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In this paper, new methods for analyzing models of weak subsystems of Peano 
Arithmetic are proposed. The focus will be on the study of algebro-combinatoric 
properties of certain definable cuts. Their relationship with segments that satisfy 
more induction, with those limited by the standard powers/roots of an 
element, and also with definable sets in Bounded Induction is studied. As a 
consequence, some considerations on the Π1-interpretability of IΔ0 in weak 
theories, as well as some alternative axiomatizations, are reviewed. Some of 
the results of the paper are obtained by immersing Bounded Induction models 
in its Stone-Cech Compactification, once it is endowed with a topology.
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1. Introduction

A significant amount of the research corpus on (models of) classic subsystems of Peano Arithmetic (PA)
is primarily focused on achieving two types of goals. A first type refers to studying how powerful a theory 
(e.g. fragment of PA) is for supporting the results of elementary number theory. A second one is devoted to 
obtaining independence results for (open) central problems to Complexity Theory [16]. The first objective is 
usually focused on theories weaker than IΣ1, because that theory is already enough to develop a large part
of Number Theory. A frontier for such an analysis is Parikh’s theory IΔ0 (the theory of bounded induction),
where several problems are related to its power for developing number theory remains open, some of these 
being related to open problems in Complexity Theory. Its “frontier” nature is because a large number of 
these questions can be solved if IΔ0 is extended with an axiom that ensures that a certain total function
grows faster than any polynomial function. For example, the exponential function. Please let us recall that 
according to a celebrated result of R. Parikh this kind of functions are not definable in IΔ0 (cf. [22], Th.
V.1.4):

Result 1.1. Every provably recursive function in IΔ0 is bounded by a polynomial.

Concerning the second research line (the searching for independence results), the situation is similar. For 
example, in strong fragments, a classical approach to solve this type of problems is based on showing the 
existence, in any model of the subsystem, of an initial segment (or final extension), that is a model of a 
stronger theory. This technique is useful to separate theories [40], as well as for connecting model-theoretic 
and complexity issues (see e.g. the survey [38]). In the same way as in the first research topic, when one 
works with fragments of PA, almost all positive results are also limited to proper extensions of IΔ0 (such
as IΣn+1 or BΣn+1).

The scenario substantially changes when the theories {IEn}n∈ω (fragments of IΔ0 defined like IΣn but
using bounded quantifiers instead) are considered. It is not known if this hierarchy is strict. In fact there are 
relatively very few results about the relationship between IEk and IEk+1 (k ≥ 1). In stronger subsystems,
global coding tools are used to prove results, but this type of functions are not definable in Bounded 
Induction by Result 1.1, so they can not be used (in particular, arithmetization).

We could affirm that one of the reasons for this situation is that the relationship of these theories with 
classes of computational complexity is not so evident to be able to translate problems between both fields. 
Let us consider, for example, the case of the class of provably recursive theories on IEn. In general, a useful
approach to studying fragments of PA is to consider, given a T theory, the class R(T ) of provably recursive 
functions in T and to study, for example, the existence of initial segments that are closed under that class of 
functions in (some) Arithmetic models (see [9] for a refinement of up to IE1). However, the approach could
be not useful here in our framework, because {R(IEn)}n<ω collapses.

Proposition 1.2. R(IΔ0) = R(PA−).

Proof. (taken from [4]) Assume that f is provably recursive in IEn by the formula ∃zθ(x, y, z), with θ ∈ Ek.
Then there is a Π1–sentence ∀uψ(u) (suppose ψ ∈ En+1), such that PA− + ∀uψ(u) � ∀x∃!y∃zθ(x, y, z).
Then

PA− � ∀uψ(u) → ∀x∃v∃y, z < vϕ(x, y, z, v)
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where ϕ ∈ Ek+1 is

ϕ(x, y, z, v) := θ(x, y, z) ∧ ∀y1, y2, z1, z2 < v(θ(x, y1, z1) ∧ θ(x, y2, z2) → y1 = y2)

Therefore,

PA− � ∀x∃v∃u(¬ψ(u) ∨ ∃y, z < vϕ(x, y, z, v))

By 1.1, there is p(x) ∈ N[x] that bounds v, u. Hence the E max{n+3,k+1}–formula

γ(x, y, z) ≡ ∃v < p(x)

⎧⎪⎨
⎪⎩

∀u ≤ p(x)ψ(u) ∧ ϕ(x, y, z, v) ∧ y < v ∧ z < v

∨
∃u ≤ p(x)¬ψ(u) ∧ y = 0

represents the standard graph of f and PA− � ∀x∃!y∃zγ(x, y, z). �
A plausible way to attack the problem of the possible collapse of {IEn}n∈ω (or, for instance, whether

IE1 � IE2) is to find intermediate alternative axiom schemes to facilitate the analysis. Due to the essentially
different behavior of the recursive function classes in Bounded Induction, one option might be to design 
schemes that describe algebraic properties or properties about, for example, the order < over N. This 
idea has been used frequently in the strong fragments. In [36] Kreuzer and Yokoyama show interesting 
intermediate schemes between IΣ1 and IΣ2 of different nature, which are equivalent if IΣ1 is considered as
the base theory, and which are equivalent in turn to the well-foundedness of ωω.

Among the published works on IEn, some of them deserve to be highlighted. There are refinements of
proven facts for IΣn (for instance the existence in nonstandard models of IE1 of a nonstandard initial
segment model of PA [29,42]), studies of algebraic nature (see e.g. [5,43] for IE0 and [44] for IE1) and
other studies about alternative axiomatizations [3,15]. Whether IΔ0 is finitely axiomatizable -or whether
{IEn}n<ω collapses- is the most important open problem in the field, connected with the P = NP? problem
(cf. [7,22]).

A noticeable result about the theories IEn shall be used in this paper (due to Paris and Dimitracopoulos
[14], that is proved by using a formalization of truth definition for En-formulas):

Result 1.3. For all n there is a Π1-sentence σn such that

IΔ0 � σn � IEn

Please, let us note that the Result 1.3 implies that, if {IEn}n collapses then IΔ0 is finitely axiomatizable.
Result 1.3 has been used by R. Kaye for studying models of IE1 [29].

The above result is useful for our purposes because the reciprocal one -i.e., looking for a property that, 
added to IEn a theory equivalent to IΔ0 can be obtained- is more difficult to study in general, because it
is possible that adding to IE1 a numerical property (or for example Ramsey type scheme) stronger theories
than the IΔ0 itself are obtained. Two examples would be [10] (numerical property) and [8] (Ramsey type
scheme). In the first paper, P. D’Aquino described the difference between IE1 and IΔ0 + exp employing a
property of number theory:

IE1 + P � IΔ0 + exp

where P is an axiom that states that every Pell equation has a solution. In the second one, C. Cornaros 
studied the strength of weak forms of the Regularity Principle in the presence of IE1, proving that a Bounded
Weak Regularity Principle on E1 formulas is equivalent -over IE1- to IΔ0 + exp.
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In general, to investigate the relationship between the theorems in PA (or IΔ0) and those of PA− it is
common to focus on the inductive formula(s) necessary to demonstrate the corresponding theorem.

Definition 1.4. A formula ϕ(x) is called inductive if PA− � ϕ(0) and PA− � ∀x(ϕ(x) → ϕ(x + 1)).

The analysis for the inductive formulas is interesting by itself, as well as the study of their behavior in a 
model [23]. An interesting result for this paper is the following (in Section 3.2 variants of the result using a 
fixed inductive formula will be studied).

Theorem 1.5. (Wilkie-Paris, see [50]) Let ϕ(x) be a bounded formula. The following conditions are equiva-
lent:

1. IΔ0 + exp � ∀xϕ(x)
2. There exists an inductive formula ψ such that PA− � ∀x(ψ(x) → ϕ(x))

1.1. Motivation

The underlying general hypothesis that guides this work is that to advance in the study of (very weak) 
subsystems of bounded induction it could be interesting to explore the design and use of new tools that 
exploit properties of natural numbers that are essentially different in nature from those of classical fragments. 
For example, techniques from other research fields that are not traditionally related to the study of arithmetic 
models (such as the topology of semigroups), thus changing the point of view with which the models are 
analyzed.

The working hypothesis is relevant when the interest is on theories that extend very weak theories: 
IE1

0, the extension of PA− allowing Euclidean division; and RIE1
0, that extends it assuring the existence

of integer roots. Therefore, we will work with the absence of definable functions of rapid growth (that is, 
asymptotically faster than any polynomial) which obstructs us from using global arithmetization techniques 
(that are useful to reproduce classical demonstrations).

Concerning the selection of algebraic properties that may be interesting and how to use them, let us 
consider the paradigmatic case of the set of prime numbers. It is unknown whether IΔ0 demonstrates its
infinitude. Thus, whilst we cannot assume that this set is unbounded in a IΔ0 model, some combinatorial
properties associated with its infinity in the standard model can be studied. For example, a very interesting 
combinatorial property of such a set is that it contains arbitrarily long arithmetic progressions (a celebrated 
result of Green and Tao [47], see also [19]). We intend to approach the study of properties of this type using 
some results of the Ramsey type.

In general terms, Ramsey type theorems state that if the universe to be studied is divided into a series 
of parts, then at least one of them enjoys a particular property (commonly associated with a certain kind 
of regularity). In the finite case, Ramsey’s theory refers to how large the set of parts must be to ensure 
that the property is satisfied, while in the infinite case the properties focus on detecting a certain regularity 
in one of those parts. Unlike the seminal result -Ramsey’s theorem- these properties can now be studied 
with non-standard methods (see e.g. [26]). A well-known example on that line is Schur’s theorem: given 
n > 0, for any prime number p large enough there is a non-trivial solution of xn + yn = zn (mod p). A nice 
proof is based on the fact that there are three monochromatic elements in a certain N partition (a Ramsey 
property). Although there are studies of the peculiarities about Ramsey Theorem on theories weaker than 
IΣ1 (see for example [52]), in general, these are focused on theories stronger than IΔ0.

We are concerned with two general questions. On the one hand, are these types of combinatorial prop-
erties on infinite sets (actually, a suitable version) provable in Bounded Induction, independently of the 
ignorance about the provability of their infinitude? On the other hand, if it is possible to demonstrate a 
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Fig. 1. Compactification of the model augmented with Δ0-definable sets without first element.

result of (algebro-)combinatorial regularity of that type, what is the relationship between its corresponding 
axiomatization as an axiom scheme and IΔ0 itself? It should be noted that the results of a combinatorial
nature had already been obtained. To quote a recent one, the work of C. Cornaros [8] on the principle of 
regularity for bounded formulas. The principle of regularity states that if the elements of an infinite set are 
colored with a finite palette then there is a monochromatic infinite subset. Regularity might be seen as a 
result of Ramsey type.

To simplify the handling of these types of sets and their properties we will approach the question in a 
dual (although equivalent) way. Instead of working with combinatorial properties of bounded inductive sets 
in a model of weak arithmetic, we will work with nonempty sets without the first element instead (i.e., the 
corresponding minimization principle fails).

Combinatorial properties of that nature (those showing remarkable algebraic regularities in certain infi-
nite sets) can be attacked by working on an extension of the model that enables us to work within a richer 
structure. A widely used choice in the case of N is its Stone-Čech compactification, βN, which has proved 
to be an extremely useful structure for rewriting properties of Combinatorial Number Theory in another 
algebraic (topological) ones about βN. Typically, it can be rewritten in terms of the existence of a specific 
ultrafilter (or a point in another type of compactification). Next, the corresponding property on βN can 
be addressed using very powerful techniques (see the surveys [2,13,24], or the recent example [45] where 
the author analyzes of the mentioned set of prime numbers from that perspective). Our interest in βN (or 
βM being M a model of weak arithmetic) lies in the fact that there are strong relationships between the 
infinite sets in N and elements (ultrafilters) in βN (as expected for the construction of this one). Infinite 
sets of N induce open neighbors in βN that contains non-principal ultrafilters with interesting properties. 
The selection of a suitable ultrafilter will allow to establish the Ramsey type discussed findings.

Continuing with the idea, a model M |= PA− can be viewed as an ordered semigroup, thus it is susceptible 
to being studied algebraically. If the model is endowed with a topology (for example the discrete one), 
results and techniques developed for topological semigroups can be used. The potential application would 
not be interesting if, additionally, if one does not work on an adequate compactification of the structure, 
in order to obtain a richer topology than the discrete one, with interesting properties as βM . We think 
that we have in that way a certain useful analogy between this kind of compactness and saturation in 
models of Arithmetic. Both properties allow assuring the existence of a certain element if an adequate 
approximation to it (a sequence in the compact case or a finitely satisfiable type in the case of saturation) 
can be obtained. We are particularly interested in that relationship for the special case of Stone-Čech 
compactification βM .

More precisely, the classic construction of βN has inspired us the following framework (shown in Fig. 1). 
In more detail, a model of Arithmetic M is extended to a structure M [Gk] where the Δ0-definable sets
without minimum are also elements; they will be interpreted in a similar way to Henkin’s cuts. The notion 
of cut induces a definable equivalence relationship ∼ between that sets (two sets are equivalent if they 
induce the same cut), switching from that mode to working with equivalency classes [ϕ].
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The set M [Gk] is endowed with the Hausdorff topology generated by the basis:

{{a}} if a ∈ M and {(a, b) ⊆ M [Gk] : M |= a < ϕ < b} if [ϕ] /∈ M

(Please, let us note that M [Gk] under the equivalence relation ∼ is the so-called Kolmogorov quotient of
this topology.)

With that topology the set M is dense in M [Gk]. Since βM is the biggest compactification of M , there
is a projection

π : βM → M̂ [Gk]

between βM and any right-topological semigroup compactification of M [Gk] we select (cf. th. 21.4 of [24]).
Since π �M= IdM is an homomorphism between dense sets (βM is endowed with the semigroup structure
that it will be described in Sect. 2.4), then π is also homomorphism (cf. th. 4.22 of [24]).

The construction is interesting basically because the sets without the first element become elements of 
the structure, thus we are going to be able to draw information from those sets by studying (subsets of) the 
semigroup Sϕ := π−1({[ϕ]}), when [ϕ] is an idempotent element in M [Gk]. Then some well-known results
about βM as compact right topological semigroup can be applied. Although the reference to M̂ [Gk] can be
omitted throughout the paper by defining the subsemigroups only in terms of βM (as we do in fact below), 
we believe that the semigroup Sϕ has interest itself, as it will be commented in the closing remarks of this
paper.

Specifically, we are interested in translating a basic property of N related to the existence of relative 
primes in a set (i.e., elements of the set that can not be decomposed as a product of numbers from the set 
itself). Given A �= ∅, let S(A) be the set of its lower bounds,

S(A) = {x : ∀b ∈ A(x < b)}

Given two sets A, B, it will be said that they define the same cut, A ∼S B, if S(A) = S(B). Let A∗ be the
set of its relative composite elements,

A∗ := (A ·A) ∩A = {x ∈ A : ∃b, c ∈ A(x = b · c)}

A basic property of N is that if 0, 1 /∈ A, then A∗ �S A. It is not hard to prove that IΔ0 is enough
to prove that fact for any Δ0-definable set. However, the reciprocal (namely if that property characterizes
IΔ0), is somewhat more complicated. We must justify that we can limit ourselves to validate the principle
of minimization for sets with adequate internal arithmetic structure to be able to apply that property. In 
general terms, in this paper alternative axiomatizations of bounded induction theories are obtained through 
schemes that describe the following property, for any non-empty Δ0-definable set:

A ∼S A∗ ⇒ {0, 1} ∩A �= ∅ (�)

The necessary combinatorial properties will be demonstrated by analyzing some appropriate ultrafilters of 
the set Sϕ described above.

If we focus on the idea of exploiting the algebraic properties of the compactification βM , it is important 
to note that the behavior of the operations (which are extensions that of M) is very different from the 
original ones. For example, in [25] Hindman, Maleki and Strauss shown that if a and b be distinct positive 
integers, then the equation u + a · p = v + b · p has no trivial solutions with u, v ∈ βN and p ∈ βN\N (in 
that paper the abelian groups where the corresponding equation holds in their corresponding Stone-Čech 
compactifications are characterized). However, other interesting relationships have been proven (see e.g. the 
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survey [24]). More details of this issue -once formalized- will be shown in the subsection 2.4. On the other 
hand, other results do establish a certain transfer of properties (for example that of [39]), although in general, 
it is not obtained straightforwardly. For example, for any sufficiently strong theory of arithmetic, the set of 
Diophantine equations provably unsolvable in the theory is algorithmically undecidable, as a consequence of 
the MRDP theorem. In contrast, in [27] the author proves the decidability of Diophantine equations provably 
unsolvable in Robinson’s arithmetic Q. In that paper, the author axiomatizes the universal fragment of Q
itself.

1.2. Aim of the paper

Driven by the above motivations, some methods for analyzing fragments of Bounded Induction, which are 
not refinements of those used for classic fragments (those that were applied to IΣn or BΣn) are presented.
The proposal is developed in two stages. In the first part, several results about Δ0-definable sets will be
established. The model will be submerged in a more complex structure in the second part (the aforemen-
tioned Stone-Čech compactification), where techniques related to algebraic combinatorics will be applied, 
taking into account the Δ0-definability of the sets involved in the study.

1.3. Structure of the paper

As we discussed, the paper has a differentiated structure in two related parts. The first part is dedicated 
to the analysis of segments and cuts in weak induction models, to provide these sets with an algebraic 
structure (semi-group). In the second part, the construction will be used to submerge the model in a 
topological structure (compact topological semigroup) where results of a very powerful combinatorial nature 
are available. When applied, it will provide information on the structure of the model as well as alternative 
axiomatizations of weak induction.

Specifically, the content of the paper is as follows. Section 2 is devoted to listing the main elements and 
results used in the paper. Next, it is studied the so-called T -kernel, the biggest initial segment of a model of 
a weak theory which is a model of T , when T = IEn, studying its approximation by means algebraic initial
segments as well as its definability (Sect. 3). Section 4 presents how to show the maximal character of IΔ0

as possible Π1–interpretable theory in RIE1
0 (3.18).

The second part of the paper starts presenting an algebraic (sec. 5) and topological (sec. 4) treatment, 
including Ramsey theoretic arguments, of the upper neighborhood of a bounded definable set without the 
first element. This study allows to give alternative axiomatizations of IΔ0 representing the property (�)
described above, as well as to state combinatorial regularities near to the kernel.

2. Preliminaries and some starting results

In this section, a number of notions and results to be used throughout the paper will be introduced.
Specifically, some results on IΔ0, IEk (k ≥ 1), and IE0 = IOpen. Also, two types of initial segments are
defined, and finally, a brief introduction on βM (being M a semigroup) will be shown, focusing on its 
algebraic and topological features.

2.1. Subsystems of IΔ0

The language of the Arithmetic is L = {+, ·, <, 0, 1}. Quantifications like ∃x(x < t ∧ϕ) or ∀x(x < t → ϕ)
(denoted by ∃x < tϕ and ∀x < tϕ) are called bounded.
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The set Δ0 is the set of bounded formulas (which have only bounded quantifiers, respectively). Similar to
the definitions of the classical fragments in Peano Arithmetic PA, the classes En, Un are defined according
to the alternation of (bounded) quantifiers:

E0(=U0) is the class of open formulas,
En+1 := {∃x1 < t1 · · · ∃xm < tmϕ | ϕ ∈ Un}, and
Un+1 := {∀x1 < t1 · · · ∀xp < tpϕ | ϕ ∈ En}

(with ti L–terms). Therefore Δ0 = Eω =
⋃

k Ek.
The (finite) theory PA− has as models the nonnegative part of discretely ordered rings.
The paper will work on the well–known Induction (I), Least element (L) and Collection (B) schemas, 

and the theories

EΓ = PA− + {Eϕ | ϕ ∈ Γ}

where E = I, L, B and Γ = En, Un (see [30] and [51]). It is unknown whether {IEn}n<ω collapses. Only
partial results are known. Among them, the following ones:

• IE0 ≡ LE0, IE0 � IE1 ([43]).
• IE0 plus the full collection scheme does not prove IE1 [3].
• IEn+1 ⇐⇒ LUn =⇒ IEn ⇐⇒ IUn ⇐⇒ LEn (n ≥ 1; see [28,51]).

Another useful scheme for the paper is the following one:

Gψ(x) := ∀
v < x[∃u < xψ(u,
v) → ∃u < x(ψ(u,
v) ∧ ∀w < u¬ψ(w,
v))].

It is easy to see that

PA− + {∀uGψ(u) : ψ ∈ Ek}

is an alternative axiomatization of IEk.

2.2. Open induction and subsystems

If models of IE0 are considered, then a large number of results about their algebraic nature can be proved.
A seminal paper on this topic was [43], where J. C. Shepherdson shows the following (recursive) nonstandard 
model NX |= IE0. Let K be the field of real algebraic numbers and X an indeterminate. The universe of
NX is the set of polynomials

{apXp/q + · · · + a1X
1/q + a0 : ap, . . . , a1 ∈ K, ap > 0, a0 ∈ Z, p ∈ N, q ∈ N∗},

the addition and multiplication are naturally defined, and the order “<” is interpreted as: P (X) < Q(X) if 
the leader coefficient of Q(X) − P (X) is > 0.

Shepherdson’s construction will be generalized (in the first part of the paper) to some kind of extensions 
and models. The most direct one is to replicate it to obtain, given any M |= IE0, an end-extension M ⊂e

MX |= IE0 (The model thus constructed will be called Shepherdson’s extension of M).
An algebraic characterization of IE0 (also proved in [43]) is the following:

Result 2.1. The models of IE0 are those models of PA− that are the integer part of their real algebraic
closure.
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See [21] for other analogous results that provide algebraic theories equivalent to various fragments of IE0.
Please note also that Shepherdson’s algebraic construction produces a recursive model if a recursive one 

is extended. Thus it is not useful to build (extensions of) of models of IE1, due to Tennenbaum phenomena
in IE1:

Result 2.2. There are no recursive nonstandard models of IE1 [51].

Shepherdson’s work illustrates how the construction of real closed fields can be related to obtaining 
adequate extensions of the fraction field of an arithmetic model [12]. See also the more recent paper [46], 
where Tanaka and Tsuboi present a new construction of real closed fields using an elementary extension of 
an ordered field that has an integer part that satisfies PA. It is also interesting to review the relationship 
obtained by D’Aquino, Knight and Strachencko in [11], where it is shown that the real closure of a model IΣ4
is recursively saturated, thus establishing a relationship between a model-theoretic property of (ordered) 
fields and classical induction schemes on Arithmetic. Alternatively, it is possible to study the inverse path, 
that is, to analyze the real closed fields that admit an integer part whose non-negative part is a model of 
PA (see [6]).

Throughout the paper, two remarkable subsystems of IE0 are considered, which will be used as base theo-
ries. The theory IE1

0 augments PA− with the induction scheme for open formulas whose atomic subformulas
are linear inequalities. The theory is equivalent to

PA− + {∃u(vu ≤ x < v(u + 1))}

(i.e. PA− plus Euclidean division), and it is strictly weaker than IE0. The theory of integer roots,

RIE1
0 := IE1

0 + {∃u(uk ≤ x < uk+1) : k < ω}

is also weaker than IE0. Moreover, the extension IE1
0 ⊂ RIE1

0 is proper (all these results can be found in
[5]).

2.3. Exponentiation and segments determined by (standard) powers or integer roots

Let us suppose PA− ⊆ T and N |= T . A function f : ωn → ω is provably recursive in T if there is 
θ(
x, y, z) ∈ Δ0 such that ∃zθ(
x, y, z) defines the graph of f and T � ∀
x∃!y∃zθ(
x, y, z). Such functions have
been characterized for strong fragments (cf. [22]).

According to Result 1.1 the function (x, y) �→ xy is not provably recursive in IΔ0, although there is a
bounded formula η(x, y, z) ∈ Δ0 that represents this function in IΔ0 and such that the basic properties are
provable in IΔ0 (see e.g. [20]). To simplify the following notation is introduced: xy = z will mean η(x, y, z),
and exp is the sentence ∀x∀y∃z(xy = z).

Remark 2.3. Throughout the paper, ke will be an integer such that IEke
proves the basic properties of

xy = z as well as the weak overspill principle for Um+1–formulas, for some m such that xy = z ∈ Em.

Two kinds of segments are used in this paper. The segment determined by standard powers of a ∈ M |=
PA− is

aω := {b ∈ M : ∃n < ω(b < an)}

It is straightforward to prove that
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aω =
⋂

{N ⊆e M : N |= PA− and a ∈ N}

When a /∈ ω, it is defined the segment bounded by the integer standard roots of a as

a
1
ω := {b ∈ M : ∀n < ω(bn < a)}

for which it can be shown that

a
1
ω =

⋃
{N ⊂e M : N |= PA− and a /∈ N}.

Notation: As usual, it will be written ϕ(M) instead of {a ∈ M : M |= ϕ(a)}, and L(M) denotes the 
language L augmented by constants denoting the elements of M . To simplify notation, it will be written 
“M |= T1 + ¬T2” to mean “M |= T1 and M �|= T2”.

2.4. Algebra on Stone-Čech compactification of a (discrete) semigroup

Let us recall that Stone-Čech compactification βS of a discrete space S is the compact Hausdorff space 
whose elements are the ultrafilters on S (being the elements of S identified with the principal ones). A basis 
of the topology is given by the (clopen) sets

A = {p ∈ βS : A ∈ p} for each A ⊆ S

The set S is dense in βS. It will be denoted by S∗ to the set βS \ S.
The construction is functorial in nature, i.e. for each function f : S → S induces a (unique) extension 

βf : βS → βS such that the following diagram is commutative:

S
f→ S

i ↓ ↓ i

βS
βf→ βS

The extension βf is defined by

βf(p) := {A ⊆ S : f−1(A) ∈ p}

The operation ∗ of a discrete semigroup (M, ∗M) is extended to βM as follows (cf. [24], chap. 4, sect. 1):
If p, q ∈ βM , the ultrafilter p ∗ q is defined by:

A ∈ p ∗ q if and only if {x : {y : x ∗ y ∈ A} ∈ q} ∈ p.

The structure (βM, ∗) is a (compact) right-topological semigroup. An excellent reference for this topic is 
the exposition [24].

The idempotent elements of such a semigroup are especially interesting for our purposes. A result that 
assures its existence is the following:

Result 2.4. [17] Every compact right topological semigroup has an idempotent element.

The interest in these elements lies in their combinatorial reading, since they determine a certain Ramsey-
like regularity. Let us formalize such a property.
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A FP -set in a semigroup (S, ·) is a set which contains all the finite products of a set, i.e. a subset like

FP ({xn}n<ω) := {Πn∈Fxn : F ⊂ ω and |F | < ℵ0},

for some {xn}n<ω sequence (in additive notation, FS({xn}n<ω)). A version of Galvin-Glazer theorem of
the Finite Sums Theorem, in terms of idempotents elements, is the following:

Result 2.5. (see e.g. Th. 5.8 of [24]) If A ∈ p and p is a nonprincipal idempotent ultrafilter in (βM, ·), then 
A is a FP-set.

In the second part of the paper the following property on the fixed points will be used.

Result 2.6. (see e.g. Th. 3.35 in [24]) Let βf : βM → βM . If p ∈ βM is a fixed point for βf then

{x ∈ M : f(x) = x} ∈ p

For example, consider βf : βM → βM (being M |= PA−) be the extension of f(x) := x2. By above
result it has not any fixed point in βM \ {0, 1}.

It is also possible to generalize the composition of βf as follows: given a ultrafilter r ∈ ω∗ (recall that 
ω∗ = βω \ ω), it is defined the r-iteration of βf as

(βf)r(p) = q ⇐⇒ {n : (βf)n(p) = q} ∈ r

this type of iteration is very useful because of the following property:

Theorem 2.7. (folklore, see e.g. [2]) Let (X, f) be a topological dynamic system (thus X is compact). The 
following conditions are equivalent:

1. x ∈ X is recurrent (that is, for any U neighborhood in X the set {n ∈ ω : fn(x) ∈ U} is infinite)
2. There exists r ∈ ω∗ such that fr(x) = x

Therefore, since recurrent points exist, there also exists r ∈ N∗ such that fr(x) = x for some x ∈ X.
Particularize us this fact for our case. If the dynamic system (βM, βf) is considered, it can conclude that

Result 2.8. For any f : M → M there exist r ∈ N∗ and p ∈ βN such that (βf)r(p) = p.

3. Part I: maximal segments, kernels and gaps

The initial segments that will be used in the rest of the article are studied in this section.

Definition 3.1. [3] Let M |= PA− and T ⊆ Th(N). The T–kernel of M is

M(T ) :=
⋃

{I ⊆e M | I |= T}

Since M(T ) is the union of an increasing chain of initial segments, if T is Π1-axiomatizable (for example
IEn) then M(T ) |= T .

Given a formula ϕ(x, 
a), the notation

ϕ(x,
a) < u

(or simply ϕ < u) will be used to mean that ∃v ≤ uϕ(v, 
a), and u < ϕ means ¬(ϕ < u).
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Definition 3.2. Let M |= PA−. An L(M)–formula ϕ(x) is said a gap in M if M �|= Lϕ.

The following lemma is a very useful characterization of the elements that do not belong to a IEk-kernel:

Lemma 3.3. Let M |= PA−. If a ∈ M \ M(IEk) (0 ≤ k ≤ ω) then there exists n ∈ ω and ψ an Ek-gap
in M with parameters in aω such that M |= ψ < an. Moreover, if M |= IE1

0 then it can be selected ψ with
parameters in [0, a].

Proof. If a /∈ M(IEk) then aω �|= IEk. Thus is ψ(x, 
b) ∈ Ek with 
b ∈ aω, such that aω �|= Lψ.
The additional property for IE1

0-models is easy to justify, by using Euclidean division on the parame-
ters. �
Remark 3.4. It is easy to prove, using the above lemma, that M(PA) is nonstandard in every Δ0-recursively
saturated model of PA−. This fact is true because the following type can be realized:

p(v) := {m < v ∧ ∀u < vmGϕm
(u) : m ∈ ω}

(where {ϕm}m<ω is a recursive enumeration of E1). The element that realizes p(v) belongs to N = M(IE1),
so this segment is nonstandard. According to Paris’ result given in [42] (see also [29]), N(PA) (which 
coincides with M(PA)) is nonstandard.

In fact, it is sufficient to have U3-recursive saturation.

From now on it will be studied some relationships between the T -kernels and the initial segments defined 
in Sect. 2.3. In the case of Shepherdson’s model, NX is satisfied that

2ω = X
1
ω = N = NX(IΔ0)

In general, if M is a model of a weak theory and a ∈ M \ M(IEk), then M(IEk) ⊆e a
1
ω . Likewise, if

a ∈ M(IEk), then aω ⊆ M(IEk). Therefore, it can be “approximated” the IEk-kernels with that kind of
initial segments. Such an approach can either achieve equality or at least to be arbitrarily approximate, by 
properly choosing elements. This fact suggests the following definition, where a name is given to the possible 
relationships between both types of segments.

Definition 3.5. Let M |= PA−, and 0 ≤ k ≤ ω. It is said that:

1. M is k–short if there is a ∈ M such that aω = M(IEk). Otherwise it is said that M is k–long.
2. M is k–high if there is a ∈ M such that a 1

ω = M(IEk). Otherwise it is said that M is k–low.

Throughout the following sections, several relations between those kinds of segments and other problems
on Weak Arithmetics will be proven (they are described in Fig. 2). Several of them will be used or refined 
in the second part of the paper.

By generalizing Shepherdson’s construction, several examples of the models defined above can be shown 
(see Table 1):

• Shepherdson’s extension of a model of IEk is k–high (1 ≤ k ≤ ω), and NX is ω–short.
• A ω-low model of IE0 is M↓ :=

⋃
i<ω Mi, where

Mn = (· · · (NXn
)Xn−1 · · · )X0
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Fig. 2. Results about kernels (for models of PA−).

Table 1
Examples of initial segments.

k−high k−low
k−short NX M↓
k−long MX ,M |= IΔ0 + exp Corollary 3.9

(M↓ is an integer part of its real closure because this closure satisfies KM↓ ∼=
⋃

i<ω KMi , hence M↓ |=
IE0), and M↓(IΔ0) = N.

For stronger theories the following result holds:

Proposition 3.6. Let M |= PA− If

a
1
ω = M(IΔ0 + exp)

for some a, then

M(IΔ0) = M(IΔ0 + exp)

(thus M is ω–high and, if M(IΔ0) is nonstandard, ω–long).

Proof. Otherwise, if a ∈ M(IΔ0) \ M(IΔ0 + exp), it is sufficient to apply Δ0–overspill in M(IΔ0) on the
Δ0-formula γ(v) ≡ ∃u < a(vv = u) to reach a contradiction. �
3.1. Definability of kernels

For stronger theories the following result holds: The problem of Δ0-definability of IEk-kernels is related
to the collection schema. It holds that if M |= IEk+1 + ¬IEk+2, then M(IEk+2) |= BEk [3].

Proposition 3.7. If M(IEk) �|= BΣ0 then it is Δ0-definable.
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Proof. Let ϕ(x, y) be a L(M)-formula such that M(IEk) �|= Bϕ, that is

M(IEk) |= ∀x ≤ b∃yϕ(x, y) ∧ ∀z∃x ≤ b∀y < z¬ϕ(x, y)

then the formula ∃x ≤ b∀y < z¬ϕ(x, y) defines M(IEk) in M . �
In Δ0–recursively saturated models, properties of kernels and Δ0–definability issues are related. Please

let us note that in bounded induction, Δ0–recursive saturation has a different behavior than in strong
fragments (see e.g. [9], Sect. 2). It is known that if a ∈ M(IΔ0) and 2aω

� M(IΔ0) then the relational
structure [0, a] is recursively saturated [37]. Therefore, if M(IΔ0 + exp) = M(IΔ0), then M(IΔ0) is short
recursively saturated. This kind of models presents nice properties (see e.g. [18] for an exposition) Let us 
first see some results on this type of model.

Theorem 3.8. Let M |= PA− be Δ0–recursively saturated and 0 ≤ k ≤ ω. It holds that:

1. M is k–long.
2. If M |= RIE1

0 verifies that M(IEk) is Δ0-definable, then M is k-low. This fact is not true in general for
models of IE1

0.

Proof. To prove (1), consider {ϕi : i ∈ ω} a recursive enumeration of Ek and b ∈ M(IEk). Then

p(v; b) = {v > bn ∧
∧

1≤i≤n

Gϕi
(vm) : n,m < ω}

(vm is the term v
(m)· · · v) is a finitely satisfiable type in M . Any element realizing p(v) belongs to M(IEk) \bω

To prove (2), assume that a ∈ M |= RIE1
0 verifies a 1

ω = M(IEk). If ϕ ∈ Δ0 defines M(IEk), then the
type

p(v; a) = {¬ϕ(v)} ∪ {vn < a : n ∈ ω}

is finitely satisfiable. Contradiction.
To conclude the proof, it remains to see that 3.8.(2) cannot be improved to IE1

0, by giving a countermodel:
Let M1 be the structure whose universe is

{anXn + · · · + a1X + a0 : ai ∈ Q, an > 0, a0 ∈ Z if n > 0 or a0 ∈ N if n = 0}

The addition, product and order relation are defined as usual. It verifies that M1 |= IE1
0 [5].

A first property of M1 is that the set ω is defined by the open formula

ϕ(u) ≡ u2 < X

Let M be a Δ0–recursively saturated elementary extension of M1. The following results hold:

(i) For all n ≥ 2 it is true that M |= un < X ↔ u2 < X.
(ii) For each ψ(u, 
y) ∈ Δ0

M |= ∀
y [∃u(u2 < X ∧ ψ(u, 
y)) → ∃v(ψ(v, 
y) ∧ ∀w < v¬ψ(w, 
y))]

(iii) M |= ¬ϕ(u) → ¬G¬ϕ(u).
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From (i), (ii) and (iii) it is concluded that X 1
ω = M(IΔ0), but M(IΔ0) is definable by ϕ(u), an E0

formula. �
Analogously countermodels for finite fragments of RIE1

0 can be found, using similar models which are
introduced in [5].

Corollary 3.9. Let M |= IEk. Every Δ0-recursively saturated elementary extension M ′ of the Shepherdson
extension MX is k-low and k-long.

Proof. M ′ is k-long by Theorem 3.8(1). Moreover M is k-low as consequence of 3.8.(2): the formula

ϕ(u) ≡ u = 0 ∨ (u|X ∧ (u + 1)|X)

defines M ′(IEk) in M ′ (if M |= IEk). This is true because the following formulas are true in M ′ (they are
true in M):

• M ′ |= ¬ϕ(u) → ¬G¬ϕ(u)
• M ′ |= ϕ(u) → Gψ(u) for each ψ ∈ Ek �

The analysis made in Theorem 3.8 can be supplemented by outlining the hardness of deciding whether
the reciprocal of 3.8.(2) holds: if such reciprocal fails, then IEk � IΔ0.

Theorem 3.10. If there is a k-low model M |= RIE1
0 with M(IEk) not Δ0–definable, then IEk � IΔ0.

Proof. Suppose that there is such a model M and IEk � IΔ0. By Result 1.3 one would conclude that IEk

is finitely axiomatizable; so there are Ek–formulas ϕ1, . . . , ϕn such that IEk is equivalent to the theory

PA− + {∀uGϕ1(u), . . . ,∀uGϕn
(u)}

Then the following formula defines M(IEk):

γ(u) :=
∧

1≤i≤n

Gϕi
(u)

This is true because if M |= γ(b), then b
1
ω � M(IEk) (M is ω-low), so b ∈ M(IEk). �

This theorem will be improved later (Corollary 3.24). Please let us note that the ω-low model M↓, 
described before would not be a candidate to apply the theorem above: M↓(IEk) is definable in M↓ by

ψ(u) ≡ ∀v < u(v = 0 ∨ ∀y ≤ v(v2 �= 2y2))

which has only parameters in M↓(IEk) = N.
In Shepherdson’s model NX(IE1) = N holds, being the segment definable by the formula ψ(u) above. It

is known that ψ(u) ∈ E1 in IE0 (see [3]). It is interesting to note that this kind of characterization is not
possible for M(IE0) if it is only required to be a model of PA−:

Proposition 3.11. If M |= PA− + ¬IE0, then M(IE0) is not E0–definable in M with parameters in the own
segment.
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Proof. Let us assume otherwise, that there exists ϕ(x, 
u) ∈ E0 and 
a ∈ M(IE0) such that ϕ(x, 
a) defines
M(IE0).

Let KM be the real closure of M (by Result 2.1 M is not integer part of KM , because M �|= IE0), and
K ′ the real closure of M(IE0) within KM . Since M(IE0) is a whole part of their actual closure, it verifies
that

K ′ |= ∀x∃y(x ≥ 0 → y ≤ x < y + 1 ∧ ϕ(y,
a)) (∗)

By model completeness of the theory of real closed fields, K ′ ≺ KM , so KM satisfies (∗). Then M(IE0)
would be an integer part in KM , which is a contradiction. �
3.2. Collapse of kernels and interpretability

Once the definability of the kernels has been examined, the next concern to be studied is about two 
related questions. The first one asks whether there exists a model with internal structure like Shepherdson’s 
model (that is, k–high and k-short for every k) but for infinite and different kernels, (that would imply 
that IΔ0 is not finitely axiomatizable). It will be seen that there is no such model under some assumptions
(Corollary 3.15): in an ω-high and ω-short model the hierarchy of kernels {M(IEk)}k<ω collapses. Please
note that this fact does not imply that {IEn}n collapses, nor that IΔ0 is finitely axiomatizable modulo IE0,
but it suggests the second question:

Open Problem 3.12. Is IΔ0 a theory Π1-interpretable in IE0?

The aim will be to demonstrate on that issue that IΔ0 has certain maximal status as possible
Π1–interpretable theory on RIE1

0. In what follows it will be used the index ke introduced in Remark 2.3.
Firstly it is going to be related to the collapse of {IEn}n<ω with a problem on Δ0-elementary extensions:

Theorem 3.13. Suppose that every model of IEke
has a Δ0–elementary extension model of RIE1

0, which is
ω–high and ω–short. Then {IEk}k<ω collapses.

Proof. Let us see that IEke
� IΔ0, being ke any index satisfying the features required in Remark 2.3. All

one needs to do is prove that if N |= IEke
then N |= IΔ0.

Let N be such a model, and let M |= RIE1
0 be a Δ0–elementary extension of N which is ω–high and

ω–short.

Claim: M(IEke
) = M(IΔ0).

Proof of the claim: Assume that there is a ∈ M(IEke
) \M(IΔ0). Let b ∈ M(IΔ0) and

ψ(u) ≡ ∀x < u∃z < a(bx = z ∧ zx < a).

It holds that M(IEke
) |= ψ(n) for each n ∈ ω. By weak Um+1–overspill, there is δ ∈ M(IΔ0) \ ω such

that M |= ψ(δ). Consider now the model of PA−:

I = {d ∈ M : ∃α ∈ δ
1
ω (d < bα)}

It is straightforward to prove that I |= PA− and bω � I ⊆ a
1
ω (M(IΔ0) is nonstandard, so δ

1
ω �= ω

because the model is ω-high). Therefore, bω �= M(IΔ0), so M is ω–long. Contradiction. �
The claim, together with the fact that N ⊆ M(IEke

) = M(IΔ0), implies that for each a ∈ N and
ϕ(x) ∈ Δ0 it has N |= Gϕ(a) (because M |= Gϕ(a)). Therefore, N |= IΔ0. �
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Notice that in the demonstration of Theorem 3.13, the following result has been demonstrated, which we 
believe to be of interest in itself.

Corollary 3.14. Let M |= RIE1
0 be such that M(IΔ0) = a

1
ω = bω �= N for some a, b ∈ M . Then M(IEk) =

M(IΔ0) for some k.

An interesting question about the special status of IE1 in the hierarchy {IEn}n, is whether Corollary 3.14
is true for k = 1, since for k = 0 does not hold. Let us note that, by Theorem 3.13, there is not M |= IE0
with a stratification like Shepherdson’s model for infinite kernels.

Corollary 3.15. There is k ≥ 1 such that for each ω–high M |= RIE1
0 with M(IΔ0) nonstandard, one of the

following conditions is true:

1. M(IEk) = M(IΔ0).
2. M is ω–long.

Proof. Similar to that of 3.13, taking k = ke. �
Please note that Corollary 3.15 is already independent of the question of whether {IEn}n<ω collapses.

The plausible collapse of IEk-kernels suggests that IΔ0 may be Π1-interpretable in a class of models of RIE1
0

(recall that if IEk � IΔ0 then IΔ0 is finitely axiomatizable). This issue will be examined below.

Definition 3.16. A Π1–formula Φ(u) interprets IΔ0 in a theory T if Φ defines an initial segment which is a
model of IΔ0, that is:

• T � Φ(0) ∧ ∀x, y(x ≤ y ∧ Φ(y) → Φ(x)).
• T � ∀x, y(Φ(x) ∧ Φ(y) → Φ(x · y) ∧ Φ(x + 1) ∧ Φ(x + y)).
• For each ψ ∈ Δ0, T � ∀x(Φ(x) → Gψ(x)) (hence T + ∀uΦ(u) � IΔ0).

See [49] for some results about interpretability of theories in models of IΔ0.
The following result can be useful to analyze the question of whether IΔ0 is Π1-interpretable in RIE1

0.
(Please let us compare the next theorem with Th. 5.26 in chap. V of [22], as well as their proofs):

Theorem 3.17. Let T be a theory such that RIE1
0 ⊆ T ⊆ IΔ0 and M |= T . Assume that Φ(u) is a Π1–formula

defining a proper initial segment closed by multiplication in M . Then M(IΔ0) |= ∀xΦ(x).

Proof. Assume Φ(u) ≡ ∀xψ(x, u), with ψ ∈ Δ0, and let N = M(∀uΦ(u)). If M(IΔ0) ⊆ N , the result holds.
Suppose that N ⊆ M(IΔ0). Let M ′ be a Σ1–recursively saturated elementary extension of M , and

N ′ = M ′(∀uΦ(u)). Then N ′ ⊆ M ′(IΔ0).
Let γ(u) ≡ ∀x, y < uψ(x, y). We claim that

M ′ |= γ(0) ∧ ∀u(γ(u) → γ(u + 1))

If a ∈ M ′ is such that M ′ |= γ(a), then a
1
ω ⊆ N ′ (because a

1
ω |= ∀uΦ(u)). By Σ1–recursive saturation,

it can to conclude that a 1
ω �= N ′. Thus, a ∈ N ′, hence a + 1 ∈ N ′. Therefore, M ′ |= γ(a + 1).

By induction on γ(u), M ′(IΔ0) |= ∀uγ(u). This implies that N = M(IΔ0) (because M(IΔ0) \ N ⊆
N(M ′, IΔ0) \N ′). �
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The section will be completed by demonstrating a necessary and sufficient condition on the Π1-
interpretability of IΔ0 in RIE1

0 which is consequence of above theorem.

Corollary 3.18. The following conditions are equivalent:

1. IΔ0 is finitely axiomatizable modulo RIE1
0.

2. There exists an extension of IΔ0 which is Π1–interpretable in RIE1
0.

Proof.
(1) =⇒ (2): If IΔ0 ≡ RIE1

0 + ∀uΦ(u), let

Φ′(x) ≡ Φ(x) ∧ ∀u(u < x → Φ(u)) ∧ ∀u < x∀v < xΦ(u · v).

Since M |= RIE1
0 it must be

M(∀uΦ′(u)) ⊆ M(∀uΦ(u)) ⊆ M(IΔ0)

then the formula Φ′(x) interprets an extension of IΔ0 in RIE1
0.

(2) =⇒ (1): Let Φ(x) the Π1-interpretation of an extension T of IΔ0. If M |= RIE1
0, then

M(∀uΦ(u)) ⊆ M(IΔ0)

and, reasoning as in Theorem 3.17, it follows that the IΔ0-kernel is defined by Φ(u) in every model of RIE1
0.

Therefore

RIE1
0 + ∀uΦ(u) ≡ IΔ0 �

3.3. Arithmetic of gaps and segments

Several technical results about an extension of the model, where the gaps are considered as elements, are 
described in this section. A convenient way to do this is to consider them as if they were done with Henkin’s 
cuts. This section, will introduce how arithmetic is in that extended model (see [32,33] for a study with a 
broader perspective of the idea). On the topology induced by cuts, in the case of PA there are studies on 
its behavior (see e.g. [31] where indicators are used).

Definition 3.19. Let ϕ(x, 
a) and ψ(x, 
b) be L(M)–formulas. It is said that ϕ(x, 
a) and ψ(x, 
b) define the 
same gap, M |= ψ ∼ ϕ, if

M |= ∀u∀v(u < ϕ < v ↔ u < ψ < v)

Clearly, ‘∼’ is an equivalence relation. It will be denoted by [ϕ] the equivalence class of ϕ. Whilst it is 
understood that the definitions in this section are intended for gaps, note that they are also suitable for 
Δ0-definable sets with a first element, by identifying each a ∈ M with [ϕa] where ϕa(x) := a ≤ x. Thus,

If M |= (μx)ϕ(x) = a then M |= a ∼ ϕ

For convenience it will be written [a] or simply a instead of [ϕa].
Given X ⊆ M , it is defined

Gk(M,X) := {[ϕ] : ϕ is a Ek-gap with parameters in X}
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and it will be written Gk(M) if X = M . It is possible to extend the order <M to Gk(M, X) as follows:

M |= ϕ < ψ if and only if M |= ∃x(ϕ(x) ∧ x < ψ)

The segment determined by a formula ϕ is defined as

S(ϕ) := {a ∈ M : M |= a < ϕ}

A useful simplification is to work only with coinitial gaps. A formula ϕ(x) is coinitial if S(ϕ) agree with 
¬ϕ(M). It is obvious that every gap is equivalent to a coinitial gap.

Please note that if X � S(ϕ), then the formula ϕ < ψ is Δ0. It is also defined

(ϕ, b) := {x : M |= ϕ < x ∧ x < b}

Let ϕ, ψ ∈ Gk(M, X), with 1 ≤ k ≤ ω. The addition and the product of two gaps are defined as

(ϕ ∗ ψ)(x) := ∃u, v ≤ x(ϕ(u) ∧ ψ(v) ∧ x = u ∗ v) (∗ ∈ {+, ·})

Note that trivially

M |= ϕa ∗ ϕb ∼ ϕa∗b

It is easy to see that both operations are well defined on equivalence classes, extending that of operations in 
M as well as that they are associative and commutative (1 ≤ k ≤ ω). Therefore two semi-group structures 
are available for endowing Gk(M, X). We are interested in the idempotent gaps.

Definition 3.20. Let ∗ ∈ {+, ·}. A gap ϕ ∈ Gk(M, X) is idempotent with respect to ∗ (briefly, is an id(∗)-gap)
if M |= ϕ ∗ ϕ ∼ ϕ.

That is, [ϕ] is an idempotent element in the semigroup (Gk(M, X), ∗). It will be denoted by I∗k(M, X)
the set of idempotents for ∗ and parameters in X (if X = M it will be written I∗k (M)).

It is easy to write a formula Idemp∗(ϕ) expressing that ϕ is a id(∗)–gap in PA−. In the case of the theory 
RIE1

0, the following formula can be used:

Idemp•(ϕ) ≡ ∀x, y(x < ϕ ∧ y < ϕ → x · y < ϕ)

and, in IE1
0, Idemp+(ϕ) is equivalent to a similar formula, due to the following result:

Proposition 3.21. Let M |= PA− and let ϕ ∈ Δ0.

1. If M |= IE1
0, ϕ is an id(+)–gap if and only if S(ϕ) is closed by +.

2. If M |= RIE1
0 then ϕ is an id(·)–gap if and only if S(ϕ) |= PA−. This fact is not true for models of IE1

0
in general.

Proof. Proof of (2): Assume ϕ(x) is idempotent and a, b ∈ S(ϕ) such that M |= ϕ < a · b. Then there exists 
c such that M |= ϕ(c) ∧ c < a · b. Let d, e ∈ M such that

M |= ϕ(d) ∧ ϕ(e) ∧ d · e < c

Then one of {d, e} is less than one of {a, b}; suppose d < a for example. Thus ϕ < a, a contradiction.
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Conversely, suppose that ϕ(x) and a ∈ M such that M |= ϕ < a. If S(ϕ) |= PA−, then M |= ϕ < �√a�.
Therefore there exists c ∈ M such that M |= ϕ(c) ∧ c < �√a�. Thus

M |= (ϕ · ϕ)(c2) ∧ c2 < a

The proof of (1) is similar, replacing · by +, and �√a� by �a
2 �.

Finally it will show that 3.21.(2) fails for a model of IE1
0: Let M1 |= IE1

0 the model defined in Theo-
rem 3.8.(2), and ϕ(u) ≡ X ≤ u2. It holds that S(ϕ) |= PA− and

(ϕ · ϕ)(u) ≡ ∃u1u2 < u(X ≤ u2
1 ∧X ≤ u2

2 ∧ u = u1 · u2).

Since it is verified that M1 |= (ϕ · ϕ)(u) → u > X and M1 |= ϕ(X), then M1 |= ϕ < ϕ · ϕ. �
The following result, essentially due to J. Paris [41], shows that it is possible to restrict ourselves to 

idempotent gaps.

Theorem 3.22. Let M |= PA−.

1. If M |= IE1
0, M |= IΔ0 if and only if M has no bounded id(+)–gap.

2. If M |= RIE1
0, M |= IΔ0 if and only if M has no bounded id(·)-gap.

The proof of 3.22.(1) is based in the scheme

I+ϕ := ϕ(0) ∧ ϕ(1) ∧ ∀x, y(ϕ(x) ∧ ϕ(y) → ϕ(x + y)) → ∀xϕ(x)

It verifies that IΔ0 ≡ I+Δ0 ([41], lemma 2). The fact 3.22.(2) is proved like th. 3 of [41] (using for example
the set

{2a : M |= ∃y2a = y}

instead of the enumeration of the roots of the equation x2 + y2 − 2axy − 1 = 0).

Corollary 3.23. If M |= RIE1
0 is k-high, then M(IEk) is Δ0-definable.

Proof. Suppose that a 1
ω = M(IEk). Since aω �|= IEk, by 3.22 there exists ϕ ∈ Ek an id(·)-gap such that

M(IEk) < ϕ < aω

By 3.21 it has S(ϕ) |= PA−. Therefore the only possibility is that S(ϕ) = M(IEk). Thus the formula

ψ(x) ≡ x < ϕ

defines M(IEk). �
Using Corollary 3.23 it is possible to improve Theorem 3.10:

Corollary 3.24. If there exists M |= RIE1
0 with M(IEk) not Δ0-definable, then IEk � IΔ0.

Proof. If M were such a model, then it would be k-low by the previous corollary. So, by Theorem 3.10 it 
follows that IEk � IΔ0. �
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A key property of I∗k(M) is that it is a subsemigroup itself. The result below is proved like Proposition 3.21.

Proposition 3.25. Let [ϕ], [ψ] ∈ I∗k(M), and M |= IE1
0 if ∗ = +, or M |= RIE1

0 if ∗ = ·. Then

[ϕ] ∗ [ψ] = max{[ψ], [ϕ]} ∗ ∈ {+, ·}

Above result contrasts with an old unsolved question on βN that clearly exposes the complexity of 
arithmetic in βN: Are there p, q, r, s ∈ βN∗ such that p + q = r · s? ([48], Chapter 7, Question 39. See also 
[1] for other similar problems).

Both operations present similar properties under the proper base theory (IE1 or RIE1
0), so only the results

for the product will be demonstrated. We only enunciate the corresponding ones for the addition.
Consider the structure (M [Gk], +, ·, ≤) whose universe is the set of equivalence classes of Ek-definable

sets (identifying the element a with ϕa), and the symbols are interpreted as before. Note that M [Gk] �|= PA−

in general, because M [Gk] |= ∃x(x = x + 1) when M �|= IEk (by Proposition 3.25). In fact, the relationship
between M [Gk] and M can be determined by relativizing the formulas to M via the natural map ϕ �→ ϕ′

that relativizes to elements x such that x �= x + 1.
Since Gk(M) is defined in M [Gk] by the formula ‘x = x + 1’, then for every L(M)-sentence ϕ,

M |= ϕ if and only if M [Gk] |= ϕ′

On the other hand, since N ⊂e M [Gk], it is verified that M [Gk] |= Σ1(N) (the true Σ1-sentences in N). In
general, in IEk-models, if Th(M [Gk]) � x �= x + 1 then M |= IEk+1.

4. Part II: algebraic combinatorics in IEk

The results of the first part will now allow us to both enunciate and prove properties in weak induction
models that relate combinatorial properties and sets without a first element (gaps). The task will then be 
carried out concerning the existence of relative composite numbers in some sets, following the idea described 
in the introduction.

4.1. Combinatorics in gaps

The previous section has provided two semigroup structures on M [Gk]. Therefore, one is in a position
to apply the (combinatorial) results on topological semigroups to the new structures, to later describe the 
results in terms of the starting model M .

The next aim is to state several combinatorial properties about the upper neighborhood of an idempotent 
gap (that is, intervals like (ϕ, a)) in the semigroup (M [Gk], ∗) (∗ ∈ {+, ·}), formalizing the idea about prime
numbers relative to a set that was described in the introduction.

For the study it is convenient to split the interval (ϕ, ∞) into ϕ(M) and its complement within the same 
interval:

Definition 4.1. Let ϕ(x) be an Ek-gap. The complement of ϕ is the formula ϕ(x) := ¬ϕ(x) ∧ ϕ < x.

The definition of composite number related to a set (relative composite number) would be defined as 
follows:

Definition 4.2. Let ϕ ∈ Ek and M |= PA−. An element a ∈ M is ϕ-composite with respect to ∗ ∈ {+, ·} if
M |= ϕcomp∗(a), where

ϕcomp∗(x) := ϕ(x) ∧ ∃u1, u2 ≤ x(x = u1 ∗ u2 ∧ ϕ(u1) ∧ ϕ(u2))
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That is

ϕcomp∗(M) = (ϕ(M) ∗ ϕ(M)) ∩ ϕ(M)

The translation of arithmetical properties (e.g. prime, irreducible elements) to Stone-Čech compactifica-
tion is not direct and it raises very interesting questions [45]. Please observe that, in general,

M �|= ϕcomp∗ ∼ ϕ ∗ ϕ

If 0, 1 /∈ ϕ(M) and ϕ(M) has a first element, then the set ϕcomp∗(M) is not coinitial with ϕ (nor ϕ)-
composite elements, because the first element of ϕ(M) does not satisfy ϕcomp∗, that is, is a prime relative.
Analogously with ϕcomp∗. Therefore, the following translation of the arithmetical property (�) discussed in
the introduction is satisfied.

Proposition 4.3. Assume M |= IE1
0 and ϕ is an L(M)–formula. Then

M |= ¬ϕ(0) ∧ ¬ϕ(1) ∧ ∃xϕ(x) → (Lϕ → ϕcomp∗ > ϕ ∧ (ϕ)comp∗ > ϕ) (∗∗)

Proof. Trivial. �
Please observe that for proving the reciprocal of Proposition 4.3 (namely, if M verifies A �S A∗ for any

nontrivial Δ0-definable set A, then is a model of IΔ0) can not be straightforwardly proved. The existence of
relative composite elements arbitrarily close to the gap needs to be demonstrated (actually it is just needed 
to state this feature for idempotent Δ0-gaps). The property can be demonstrated by showing that ϕ(M)
satisfies some Ramsey type regularity for a certain kind of gap ϕ.

4.2. FP and FS-sets within gaps

The regularity feature required to prove the reciprocal of Proposition 4.3 is stated in Theorem 4.4, which 
is a version of the finite sums theorem (Theorem 4.4). Its proof is inspired by that of Galvin-Glatzer’s proof 
of the classic result on FP-sets, namely by exploiting the algebraic structure of βM . Specifically, it is shown 
that given ϕ a gap, this or its complement contains FP-sets arbitrarily close to [ϕ].

Theorem 4.4. Let M |= IE1
0 + ¬IEk, and let ϕ be an idempotent Ek-gap with respect to ·. Then there exists

ψ ∈ {ϕ, ϕ} such that ψ(M) ∩ (ψ, c) is a FP-set for arbitrarily c > ϕ.

Proof. Consider the closed (hence compact) nonempty set in βM (recall that, in the Stone-Čech compact-
ification, A denotes the closure of the set A ⊆ M in βM)

Hϕ :=
⋂
ϕ<a

{b : M |= ϕ < b ∧ b < a}

We claim that

Claim Hϕ is a subsemigroup of βM .
Proof of the Claim: It is necessary to prove that p · q ∈ Hϕ for any p, q ∈ Hϕ. That is, that (ϕ, a) ∈ p · q,
for all a > ϕ; or equivalently,

{x : {y : x · y ∈ (ϕ, a)} ∈ q} ∈ p

Write x−1(ϕ, a) = {y : x · y ∈ (ϕ, a)}. Let us observe that x−1(ϕ, a) ∈ q if and only if ϕ < �a�:
x



23
If ϕ < �a
x�, then (ϕ, �a

x�) ∈ q hence x−1(ϕ, a) ∈ q. Otherwise �a
x� < ϕ, then

(ϕ, a) ∩ x−1(ϕ, a) = ∅

hence x−1(ϕ, a) /∈ q.
Therefore, it is sufficient to show

{x : ϕ < �a
x
�} ∈ p

Since the set is convex and p ∈ Hϕ, the condition above is equivalent to the existence of x > ϕ such
that ϕ < �a

x�. Let us see that such an element exists:
Since M |= ϕ ∼ ϕ · ϕ, there is d < a such that

M |= (ϕ · ϕ)(d) ∧ d < a

so M |= ϕ(d1) ∧ ϕ(d2) ∧ d1 · d2 = d for some d1, d2. If x = d1, then �a
x� > � d

x� = d2 and M |= d2 > ϕ,
because M |= ϕ(d2). end of claim proof

According to Result 2.4, it is known that Hϕ contains an idempotent element p. Given c > ϕ, since

{(ϕ, c) ∩ ϕ(M), (ϕ, c) ∩ ϕ(M)}

is a partition of (ϕ, c) ∈ p, there is ψ ∈ {ϕ, ϕ} such that

ψ(M) ∩ (ψ, c) ∈ p

hence this set is a FP -set.
It only remains to prove that the choice of ψ is valid for any element c′ > ϕ, (that we can suppose c′ < c). 

That fact is true, because necessarily (ϕ, c′) ∩ ψ(M) ∈ p (otherwise we would have (ϕ, c′) ∩ ψ(M) ∈ p, but 
this set would disjoint with ψ(M) ∩ (ϕ, c), that is not possible). �

Please observe that it is easy to see that π : βM → M [G] of Fig. 1 verifies π [Hϕ] = {[ϕ]}, as well as
the converse of the above result: If ϕ(M) contains FP-sets arbitrarily near the gap, then it is an id(·)-gap. 
Without any essential modification, a similar result would be obtained for id(+)-gaps can be proved:

Theorem 4.5. Let M |= IE1
0 +¬IEk, and let ϕ(x) ∈ Ek be an id(+)-gap. There is ψ ∈ {ϕ, ϕ} such that ψ(M)

contains a FS-set arbitrarily near the gap; that is, for any c > ϕ, ψ(M) ∩ (ψ, c) is a FP-set.

A consequence of the above theorems was remarked above (directly provable by Theorem 4.4, by using 
Theorem 3.22):

Corollary 4.6. Suppose that ϕ be a Δ0-formula in the language L(M) such that

M |= Idemp∗(ϕ) ∧ ¬ϕ(0) ∧ ¬ϕ(1)

and M |= IE1
0 if ∗ = + or M |= RIE1

0 if ∗ = ·. If M |= ¬Lϕ, then

M |= ϕcomp∗ ∼ ϕ ∨ (ϕ)comp∗ ∼ ϕ.
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Fig. 3. Existence of arbitrary large powers in gaps (Theorem 4.10).

Therefore, by instantiating the result into a scheme that reflects that property alternative axiomatiza-
tions of IΔ0 are available. The following corollary shows an axiomatic characterization of IΔ0 using only
the arithmetic properties that have been introduced: an idempotent set that is coinitial with its relative 
composite numbers contains either 0 or 1.

Corollary 4.7. The following theories are equivalent to IΔ0:

RIE1
0 + {∃xϕ(x) ∧ Idemp•(ϕ) ∧ (ϕcomp· ∼ ϕ ∨ (ϕ)comp· ∼ ϕ) → (ϕ(0) ∨ ϕ(1))}ϕ∈Δ0

IE1
0 + {∃xϕ(x) ∧ Idemp+(ϕ) ∧ (ϕcomp+ ∼ ϕ ∨ (ϕ)comp+ ∼ ϕ) → (ϕ(0) ∨ ϕ(1))}ϕ∈Δ0

Exploiting the ideas introduced in this subsection, richer combinatorial properties can be proved if we 
allow the model to fulfill basic additional properties, such as overspill for its standard part.

4.3. Combinatorics in presence of weak overspill on N

This section will show some results from semi-group properties Hϕ (introduced in Theorem 4.4) for
models which satisfies a weak form of overspill (see [15]):

Definition 4.8. Let M |= PA− and Γ a class of formulas. It is said that M has overspill Γ on N, M |=
N −O(Γ), if for all ϕ(x, 
u) ∈ Γ, 
c ∈ M and β > ω, if

∀n ∈ ω∃m > n[M |= ϕ(m,
c)]

then there is δ < β nonstandard such that M |= ϕ(δ, 
c).

This is a weak notion of overspill; any Δ0-recursively saturated model of PA− has N−O(Δ0). Nevertheless,
sometimes it is a good substitute for Δ0-recursive saturation; for example 3.8.(2) is true for models of
IEke

+ N −O(Δ0), thus several results of Fig. 2 could be refined for these kinds of models.
Theorem 4.10 will show that, in models satisfying N − O(Γ), the regularity property can be refined by 

replacing the FP-sets with (standard) powers of an element. This will allow another alternative axiom of 
IΔ0 using the formula exp (Corollary 4.14).

Definition 4.9. A set A ⊆ M |= PA− is said to be dense for standard powers if

∀c ∀n ∈ ω [ [0, c] ∩A �= ∅ =⇒ ∃a < c ∃m > n(a, am ∈ A) ]

In the following theorem the density for standard powers for gaps (Fig. 3) is stated:

Theorem 4.10. Let M |= RIE1
0 + ¬IEk, and ϕ(x) ∈ Ek be an id(·)-gap. Then there exists ψ ∈ {ϕ, ϕ} such

that ψ(M) is dense in standard powers.

Proof. The function f(x) := x2 has a continuous extension βf : βM → βM . That function has not any
fixed point in βM \ {0, 1} by Result 2.6.
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Since f [(ϕ, �
√
b�)] ⊆ (ϕ, b), it follows that (ϕ, b) ∈ βf(p), for all p ∈ Hϕ and b > ϕ, so it defines the

restriction

βf �Hϕ
: Hϕ → Hϕ

Therefore it can be considered the dynamic system:

(Hϕ, {(βf)n}n∈ω+)

on the compact space Hϕ (ω+ = ω \ {0}).
By Result 2.7 there exist p ∈ Hϕ and r ∈ β(ω+) such that (βf)r(p) = p.
That means that for all A ∈ p that is, for all A neighborhood of p

{n ∈ ω+ : (βf)n(p) ∈ A} ∈ r.

Since (βf)n = β(fn) and fn[A] ∈ β(fn)(p), it follows that

{n ∈ ω+ : fn[A] ∩A �= ∅} ∈ r.

Since r is not principal (because 0, 1 /∈ Hϕ),

∀n∃m > n[fm[A] ∩A �= ∅] (†)

Let ψ ∈ {ϕ, ϕ} such that the set A = ψ(M) ∩ (ϕ, c) belongs in p. Then, by (†),

∀n∃m > n such that M |= ∃x < c[ψ(x) ∧ ψ(x2m

)]

(x2m denotes the term x 
(2m)· · · x). Finally observe that the choice of ψ is true for all c > ϕ (like in 4.4). �

We will use again the index ke (see 2.3) to show, in models of IEke
+N-O(Ek), a nonlinear relation near

the gap.

Definition 4.11. A set A ⊆ M |= PA− is said to be dense for powers if

∀c
[
[0, c] ∩A �= ∅ =⇒ ∃a ∈ A∃δ > ω(a, aδ ∈ A)

]

Corollary 4.12. Under the conditions of Theorem 4.10, if M |= IEke
+ N-O(Ek), then there is ψ ∈ {ϕ, ϕ}

such that ψ(M) is dense for powers.

Proof. Let k > ke Let xy = z be the formula defined in Sect. 2. It has that, for all n ∈ ω,

IEke
� x

(n)· · · x = y → xn = y

By 4.10, we have that for all n ∈ ω there is m > n such that

M |= ∃x, y < c(xm = y ∧ ψ(x) ∧ ψ(y))

Since the formula is Ek (1 ≤ ke ≤ k), by applying N −O(Ek), the result is concluded. �
Corollary 4.13. If M |= IEke

+ ¬IEk + N −O(Ek), then M is k-low.
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Proof. Suppose M(IEk) ⊆ a
1
ω . Let ϕ ∈ Ek be a id(·)-gap such that

M(IEk) < ϕ < a

Reasoning like 4.12, there is ψ ∈ {ϕ, ϕ} such that

M |= ∃x < a(x2m

< a ∧ ψ(x) ∧ ψ(x2m

))

By N−O(Ek), there is b ∈ M and δ > ω such that M |= ψ(b) ∧ψ(bδ) ∧bδ < a. Thus, M(IEk) < b < a
1
ω . �

The above results allow obtaining other alternative axiomatizations of IΔ0. Following the idea of the
relative composite numbers, given ϕ(x) it is defined the exponential relative to ϕ as the formula

ϕexp(x) := ϕ(x) ∧ ∃y, z < x[z �= 1 ∧ yz = x ∧ ϕ(y)]

Corollary 4.14. IΔ0 is equivalent to

IEke
+ {Idemp•(ϕ) ∧ ¬ϕ(0) ∧ ¬ϕ(1) ∧ ∃xϕ(x) → ϕ < ϕexp ∧ ϕ < (ϕ)exp}ϕ∈Δ0

If it is replaced · by + and the map x �→ 2x is used instead of x �→ x2, then -by a similar argument 
of above proofs- an axiomatization similar to that of Corollary 4.14 can be obtained, because it has the 
following result:

Theorem 4.15. Let M |= IE1
0 + ¬IEk, and ϕ(x) ∈ Δ0 be an id(+)-gap. Then there exists ψ ∈ {ϕ, ϕ} such

that for all c > ϕ and n ∈ ω, there exist m > n and a ∈ (ϕ, c) such that

M |= ψ(a) ∧ ψ(2m · a)

Moreover, if M |= IEke
+ N-O(Ek), then there exists ψ ∈ {ϕ, ϕ} such that for all c > ψ there exists

a ∈ (ϕ, c) and δ nonstandard such that

M |= ψ(a) ∧ ψ(2δ · a)

5. Closing remarks

The starting thesis of the article was to advance in the study of models of very weak arithmetic theories
by considering different methods from the classics that need more resources (those based on recursion-
theoretic methods, definability of satisfaction, etc.). On the one hand, it has been proven that we can reduce 
some problems to the existence of a certain model or of some Δ0-definable set. Axiom schemes describing
properties of algebro-combinatoric nature for weak induction have also been provided, thus complementing 
related results for other theories without Σ1 induction (see e.g. [18,52]).

In the paper it has been shown that the use of ultrafilters of the set Sϕ = π−1[{[ϕ]}] seems to be a
good substitute to the use of types in recursive saturation: it proves the existence of an element (e.g. a 
ϕ-composite element) without realizing Δ0-types. However, is not used the full ultrafilter, actually we work
with p ∩ ∇k(M) instead of p ∈ βM (where ∇k(M) is the class of both Ek and Uk definable sets in M),
which may be seen as a ∇k–type.

Nonetheless, it should be pointed out that the restriction to Δ0-definability limits the algebraic methods
designed for βN. A closer look reveals that the product has a complex behavior on the set of idempotents 
of Hϕ:
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Proposition 5.1. If M |= RIE1
0 is countable and ψ < ϕ are gaps, then the left translation defined by an

idempotent q ∈ Sψ is not trivial on Sϕ (although we know that [ψ] · [ϕ] = [ϕ] for gaps): there is p ∈ Sϕ

idempotent such that q · p �= p for all idempotent q ∈
⋃

ψ<ϕ Sψ.

Proof. Let us consider the semigroup M1 = M \{0}. Since Sϕ is a Gδ–set in βM1 that contains idempotents,
we have that there exists p ∈ Sϕ such that for every idempotent q ∈ βM1 \M1,

q · p = p =⇒ p · q = q

([24], th. 9.7). If q ∈
⋃

ψ<ϕ Sψ, then π(p · q) = π(p) · π(q) = [ϕ] · [ψ] = [ϕ] (by 3.25). Thus q · p �= p. �
Result 5.1 is also true for Hϕ, and it suggests the hardness of defining a semigroup embedding

i : M [Gk] ↪→ βM

such that i �M= IdM with interesting features. Results like above illustrate that the algebraic combinatorics
of βM have interest beyond the topic of the paper (Weak Arithmetics). For example, the availability of such 
an embedding can be useful for the end-extension problem for IΔ0. Indeed we hope to follow this research
line.

Nevertheless, we also remark that it is possible to find an algebraic and topological representation of βM
(being M countable) in terms of βN: for each ∗ ∈ {+, ·} there exists a surjective continuous homomorphism

Φ∗ : (
⋂
n>0

2nNβN
,+) → (βM, ∗)

(cf. th. 6.4 of [24]). Therefore, if ∼Φ∗ is the congruence induced by Φ∗, then

⋂
n>0

2nNβN
/∼Φ∗

∼= βM

Similar results in that line were already available (see for example [34,35]) from seminal works by Skolem 
and Tennenbaum, in which they relate the nature of certain ultrafilters used to build the quotient (in our 
case, the construction would be by means of congruences instead). The fact motivates as future work to 
study the congruences in βM that produce models of a certain arithmetic theory, particularly:
Open problem: To characterize the congruences on

⋂
n>0

2nNβN

that induce models of IΔ0.
Results on that line already exist. For example, in [53] Bohr compactification of a group is characterized 

by a congruence that makes a certain class of ultrafilters equivalent to the identity element. This result 
applies to the group of integers ZM induced by M |= PA−.

Finally, an interesting question arises by considering the idea behind Corollary 4.12. The combinatorial 
apparatus built to prove Theorem 4.10 could be applied to other functions with similar behavior, for instance 
to those defined in the given theory by ∃Ek–formulas without parameters such that M |= x < f(x). It seems
that 4.10 could be generalized when the formula

f(ϕ)(x) := ∃u < x(f(u) = x ∧ ϕ(u))
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defines the same gap as ϕ. From there one could try to obtain results like 4.12, using some Δ0–definition
of the iteration of f (if this is possible), mainly for gaps ϕ such that f(ϕ) ∼ ϕ. There are reasons to expect 
that, in many cases, one might obtain axiom schemes between IEn and IEn+1, suggesting the future study
of the class of recursive functions with axiomatizable combinatorics (like Corollaries 4.6 or 4.14) in a theory 
weaker than IΔ0.
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