
tions are calculated:

K B ∪ {p3 →} K B ∪ {p9 →} K B ∪ {p6 →}
Rule used Goals

p3 →
R3 p1, p2 →
R2 p1 →
R1 �

Rule used Goals
p9 →

R8 p8 →
R10 p9 →
R8 p8 →
...

...

Rule used Goals
p6 →

R6 p7 →

As shown above, the goals p3 → and p9 → do not have finite failed trees whereas p6 →
does. Finally, it is easy to check that the failure set of K B is {p4, p5, p6, p7}.

We give now a brief recall of the formal definition of both inference rules. A detailed
motivation of such rules is out of the scope of this paper. The first inference rule for deriving
such negative information considered in this paper is the CWA [30]: If A is not a logical
consequence of K B, then infer ¬A. The second inference rule calledNFF [9]: If K B∪{A →}
has a finite failed tree, then infer ¬A, or, in other words, if A belongs to the failure set, then
infer ¬A.

The next Theorem is an adaptation of the Th.13.6 in [25] and provides a procedural
characterization of the variables in the failure set of a deductive database K B. It settles
the equality of two sets defined with two different approaches: on the one hand, the set of
variables such that all the SLD-derivations fail after a finite number of steps and, on the other
hand, the set of variables mapped onto 1 by the interpretation FK B ↓ ω, obtained by the
iteration of the failure operator.

Theorem 1 Let K B be a database on a set of variables {p1, . . . , pn} and FK B its failure
operator. For all k in {1, . . . , n}, pk is in the failure set of K B if and only if FK B ↓ ω(pk) = 1

By using this theorem, we will prove in the next section that the finite failure set of a
database K B can be characterized by means of SN P systems. The next Theorem relates the
CWA with the failure operator. A proof of it is out of the scope of this paper. Details can be
found in [25,39].

Theorem 2 Let K B be a database on a set of variables {p1, . . . , pn} and FK B its failure
operator. For all k in {1, . . . , n}, pk is not a logical consequence of K B if and only if
FK B ↑ ω(pk) = 1

3 Logic Negation with SN P Systems

In this section, we bridge the neural model of SN P systems with the inference rules CWA
and NFF. The main theorems in this paper claim that the result of both inference rules can
be computed in a finite number of steps by an appropriate SN P system. The proof of such
results is achieved via some lemmas which link the properties of the SN P systems with the
semantics of the deductive databases.



Theorem 3 Let us consider a set of variables {p1, . . . , pn} and a deductive database K B
on it. Let I be an interpretation on such set of variables. Let FK B be the failure operator of
K B. An SN P system can be constructed from K B such that

FK B(I ) = C3[1, . . . , n]
where C3 is the configuration of the SN P system after the third step of computation.

Theorem 3 claims the equality of two n-dimensional vectors. The first one is the vector
which represents the interpretation FK B(I ) : {p1, . . . , pn} → {0, 1} obtained by means of
the application of the operator FK B to the interpretation I . The second one is the vector
which represents the number of spikes in the neurons σ1, . . . , σn in the corresponding SN P
system in the third configuration. The proof is constructive and it builds explicitly the SN P
system.

Proof Let K B be a deductive database such that {r1, . . . rk} and {p1, . . . pn} are the set of
rules and the set of variables. Given a variable pi , the number of rules which have pi in the
head is denoted by hi and given a rule r j , the number of variables in its body is denoted by
b j . The SN P system of degree 2n + k + 2.

ΠK B = (O, σ1, σ2, . . . , σ2n+k+2, syn)

��
can be constructed as follows:

– O = {a};
– σ j = (0, {a → λ}) for j ∈ {1, . . . n}
– σn+ j = (i j , R j ), j ∈ {1, . . . n}, where
• i j = I (p j ) if h j = 0
• i j = I (p j ) · h j if h j > 0

and R j is the set of h j rules

• R j = {a −→ a} if h j = 0
• R j = {ah j −→ a} if h j > 0

– σ2n+ j = (0, R j ), j ∈ {1, . . . k}, where R j is one of the following set of rules

• R j = ∅ if b j = 0.
• R j = {al → a | l ∈ {1, . . . , b j } } if b j > 0

For the sake of simplicity, the neurons σ2n+k+1 and σ2n+k+2 will be denoted by σG and σT ,
respectively.

– σG = (1, {a → a})
– σT = (0, {a → a})
– syn = {(n + i, i) | i ∈ {1, . . . , n}}

∪
{

(n + i, 2n + j) | i ∈ {1, . . . , n}, j ∈ {1, . . . , k}
and pi is a variable in the body of r j

}

∪
{

(2n + j, n + i) | i ∈ {1, . . . , n}, j ∈ {1, . . . , k}
and pi is the variable in the head of r j

}

∪ {(G, T ), (T ,G)}
∪

{
(T , n + i) | i ∈ {1, . . . , n}

and pi is a variable such that hi = 0

}
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a → a
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8

Fig. 1 Initial configuration of the SN P system from Example 4

The proof will be split into four lemmas. Although the result of the theorem only concerns
to the third configuration, the lemmas are proved in general.

Before going on with the proof, the building of the SN P system is illustrated with the
following toy example.

Example 4 Let us consider the set of three variables {p1, p2, p3}, a database on it with two
rules

r1 ≡ p1 → p2 r2 ≡ p1, p2 → p3

and the interpretation I↓ = (0, 0, 0). According to the notation, in this case n = 3, k = 2,
h1 = 0, h2 = 1, h3 = 1, b1 = 1 and b2 = 2. The associated SN P system has 2n+k+2 = 10
neurons and its initial configuration is depicted in Fig. 1. Since the interpretation is I↓, there
is only one spike in this first configuration C0. It is placed on the neuron σG . The rule a → a
in σG is applied and the unique spike in the configurationC1 is placed in σT . Since σT has two
outgoing synapses, the application of the rule a → a in it produces two spikes. Therefore,
in the configuration C2 there are two spikes in the SN P system: one of them in σG and the
other one in σ4. The application of the rule a → a in σG sends one spike to σT , so in this
neuron there is a spike in the configuration C3. Since σ4 has three outgoing synapses, the
application of the rule a → a sends one spike to σ1, another to σ7 and a third one to σ8.
To sum up, in the configuration C3, there are four spikes in the system, each of them in the
neurons σT , σ1, σ7 and σ8. According to the theorem, in order to know FK B(I↓) it suffices
to check the number of spikes in the neurons σ1, σ2 and σ3 at the configuration C3. In other
words, this SN P system has computed FK B(I↓) = (1, 0, 0).

Next, the following lemmas will be proved.

Lemma 1 For all t ≥ 0, in the 2t-th configuration C2t the neuron σG has exactly one spike
and σT is empty.

Proof The result will be proved by induction. The lemma holds in the initial configuration.
The inductive assumption is that in the configuration C2t , the neuron σT does not contain
spikes and the neuron σG contains exactly one spike. There is only one incoming synapse
in σG which comes from σT , and vice versa. Furthermore, the unique rule that occurs in
each neuron is a → a so, in C2t+1, σG has consumed its spike and does not contain any
spike, and the neuron σT contains exactly one spike. For the same reasoning, in C2t+2, σT
has consumed its spike and the neuron σG contains exactly one spike. ��



Lemma 2 For all t ≥ 0 the following results hold:

– For all p ∈ {1, . . . , k} the neuron σ2n+p is empty in the configuration C2t .
– For all q ∈ {1, . . . , n}, the neuron σn+q is empty in the configuration C2t+1.

Proof In the configuration C0, for all p ∈ {1, . . . , k}, the neuron σ2n+p is empty and, for all
q ∈ {1, . . . , n}, each neuron σn+q contains, at most, hq spikes. These spikes are consumed
by the application of the rule ah j → a (or a → a). Finally, as every neuron with synapse
to σn+q is empty at C0, it follows that in the configuration C1, all the neurons σn+q with
q ∈ {1, . . . , n} are empty.

As induction hypothesis, we state that in C2t , for all p ∈ {1, . . . , k}, the neuron σ2n+p

is empty and for all q ∈ {1, . . . , n}, the neuron σn+q is empty in the configuration C2t+1.
As defined before, the number of incoming synapses in each neuron σ j is b j . The neurons
which are the origin of such synapses send (at most) one spike in one computational step, so
in C2t+1, the number of spikes in the neuron σ2n+p is, at most, bp . The corresponding rules
(ah j → a or a → a) consume all these spikes so, at C2t+1, all the neurons with outgoing
synapses to σ2n+p are empty. In the next step, at most, bp spikes contained in the neurons
σ2n+p were consumed by the corresponding rules. Therefore, we conclude that at C2t+2, for
all p ∈ {1, . . . , k}, the neurons σ2n+p are empty.

Focusing on the second part of the lemma, as induction hypothesis we state that the
neurons σn+q with q ∈ {1, . . . , n} are empty in the configuration C2t+1. Each neuron σn+q

can receive at most hq if hq > 1 and 1 if hq = 0, since there are hq or 1 incoming synapses
and each of these sends, at most, one spike. Hence, at C2t+2, σn+q has, at most, hq if hq > 1
and 1 if hq = 0, spikes. All of them are consumed by the corresponding rule and, since all
the neurons which can send spikes to σn+q are empty at C2t+2, we conclude that, for all
q ∈ {1, . . . , n}, the neuron σn+q is empty in the configuration C2t+3. ��
Lemma 3 For all q ∈ {1, . . . , n}, the neuron σq is empty in the configuration C2t .

Proof In the first configuration (C0) the lemma holds. For C2t with t > 0 it is enough to
check that, as stated in Lemma 2, for all q ∈ {1, . . . , n}, the neuron σn+q is empty in the
configuration C2t+1 and each σq receives at most one spike in each computation step from
the corresponding σn+q . Therefore, in each configuration C2t+1, each neuron σq contains, at
most, one spike. Since such spike is consumed by the rule a → λ and no new spike arrives,
then the neuron σq is empty in the configuration C2t . ��
Lemma 4 Let I = (i1, . . . , in) be an interpretation for K B and let S = (s1, . . . , sn) be a
vector with the following properties. For all j ∈ {1, . . . , n}
– If i j = 0 and h j = 0, then s j = 0
– If i j = 0 and h j > 0, then s j ∈ {0, . . . , h j − 1}.
– If i j �= 0 and h j = 0, then s j = 1
– If i j �= 0 and h j > 0, then s j = h j

If in the configuration C2t the neuron σn+ j contains exactly s j spikes for all j ∈ {1, . . . , n} 
then the interpretation obtained by applying the failure operator FK B  to the interpretation 
I ,  FK B(I ), is (q1, . . . , qn) where q j , j ∈ {1, . . . , n}, corresponds with the number of spikes 
contained in the neuron σ j in the configuration C2t+3.

Proof Let us consider m ∈ {1, . . . , n} and FK B(I )( pm ) = 1. We will prove that in the 
configuration C2t+3 there is exactly one spike in the neuron σm .



If FK B(I )(pm) = 1, then for each rule rl ≡ Ld1 ∧ · · · ∧ Ldl → pm with pm in the head,
there exists j ∈ {1, . . . , n} such that I (L j ) = 1.

Case 1: Let us consider that there is no such rule rl . By construction, the neuron σn+m

has only one incoming synapse from neuron σT ; and according to the previous lemmas:

– In C2t the neuron σG contains exactly one spike.
– For all q ∈ {1, . . . , n}, the neuron σn+q is empty in the configuration C2t+1

– For all q ∈ {1, . . . , n}, the neuron σq is empty in the configuration C2t .

In these conditions, the corresponding rules in σG and σn+m are fired and in C2t+1, the
neuron σT contains one spike. InC2t+2, the neuron σn+m contains one spike and σm is empty.
Finally, in the next step σn+m sends one spike to σm , so, in C2t+3, σm contains one spike.

Case 2: Let us now consider that there are hm rules (with hm > 0) such that rl ≡
Ld1 ∧ . . . Ldl → pm and for each one there exists jl ∈ {1, . . . , n} such that I (L jl ) = 1.
This means that, in C2t , every neuron σn+ jl contains 1 or h jl spikes, as appropriate. All these
neurons fire the corresponding rules, and, in C2t+1, every σ2n+l has at least one spike. So
one rule from {aq → a | q ∈ {1, . . . , bl} } is fired in every σ2n+l and in C2t+2 the neuron
σn+m contains exactly hm spikes. The corresponding rule fires and the neuron σm contains
one spike in C2t+3. ��

Finally, the proof of the Theorem 3 is provided. It is immediate from Lemma 4.

Proof Let us note that one of the possible vectors S = (s1, . . . , sn) obtained from the inter-
pretation I is exactly the same interpretation I = (i1, . . . , in). If we also consider the case
when t = 0, we have proved that from the initial configuration C0 where ik and hk indicate
the number of spikes in the neuron σn+k , then the configuration C3 encodes FK B(I ). ��

Theorem 3 is the basis of the two main results of this paper, which are proved in the
following theorems.

Theorem 4 Let K B be a deductive database on the set of variables {p1, . . . , pk}. An SN P
system can be constructed from K B such that it computes the inference rule CW A on the
database K B.

Proof According to Theorem 2, ¬pk is inferred from K B by using the inference rule CW A
if and only is FK B ↑ ω(pk) = 1 and from Theorem 3, an SN P system can be constructed
from K B such that FK B(I ) = C3[1, . . . , n]whereC3 is the configuration of the SN P system
after the third step of computation. By combining both results, we will prove

(∀z ≥ 1) FK B ↑ z = C2z+1[1, . . . , n]
where C2z+1[1, . . . , n] is the vector whose components are the spikes on the neurons
σ1, . . . , σn in the configuration C2z+1. We will prove it by induction.

For z = 1, we will see that FK B ↑ 1 = FK B(FK B ↑ 0) = FK B(I↑) is the vector
whose components are the spikes on the neurons σ1, . . . , σn in the configuration C3. The
result holds from Lemma 4 in the proof of Theorem 3. By induction, let us consider now
that FK B ↑ z = C2z+1[1, . . . , n] holds. As previously stated, this means that in the previous
configuration C2z the spikes in the neurons σn+1, . . . , σ2n can be represented as a vector
S = (s1, . . . , sn) with the properties claimed in Lemma 4, namely, if the neuron σ j has no
spikes in C2z+1, then s j = 0 or s j ∈ {0, . . . , h j − 1}, as corresponds, and, if the neuron σ j

has one spike in C2z+1, then s j = 1 or s j = h j , as appropriate. Hence, according to Lemma
4, three computational steps after C2z , FK B(C2z+1[1, . . . , n]) is computed:

FK B ↑ z + 1 = FK B(FK B ↑ z) = FK B(C2z+1[1, . . . , n]) = C2z+3[1, . . . , n]



From Corollary 2, there exists m ∈ N such that FK B ↑ m = FK B ↑ k for all k ≥ m,
i.e. FK B ↑ m = FK B ↑ ω. So the vector whose components are the spikes on the neurons
σ1, . . . , σn in the configuration C2m+1 is the result obtained by applying the inference rule
CW A. ��

The previous proof can be adapted to prove that the SN P systems also can characterize 
the inference rule Negation of Failure Set.

Theorem 5 Let K B be a deductive database on the set of variables { p1, . . . ,  pk }. An SN  
P system can be constructed from K B such that it computes the inference rule Negation of 
Failure Set on the database K B.

Proof According to Theorem 1, ¬pk is inferred from K B  by using the inference rule Negation 
of Failure Set if and only is FK B  ↓ ω(  pk ) = 1 and from Theorem 3, an SN P system can be 
constructed from K B  such that FK B(I ) = C3[1, . . . , n] where C3 is the configuration of the 
SN P system after the third step of computation. By combining both results, we will prove

(∀z ≥ 1) FK B  ↓ z = C2z+1[1, . . . , n]
where C2z+1[1, . . . , n] is the vector whose components are the spikes on the neurons 
σ1, . . . , σn in the configuration C2z+1. We will prove it by induction.

For z = 1, we have to prove that FK B  ↓ 1 = FK B(FK B  ↓ 0) = FK B(I↓) is the vector 
whose components are the spikes on the neurons σ1, . . . , σn in the configuration C3. The  
result holds from Lemma 4 in the proof of Theorem 3. By induction, let us consider now 
that FK B  ↓ z = C2z+1[1, . . . , n] holds. As previously stated, this means that in the previous 
configuration C2z the spikes in the neurons σn+1, . . . , σ2n can be represented as a vector 
S = (s1, . . . , sn) with the properties claimed in Lemma 4, namely, if the neuron σ j has no 
spikes in C2z+1, then  s j = 0 or s j ∈ {0, . . . ,  h j − 1}, as corresponds, and, if the neuron σ j 
has one spike in C2z+1, then  s j = 1 or s j = h j , as appropriate. Hence, according to Lemma 
4, three computation steps after C2z , FK B(C2z+1[1, . . . , n]) is computed:

FK B  ↓ z + 1 = FK B(FK B  ↓ z) = FK B(C2z+1[1, . . . , n]) = C2z+3[1, . . . , n]
From Corollary 2, there exists m ∈ N such that FK B  ↓ m = FK B  ↓ k for all k ≥ m, 

i.e. FK B  ↓ m = FK B  ↓ ω. So the vector whose components are the spikes on the neurons 
σ1, . . . , σn in the configuration C2m+1 is the result obtained by applying the inference rule 
Negation of Failure Set. ��
Example 5 Let us consider the deductive database K B  from Example 1 and the SN P system 
associated to K B. Its graphical representation is shown in Fig. 2.

All steps of the computation (downwards and upwards) are shown in Table 1. Note that 
in Table 1 the solution of applying failure operator at every step is codified on the neurons 
σ1, . . . , σn (bold values).

4 Conclusions and Future Work

In the last years, the success of technological devices inspired in the connections on neurons 
in the brain have is doubtless. Almost each day we read news about new achievements 
obtained by new models or new architectures. Many of the recent developments on neural 
networks get new knowledge able to predict or classify with an impressive accuracy, but



Fig. 2 Graphical representation of the synapses of the SN P system obtained from Example 1

Table 1 FK B ↓ ω (left) and
FK B ↑ ω (right) of the SN P
system of Fig. 2

C0 C1 C2 C3 C4 C5 C6 C7 C8 C9

σ1 0 0 0 0 0 0 0 0 0 0

σ2 0 0 0 0 0 0 0 0 0 0

σ3 0 0 0 0 0 0 0 0 0 0

σ4 0 0 0 0 0 0 0 1 0 1

σ5 0 0 0 0 0 0 0 0 0 1

σ6 0 0 0 0 0 1 0 1 0 1

σ7 0 0 0 1 0 1 0 1 0 1

σ8 0 0 0 0 0 0 0 0 0 0

σ9 0 0 0 0 0 0 0 0 0 0

σ10 0 0 0 0 0 0 0 0 0 0

σ11 0 0 0 0 1 0 1 0 1 0

σ12 0 0 0 0 0 0 0 0 0 0

σ13 0 0 0 0 0 0 1 0 1 0

σ14 0 0 0 0 0 0 1 0 2 0

σ15 0 0 0 0 1 0 1 0 1 0

σ16 0 0 1 0 1 0 1 0 1 0

σ17 0 0 0 0 0 0 0 0 0 0

σ18 0 0 0 0 0 0 0 0 0 0

σ19 0 0 0 0 0 0 0 0 0 0

σ20 0 0 0 0 0 0 0 0 0 0

σ21 0 0 0 0 0 0 0 0 0 0

σ22 0 0 0 0 0 1 0 1 0 1



Table 1 continued
C0 C1 C2 C3 C4 C5 C6 C7 C8 C9

σ23 0 0 0 0 0 0 0 1 0 1

σ24 0 0 0 1 0 1 0 1 0 1

σ25 0 0 0 0 0 1 0 1 0 1

σ26 0 0 0 0 0 0 0 0 0 0

σ27 0 0 0 1 0 1 0 1 0 1

σ28 0 0 0 0 0 0 0 0 0 0

σT 0 1 0 1 0 1 0 1 0 1

σG 1 0 1 0 1 0 1 0 1 0

C0 C1 C2 C3 C4 C5 C6 C7

σ1 0 1 0 0 0 0 0 0

σ2 0 1 0 1 0 0 0 0

σ3 0 1 0 1 0 1 0 0

σ4 0 1 0 1 0 1 0 1

σ5 0 1 0 1 0 1 0 1

σ6 0 1 0 1 0 1 0 1

σ7 0 1 0 1 0 1 0 1

σ8 0 1 0 1 0 1 0 1

σ9 0 1 0 1 0 1 0 1

σ10 1 0 0 0 0 0 0 0

σ11 2 0 2 0 0 0 0 0

σ12 1 0 1 0 1 0 0 0

σ13 1 0 1 0 1 0 1 0

σ14 2 0 2 0 2 0 2 0

σ15 1 0 1 0 1 0 1 0

σ16 1 0 1 0 1 0 1 0

σ17 1 0 1 0 1 0 1 0

σ18 1 0 1 0 1 0 1 0

σ19 0 0 0 0 0 0 0 0

σ20 0 1 0 0 0 0 0 0

σ21 0 2 0 1 0 0 0 0

σ22 0 2 0 2 0 2 0 0

σ23 0 1 0 1 0 1 0 1

σ24 0 1 0 1 0 1 0 1

σ25 0 1 0 1 0 1 0 1

σ26 0 1 0 1 0 1 0 1

σ27 0 1 0 1 0 1 0 1

σ28 0 1 0 1 0 1 0 1

σT 0 1 0 1 0 1 0 1

σG 1 0 1 0 1 0 1 0



such implicit knowledge is not human readable. Recently, many researchers have started to
wonder how to translate this implicit knowledge into a set of rules in order to be understood
by humans and then, to be able to introduce new improvements in the technical designs. In the
literature, different approaches by using connectionist models for logic-based representation
and reasoning can be found. For example, in [29], a study of the relation between the SAT
problem the minimizing energy in several types of neural networks is presented.

Such translation needs bridges and two of them can be, on the one hand, an appropriate
logic where a statement has associated a True value and some kind of inference rules to
acquire more knowledge and, on the other hand, a neural-inspired model able to handle with
binary information, as SN P systems do.

In this paper, we propose a possible bridge by studying two non-monotonic logic inference
rules into a neural-inspired model. This new point of view could shed a new light to further
research possibilities. On the one side, to study if new inference rules can be studied in the
framework of SN P systems. On the other side, if other bio-inspired models are also capable
of dealing with logic inference rules.

Recently there exist other approaches to model logic-based reasoning with neural models
that tackle questions on entailment and satisfiability. In [2], the authors use a type of Hopfield
networks to model and solve non-horn 3-SAT, although are models of continuous nature.
Moreover, SN P systems can be useful models to both design and verify logic-based tasks.
As future work, an interesting research line can be to discretize classical continuous spiking
models and to model them via SN P systems. The target is to explore techniques for verifying
and validating such models in industrial applications as robotics [7,32].
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