Scale-Free Structure in Concept Lattices Associated
to Complex Systems

Gonzalo A. Aranda-Corral
Department of Information Technology
Universidad de Huelva
Palos de La Frontera, Spain
Email:garanda@us.es

Abstract—Qualitative representation and reasoning on Com-
plex Systems (CS) is important for a number of human ac-
tivities on CS, mainly for the understanding of both, our
perception about their structure as well as their dynamics.
Formal Concept Analysis can help understanding the conceptual
structure behind these qualitative representations by means of
the called concept lattices (CL). In this paper the scale free
conceptualization hypothesis, (SFCH) is asserted. SFCH claims
that a scale-free distribution in node’s connectivity appears on
the CL associated to complex systems (CLCS) only when two
requirements holds: CLCS is useful both to represent qualitative
and reliable attributes on the CS, and to provide a basis for
(qualitative) successfully reasoning about the CS. Experiments
revealed that the topologies of CLCS are similar when the amount
of information on the CS is sufficient, while it is different in other
concept lattices associated to random formal contexts or to other
systems in which some of the above requirements do not hold.

Index Terms—Semantic Networks, Scale Free Conceptualiza-
tion Hypothesis, Formal Concept Analysis.

I. INTRODUCTION

An interesting feature in Complex Systems (CS) research is
to investigate how humans describe and understand such kind
of systems. It is very intriguing how human’s rationality is able
to select important features and concepts (and the relationships
among them) of the CS in order to reason and predict its
dynamics (for surviving within) or to describe their features.
This paper reports an empirical analysis of semantic networks
built to specify the (qualitative) knowledge retrieved from
CS. Semantic Networks represent an useful tool to represent
specific features of CS as for example language evolution and
structure (see e.g. [13]), but their scope may include other CS
where the analysis of semantic relationships among concepts
involved in CS is necessary. General (formal) representations
of Semantic relationships are often complex networks as well,
and their analysis gives some insights on the complex nature
of CS whose features are represented.

The above approach to qualitative representation and reason-
ing on CS is ambitious, because the idea of CS covers very
different systems, with an astonishing variety of dynamics.
In the representation of CS, it is necessary to choose what
features the observer thinks essential to understand it, and
how these features are related. Human reasoning activities are
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essential to understand system’s behavior, and they strongly
depends on our ability to quickly select key features and
to reason with limited resources. However, this reasoning
can not use every existent relationship among features; only
few ones the user thinks as important (a particular bounded
rationality strategy, as for example [11]). However, the global
structure which comprises all the features, concepts and their
relationship, represents a complex structure which can give
more information on the CS than user consequences. Examples
where interest on the global complex structures requires more
attention are stock markets, economy, ontology/folksnomy
evaluation, betting markets and, in general, those CS in which
humans are involved, and where their decisions are based on
partial information on the CS. To model this semantic network,
Formal Concept Analysis has been selected.

Formal Concept Analysis (FCA) [10] is a mathematical
theory for data analysis whose basic data structure is the
formal context which consists on a set of objects and their
properties. They represent weak structures easily built from
experience that allow the extraction of knowledge. Despite its
simple data structure, formal contexts are useful structures for
knowledge extraction and reasoning (cf. [10]). When FCA is
applied on a considerable amount of observable features of
the CS, the Concept Lattice (CL) generated includes every
concept involved in CS description; it represents a complex
(semantic) network. Concepts and relationships within the
CL can describe features of the CS as well as they can aid
the observer to work with the information (for describing,
classifying, predicting, etc.).

The aim of this paper is twofold. On the one hand, we
discuss the main issues related with concept lattices associated
to observations on CS. We will see how the analysis of topo-
logical features of CLCS, considered as complex networks,
may aid understanding CS evolution in some cases. On the
other hand we assert that when the observations are objective
and relevant in order to study the CS, the associated CL
exhibits a scale-free distribution structure. This claim (which
we call scale-free conceptualization hypothesis, SFCH) is
experimentally analyzed in a number of examples.

The structure of the paper is as follows. The next section is
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devoted to succinctly present FCA. Sect. III and IV describe
how to associate concept lattices to CS from observations, and
SFCH is asserted. Other sections are devoted to the analysis
of different activities associated to qualitative analysis of CS:
forecasting/prediction (Sect. V), catalogation/classification of
objects (Sect. VI), Semantic systems (subsystems of Wordnet)
in Sect. VI, and to explicitly present the contrast with the
topology associated to concept lattices obtained from random
formal contexts (Sect. VIII). A final section with conclusions
and future work is given.

II. BACKGROUND: FORMAL CONCEPT ANALYSIS

FCA mathematizes the philosophical understanding of a
concept as a unit of thoughts composed of two parts: the extent
and the intent. The extent covers all objects belonging to this
concept, while the intent comprises all common attributes valid
for all the objects under consideration [10]. It also allows the
computation of concept hierarchies from data tables.

A formal context M = (O, A, I) consists of two sets, O
(objects) and A (attributes) and a relation I C O x A. Finite
contexts can be represented by a 1-O-table (identifying I with
a boolean function on O x A). Given X C O and Y C A it
defines X' = {a € A | olaforallo € X} and Y' = {o €
O | ola for all a € Y}.

The main goal of FCA is the computation of CL associated
with the context. A (formal) concept is a pair (X,Y) such
that X’ =Y and Y’ = X. For example, the concept lattice
from formal context about fishes of Fig. 1, left (attributes are
understood as “live in”) is depicted in Fig. 1, right. Each
node is a concept, and its intension (or extension) can be
formed by the set of attributes (or objects) included along
the path to the top (or bottom). For example, bottom concept
({eel}, {Coast, Sea, River}) is the concept euryhaline fish.
CL contains every concept which can be extracted from
context, and concept are defined but it is possible there no
exist an specific term (word) to denote it.

III. FCA-BASED BOUNDED REASONING ON CS

The selection of FCA for processing qualitative information
about complex systems lies in the fact that human’s reasoning -
in fact, our Bounded reasoning (BR) skills- about the dynamics
and organization of a Complex System has a qualitative nature.
Therefore, human reasoning and conjectures about the CS can
be expressed in qualitative terms (possibly choosing thresholds
and multivalued attributes). Once qualitative hypothesis are
presented, even non-symbolic mechanisms for reasoning can
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be useful to validate the conjectures. The qualitative reasoning
process by means of FCA would be depicted as in Fig. 2. The
observer has to select attributes and objects he considers rele-
vant to determine CS dynamics, and the reasoning focuses on
the associated subcontext (contextual selection). Then he/she
can consider the elements of CS as objects of a formal context.
This context (often with a huge size) is built by means of data
extraction and processing, expert observations, data mining,
etc. It is expected that reasoning with the contextual selection
gives some information about the CS. If the the goal is to
reason with qualitative features, it is interesting to extract
emergent concepts from these interactions. It’s here where
FCA can play a relevant role. In [5] this approach was applied
for reasoning with contextual selections.

The model (described in [2]) is composed of events (objects)
which have a number of properties (attributes). They constitute
a universal formal context M (the monster context). Thus M
can be considered as the global memory from which subcon-
texts are extracted. Once the specific context is considered,
it is interesting to consider the knowledge extracted from the
formal context (implication basis or association rules [2]).

Particularly interesting is the case of inferring properties
about future events when the monster model presents attributes
of past events (used in forecasting, Sect. V). When some
attributes are known to be satisfied by a future event, the
inference process consists of three steps:

e A question on whether a new event (object) has a property
(attribute) is raised. Some other properties (attributes) on this
object are known{A4,... A, }.

e The subcontext induced by a selection of attributes is used
to compute a Knowledge Base L called contextual KB. This
KB consist on a set of implications among attributes, extracted
from the subcontext.

e A reasoning system [5] is executed on the contextual KB,
taking {A;,... A, } as initial facts. The results are attributes
inferred about the object.

Note that it only computes those attributes entailed from the
set of attributes selected by the user. Therefore we would need
to understand the topology of the lattice to properly choose
the attributes to reason with.

IV. SCALE-FREE RESIDUE OF CONCEPT LATTICES

Given an attribute set for the objects of a CS, the concept
lattice associated to the CS (CLCS) is the concept lattice built
from the monster context associated to the CS. Note that the



CLCS can be considered as a directed graph (as Hasse diagram
indicates) or as a nondirected graph if necessary. The analysis
of CLCS shows interesting concepts for better understanding
the structure and dynamics of CS. It is also useful to consider
the role some attributes play in the qualitative study of CS
[3]. It should be noted that the CLCS is a complex network
of semantic relationships which is not bounded by the self
language, as in other semantic networks [13], because there are
concepts which are not represented by a single language term
nor a intelligible definition by the observer. It is expected to
face complex networks with extreme structural topology. The
complexity of such CLCS lies in the fact that the combinatorial
nature of FCA covers every formal concept.

Recall that a scale-free network is one whose degree distri-
bution follows a power law, at least asymptotically: the fraction
P(k) of nodes in the network having k connections to other
nodes goes for large values of k as P(k) ~ ck™7 where ¢
is a normalization constant and y is a parameter whose value
is typically in the range 2 < «y < 3, although occasionally it
may lie outside these bounds (as we will see below). The
asymptotic behavior means that, in practice, few empirical
phenomena obey the power law distribution for all the values
[8]. It is more common this behavior to appear from a certain
threshold x,,;,. The scale-free residue of a CLCS is the set
of its nodes whose degree is greater than ;.

We expect that the topological analysis of the dynamics
of CLCS shows a big picture of the complex system itself.
Normally one will expect that the CLCS has a topology similar
to other concept lattices, even similar to concept lattices
associated to random formal contexts (with similar density).
However, as it will be discussed in the following examples, the
degree distribution is not usually very large although there are
many attributes in play. As a consequence of this, the lattice is
very complex, exhibiting a different topological structure than
the lattices extracted from random contexts, for example.

It is possible to refine the choice of x,,;, [8]. We use Zpin
as the degree value with the maximum frequency within the
CLCS (the maximum of the degree distribution). Lastly, it
should be noted that CLCS are not random networks, whose
degree distribution follows a Poisson law [1].

The rest of the paper is devoted to test the following

Scale-Free Conceptualization Hypothesis (SFCH):

Only if the attribute set selected to observe the Complex
System is computable, objective and induces a Concept
Lattice which provides a sound analysis of the CS (from the
point of view of BR), then its degree-distribution is scale-free

in a number of CS of different nature.

V. FORECASTING/PREDICTION

Two very different CS on which prediction (or diagnosis)
are relevant humans’ aims have been selected. The first one
(Spanish soccer competition) is a CS where a great number of
levels, factors and agents play. The goal is to simulate human
forecasting on soccer matches [3] (see previous [2], [4], [5]).

|O] |[A] | Density |CL| <k>| xm | s¢(%) v

05/06 842 94 | 13.31% 27,434 8.27 7 77.62 | 5.33
05/07 | 1,684 | 94 | 13.30% 81,490 9.47 9 60.87 | 6.08
05/08 | 2,526 | 94 | 13.26% | 140,739 9.97 68.2 6.34
05/09 | 3,368 | 94 | 13.37% | 243,959 10.62 10 63.6 6.84
05/10 | 4,210 | 94 | 13.36% | 324,146 10.82 10 66.20 | 6.69

3-month intervals 0] [A] | Density |CL| < k>

1 787 81 14.73% 294 5.310

4 3,148 | 81 14.63% 5, 864 7.676

7 5,509 | 81 13.63% | 44,911 9.595

10 7,870 | 81 10.61% | 62,870 9.678

TABLE I

DATA ON ACCUMULATED CLCS FOR SOCCER (UP) AND DARFUR (DOWN).

log(N)
log(N)

~ y =-6.841129x +27.13631 ~ y=-6.696251x +27.11018

R?=0.9895603

© R?=0.9830491

Fig. 3.
seasons)

Log-log degree distribution of CLCS for Sport forecasting (4 and 5

The second one is an experimental application on a CS where
spatial features are relevant, the Darfur conflict.

A. Complex systems in sport

The first case represents a nice example of successful
application of BR on CS by means of FCA tools. The
study of complex systems associated to sport is increasing its
importance due to economic (and political) reasons. Several
evidences about prediction in betting markets or match fore-
casting encourage many projects on this application field. In
[3] we focus our efforts in soccer results forecasting. In this
case study, monster model is built by considering matches as
objects and selecting qualitative attributes related to team’s
features and previous results [4]. The monster context covers
-among other information- all matches from season 2005/06 to
season 2010/11 of spanish premier league. Attributes express
properties of the teams involved in the match, and they are
booleanized if it were necessary [4], [2].

Table I shows the main parameters of the cumulative CLCS.
Fig. 3 shows the log-log chart representing the scale-free
residue behavior.

It is worth to note the growth and size of v in the distri-
butions shown in table I. One explanation for this behavior
is based on [6], where the asymptotic behavior of scale-free
networks is studied. In the mentioned work, two models of
limit behavior are shown. In one of them, the number of nodes
in the network remains constant, and the distribution tends to
a Gaussian one. In our case, if it supposes the process starts
from a node set with 2°4 nodes (the power set of Attribute



Fig. 4. Deduction graph for Sport Forecasting (left) and for Darfur (right)

set), and in each step new objects are added, new relations in
the lattice emerge. From this point of view, the CLCS shows
a distribution which is in the middle of the pure scale-free and
the Gaussian one [6]. According to SFCH, as closer to the pure
scale-free is the CLCS degree distribution, the information on
CS dynamics will be richer and more useful.

It is not possible to predict how will be the attribute
distribution of new objects (matches), therefore it can only be
estimated the complexity of the reasoning process (production
system execution) on those (on their initial attributes). In order
to understand better the complexity of logical reasoning in
a CLCS, it is possible to analyze the topological structure
of concept nodes which are involved in frequent deduction
tasks. In Fig. 4 (left) the deduction graph of CLCS for
Sport Forecasting is depicted. The nodes of the graph are the
concepts of CLCS whose intents contains both the left side of
at least the 10% of the rules, and the right side of at least 10%
of the rules in the Knowledge Base extracted from the context.
The graph contains 715 nodes and 1296 arcs and its diameter
is 7. The diameter (considered as a directed graph) suggests
that a reasonable (upper bound) estimation of rule firings by
the production system is 7 (a deduction made by reasoning
system induces a path in the CLCS). The existence of many
connected components is useful to decide which attributes are
relevant to frequently achieve a certain result in prediction
(those that appear in the same connected component than the
attributes related with the result).

B. Darfur conflict

The second CS is The Darfur Conflict. The importance
and its character of contemporary relatively little-known geno-
cide are the main motivations to work with the information
available about this topic. The conflict represents a very
complex system, and the information about its dynamics can
be collected from different sources (US government, non-
governmental organizations, academic research groups, etc.).

The key feature which differentiates the multilevel nature
of this CS from the one above is that the information is
harder to process and to compute than in the former example.
Excellent references as [12] provide a number of insights on
the conflict that may be considered. Also geolocation services
allow to consider spatial features of events and interactions in
the region. It is worthy to note that the information increases
in a different way as in the CS on sport forecasting: multiple
resources, heterogeneous data and frequent incorporation of
new information resources. In the current state of the project,
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Fig. 5. Degree distributions of Darfur CS (4 and 10 3-month periods) and
their Gauss approximations

the analysis uses the already cited [12] and other sources:
Aerial military attacks on civilians and humanitarians in
Sudan, 1999 — 2011', Darfur - Destruction of 1,000 Villages?,
Crisis in Darfur® and North Sudan*. Nevertheless, a number of
new information sources and data will be considered shortly.

Preliminary experiments with this data showed a significa-
tive number of false positives (that is, the system predicts
attacks to villages which did not really happen) and a small
number of false negatives (something more serious). Two
reasons could explain this behavior. On the one hand, the
information contained in the data is poor in some cases (even
there exist a number of ambiguities), affecting the variety and
accuracy of the attributes. The Gauss distribution of nodes de-
gree in the associated CLCS (see Table I and Fig. 5) indicates
that there are not key features within the concept population to
exploit in the reasoning process. This fact is reinforced when it
is found that the cumulative CLCS stabilizes after 10 periods
(that is, there are not any new relevant information). This
phenomena suggests that to obtain a scale-free distribution
more attributes are necessary in order to increase the number
of concepts, which is one of the requisites showed in [1] to
asymptotically obtain a free-scale network.

On the other hand, from the point of view of the reasoning,
the deduction graph for the CLCS shows a very complex
network (Fig. 4 (right)), where only one period of the conflict
is represented (1986 nodes and 6413 links). Its diameter is 13
and is highly connected, suggesting that it does not provide
any information about which attributes are more relevant in
order to predict a certain result.

VI. CLASIFICACION

To illustrate the SFCH in the descriptive analysis of other
systems, four contexts have been selected:

Mushrooms® (context M): A mushroom dataset, being de-
scribed in terms of physical characteristics, where objects
are mushrooms and attributes are qualitative properties of the
mushrooms. The formal context associated to the data can be
understood as a qualitative description of the current state of
evolution of a kind of vegetables.

Uhttp://www.sudanbombing.org/

Zhttp://bbs keyhole.com/ubb/ubbthreads.php?ubb=showflat&Number=
721111&site_id=1

3http://www.ushmm.org/maps/projects/darfur/

“http://bbs.keyhole.com/ubb/ubbthreads.php?ubb=showflat&Number=
393317

Shttp://archive.ics.uci.edu/ml/datasets/Mushroom



|O] [A] Density |CL| <k> | Tmin | sc(%)

M | 8,124 | 119 | 19.33% | 238,709 | 11.453 11 63.04

T3 958 29 34.48% 59, 504 10.637 9 67.27

w 68 178 | 20.48% 25,408 9.370 8 70.92

C 1,728 25 28% 12,639 9.438 7 98.96
TABLE II

DATA ON CLCS FOR OTHER CONTEXTS (SEE ALSO FIG. 6)
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Fig. 6. Log-log degree distribution for Mushroom and 73 (up), Wine and
Car evaluation contexts (down)

Tic-Tac-Toe® (or T?): End results of the tic-tac-toe game.
The objects are possible game ends and attributes describe the
board configurations at the end of game. It is not a CS.

Wine’ (context W): A dataset containing different wines
(objects) where attributes are their qualitative properties. It
could be enriched with more specific attributes related with
biological systems associated to its production/processing [7].

Car Evaluation® (context C'): A dataset representing cars
acceptability. Objects are cars and attributes are subjective
qualitative properties of cars. From the point of view of
this paper, the context collects qualitative information about
automobile industry, evolution and products.

Wine and Mushroom consist on a human-made cataloguing
about the evolution of a CS. Those show a scale-free residue
(R? > 0.95). The context T is not based on classification
of a CS, and distribution satisfies RZ < 0.75. Lastly the case
of car evaluation context has an intermediate behavior that
we conjecture as a consequence of the attempt to describe
objects produced within a CS (automobile industrial complex)
by means of subjective attributes (opinion), thus contradictory
opinions are allowed. This borderline case presents an inter-
mediate degree distribution (Fig. 6) with 0.85 < R? < 0.9

VII. WORDNET SUBSYSTEMS
Another case study considered is WordNet (http://wordnet.
princeton.edu/), the lexical database of english where words

Shttp://archive.ics.uci.edu/ml/datasets/Tic-Tac-Toe+Endgame
"http://archive.ics.uci.edu/ml/datasets/Wine
8http://archive.ics.uci.edu/ml/datasets/Car+Evaluation
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Fig. 8. Two representative examples of Log-log degree distribution of random
contexts with density similar to sport forecasting (accumulated for one and
two seasons)

are grouped into sets of cognitive synonyms (synsets). Wordnet
represents the state-of-art of our own language evolution in
such a dimension. To build the formal context, each single
word has been considered as an object and each possible synset
as an attribute, where an object owns an attribute if the word
belongs to the corresponding synset. WordNet, considered as
a formal context, produces a concept lattice very similar to
the synsets structure. Two smaller word subsets have been
considered, adverbs and verbs. In both cases SFCH holds:

0] [A] Density |CL| < k> | sc(%)
Adverbs| 4,481 3,621 0.03% 3,529 2.187 100
Verbs 11,529 | 13,767 0.02% 12,222 2.967 100

with x,,;, = 2 (see Fig. 7). Both cases satisfy SFCH.

VIII. RANDOM CONTEXTS

In order to show how specific is the topology of CLCS, we
compare it with that of the CL associated to random contexts.
Such contexts represent a set of observations (objects with
attributes) on a system whose behavior seems to be random,
from the point of view of the selected attribute set. The absence
of strong relationship among attributes will be represented
in the associated CL. Random contexts (and associated CL)
are useful to contrast the SFCH. In order to show whether a
scale-free residue exists or not in a certain type of CLCS an
experiment was carried out to compare the CLCS with the CL
associated to random contexts. In this experiment two sets of
10,000 random formal contexts, with fixed density, number of
objects and number of attributes, were generated:

Dataset |O| |[A] | Density | average RZ
m1l 842 94 13.31% 0.847606
m2 1,684 | 94 13.30% | 0.8037136
m3 2,526 | 94 13.26% 0.809734

The fixed parameters take the size and dimension values
of the two first monster contexts for soccer (see Table I).



System CS? | Aim Objective | Accuracy BR-Modeling BR-agents Modeling reasoning of | Scale SFCH?
Data? of data? (BR1) within CS (BR2) agents within CS (BR3) Free?
Sport Yes | Human bet simulation Yes Yes Yes Yes Yes Yes Yes
Darfur Yes Prediction Yes Poor Yes Yes No No Yes
Mushroom | Yes Classification Yes Yes Yes No No Yes Yes
T3 No Classification Yes Yes No No No No Yes
Wine Yes Classification Yes Yes Yes Yes No Yes Yes
Car No Evaluation Medium No Yes Yes No No Yes
TABLE III

DESCRIPTION OF THE EXAMPLES USED IN THE PAPER

Results show that the degree distributions of CLCS are very
different to the distributions of CL associated to random formal
contexts (a random context can be interpreted as the result of
the observation of a CS by means of non relevant attributes
or a qualitative observation of a chaotic system). In Fig. 8 the
degree distribution of CL associated to random formal contexts
is shown, and it does not follows a power-law distribution.
Also this has been studied by means of a goodness of fit test
(x? test), to proof that the degree distribution of CL associated
to random formal contexts does not follow the power-law
distribution from x,,;,. Finally it is worthy to note that in the
degree distribution of CL associated to random formal contexts
appears a kind of phase transition (see also Fig. 8).

IX. CONCLUDING REMARKS AND FUTURE WORK

Throughout the paper a number of CLCS have been studied.
Table III shows their main features. It is worthy to note the
different uses of BR considered, both within the CS and in
its analysis. The first one is its use for modeling the system
(extracting a set of recognizable qualitative features for de-
scribing phenomena/objects), BR1. The second one represents
the use of BR by the self agents which live within the System
to study, BR2. The third use of BR, BR3 considers that the
system designed uses BR for simulating agents within the CS
in order to achieve the goal. The last one is used only in an
specific case, where the aim is to simulate an specific behavior
within a CS.

The SFCH relates CLCS topology with the information
about CS in two interesting CS, (Sport a Darfur conflict). The
positive case is deeply analyzed in [3]. The negative one, the
case of Darfur Conflict (with Gauss distribution) shows that
the use of data with poor quality produces a CLCS with a
topology that prevents successful reasoning due to the fact
that it does not allow to soundly discriminate target attributes.
We are currently adding new attributes and data to the last CS
in order to enrich the information.

CLCS strongly depends on the use of specific terms (at-
tributes) as they have direct influence on concept relationships.
Since in CL each concept represents the definition of a
new term, CLCS should be similar to semantic networks.
In [13] the semantic network among concepts expressed by
(english language) terms is studied, and it also has a scale-
free distribution. In contrast to the aforementioned work, our
network is not sparse, because we do not use terms, but
concepts (which are specified by an attribute set and not by an
isolated term). In [13] P(k) ~ ck™7, with v = 3.5, but in the

distribution of CLCS studied here v > 3.5, suggesting that the
scale-free residue has a very small amount of nodes with high
connectivity. The network representing words and synonymy
relationship between them analyzed in [1] has v = 2.8.
Another example is the semantic network associated to Roget’s
Thesaurus [14] (see [15]), with v = 3.19. It remains to study
what happens if we expand the language by inserting new
language terms defined from the available information.
Future work focuses on finding a relationship between
human involvement in CS and degree distribution of CLCS, in
order to discover how useful could be the information behind
CS to make short-term predictions. Although the experiments
show that SFCH is a sound work hypothesis, it is only
descriptive. We aim to state strong ties among SFCH and the
performance of the reasoning systems designed on the CLCS.
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