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Phenomenological reconstruction of a complex system (CS) from collected and selected data allows 
us to work with formal models (representations) of the system. The task of building a qualitative 
model necessitates the formalization of relationships among observations and con-crete features. 
Formal concept analysis can help to understand the conceptual structure behind these qualitative 
representations by means of the so-called concept lattices (CLs). The study of these kinds of semantic 
networks suggests that a strong relationship exists between its topological structure and its 
soundness/usefulness as a qualitative representation of the CS. The present paper is devoted to this 
question by presenting the so-called scale-free conceptualization hypothesis. The hypothesis claims that 
a scale-free distribution of node connec-tivity appears on the CL associated to complex systems 
(CLCS) only when two requirements hold: CLCS is useful both to represent 
qualitative and reliable  attributes on the  CS, as well as to provide a basis for (qualitatively) 
successfully reasoning about the CS. Experiments revealed that the topologies of CLCS are similar 
when the amount of information on the CS is sufficient, whereas it is different in other CLs 
associated to random formal contexts or to other systems in which some of the former requirements 
do not hold. 

Keywords complex systems; complex networks; formal concept analysis; scale free topology; 
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INTRODUCTION

Complex system (CS; and complex network) is a
broad concept, which has specific features but

covers very different systems, with an astonishing
variety of dynamics. Among them, particularly
interesting are those related to human (rational)
activities, such as organizations, communities and
cities. An interesting feature of CS research is inves-
tigating how humans describe and understand
such types of systems. It is very intriguing how
the rationality of humans is able to select important
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features and concepts (and the relationships among
them) of the CS in order to reason and predict its
dynamics (for surviving within) or to describe
their features.
This paper presents an empirical analysis of a

kind of semantic networks built to specify the
(qualitative) knowledge retrieved from CS.
Semantic networks represent a useful tool to
represent specific features of CS, such as lan-
guage evolution and structure (e.g. Motter et al.,
2002), but their scope may include other CS
where the analysis of semantic relationships
among concepts involved in CS is necessary.
General (formal) representations of semantic
relationships are often complex networks as well,
and their analysis provides some insights on
the complex nature of the CS whose features
are represented.
In the representation of CS, it is necessary to

choose what features the observer thinks are
essential to understand it, as well as how these
features are related. Human reasoning activities
(Simon, 1982) are essential to understand the be-
havior of a system, and they strongly depend
on our ability to quickly select key features and
reason with limited resources. This reasoning
cannot use every existent relationship among fea-
tures; only the few the user believes are impor-
tant (a concrete bounded rationality strategy, e.g.
Goldstein and Gigerenzer, 2002). In fact, humans

have bounded reasoning (BR) methods to carry
out two interesting tasks in which CS research
is particularly interested (Bourgine et al., 2009):

• Identifying relevant entities for a given time
and space scale.

• Characterizing interactions between entities.

By using knowledge representation and rea-
soning methods, the results of these tasks are
useful for assessing and formalizing the system
behavior. As was already mentioned in (Bourgine
et al., 2009), such Computer Science methods are
essential to provide exploratory tools for a data-
based approach to the problem.

In contrast to the former BR skills, global
exploratory tools are faced with different prob-
lems. Formal Epistemology succinctly provides
a general framework where explanation, simu-
lation and validation comprise a number of
tools and formalisms (see Figure 1 extracted
from Bourgine et al., 2009). In Figure 1, three
sets of activities have been highlighted: the first
region is devoted to the theoretical reconstruc-
tion (qualitative, in our case) of the system,
and the second region is devoted to the simula-
tion process of the system, which allows the
reconstruction of the dynamics (in our case, by
means of qualitative reasoning). In the last
region (experimental validation), simulation
and reconstruction are evaluated.

Figure 1 Formal and applied epistemology activities involved in the simulation of bounded rationality human tasks on com-
plex system (from Bourgine et al., n.d.)



In summary, exploiting BR techniques in
phenomenological reconstruction strongly de-
pends on a sound selection of the features
(qualitative) to be computed/studied. Therefore,
some questions arise:

• How is it decided if the feature selection is sound?
• How is the soundness of the qualitative repre-

sentation/reasoning model obtained from a
feature selection analysed?

• Specifically: do sound qualitativemodelizations
share similar structure/properties?

The last question is particularly interesting,

a complex (semantic) network. Concepts and
relationships within the CL can describe features
of the CS as well as aid the observer tin working
with the information (for describing, classifying,
predicting, etc.). Authors have used FCA to
study specific CS (Aranda-Corral et al., 2013) as
well as to design automated processes of knowl-
edge conciliation (Aranda-Corral and Borrego-
Díaz, 2010; Aranda-Corral et al., 2012). FCA is
used in this paper to support activities involved
in the Regions 1 and 2 of Figure 1.

Aim of the Paper

The aim of this paper is twofold. On one hand,
we discuss the main issues related to CLs
associated with observations on CS. We will see
how the analysis of topological features of CL
associated to CS (CLCS), considered as complex
networks, may in some cases aid understanding
CS evolution. On the other hand, we assert that
when the observations are objective and relevant
in order to study the CS, the associated CL
exhibits a scale-free distribution structure. This
claim (which we call scale-free conceptualization
hypothesis, SFCH) is experimentally analysed in
a number of examples that cover several CS
where different types of BR are used (both in
the study and by agents within the CS).

Structure of the Paper

The structure of the paper is as follows. The next
section is devoted to succinctly presenting FCA.
Sections on Formal Concept Analysis Based
Reasoning on Complex System and Scale-Free
Residue of Concept Lattices describe how to
associate CLs to CS from observations and assert
SFCH. Other sections are devoted to the analysis
of different activities associated to qualitative
analysis of CS: forecasting/prediction (Forecast-
ing/Prediction section) and catalogation/
classification of objects (Classification section).
Examples of Semantic systems (subsystems of
WordNet) are analysed in WordNet Subsystems
section. In Random Contexts section, the contrast
with the topology associated to CLs extracted

because a positive answer could aid in solving 
the two first ones.

Independently from the use of feature selection 
to obtain reliable systems, it is interesting to 
analyse the full information available. The global 
structure, which comprise of all the features, 
concepts and their relationships, represents a 
complex structure, which can provide more 
information about the CS than user deductions. 
Examples where interest in the global complex 
structures require more attention are stock 
markets, economy, ontology/folksnomy evalua-
tion, betting markets and, in general, those CS 
in which humans are involved and where their 
decisions are based on partial information about 
the CS. To model this semantic network, formal 
concept analysis (FCA) is selected as a knowl-
edge representation and reasoning framework.

The Role of Formal Concept Analysis
in the Approach

Formal concept analysis (Ganter and Wille, 1999) 
is a mathematical theory for data analysis whose 
basic data structure is the formal context, 
consisting of a set of objects and their properties. 
They represent weak structures easily built from 
experience that allows the extraction of knowl-
edge. Despite their simple data structure, formal 
contexts are useful structures for knowledge 
extraction and reasoning (cf. Ganter and Wille, 
1999). When FCA is applied on a considerable 
amount of observable features of the CS, the 
concept lattice (CL) generated includes every 
concept involved in CS description; it represents



from random contexts is explicitly presented.
Lastly, the final section provides conclusions
and describes future work (Concluding Remarks
and Future Work section).

BACKGROUND: FORMAL CONCEPT
ANALYSIS

Formal Concept Analysis mathematizes the
philosophical understanding of a concept as a
unit of thoughts composed of two parts: the
extent and the intent. The extent covers all objects
belonging to the concept, whereas the intent
comprises all common attributes valid for all
the objects under consideration (Ganter and
Wille, 1999). It also allows the computation of
concept hierarchies from data tables.
A formal context M= (O,A,I) consists of two

sets, O (objects) and A (attributes), and a relation
I⊆O×A. Finite contexts can be represented by a
1-0 table (identifying Iwith a Boolean function on
O×A). Given X⊆O and Y⊆A, it defines

X′ ¼ a∈A oIa for all o∈Xjf g
Y′ ¼ o∈O oIa for all a∈Yjf g

The main goal of FCA is the computation of the
CL associated with the context. A (formal) concept
is a pair (X,Y) such that X′=Y and Y′=X. For ex-
ample, the CL from the formal context of fishes of
Figure 2, left (attributes are understood as ‘live in’)

is depicted in Figure 2, right. Each node is a
concept, and its intension (or extension) can be
formed by the set of attributes (or objects)
included along the path to the top (or bottom).
For example, the bottom concept ({eel}, {Coast,
Sea, River}) is the concept euryhaline fish. CL
contains every concept that can be extracted from
the context. As well, concepts are defined, but it is
possible that no specific term (word) exists to
denote it.

Logics for Formal Concept Analysis:
Implications and Basis

Logical expressions in FCA are implications
between attributes. An implication is a pair of sets
of attributes, written as Y1→Y2, which is true
with respect to M= (O,A,I) according to the
following definition.

A subset T⊆A respects Y1→Y2 ifY1=⊆T or Y2⊆T.
It says that Y1→Y2 holds inM (M⊨Y1→Y2) if for
all o∈O, the set {o}′ respects Y1→Y2. In that case, it
is said that Y1→Y2 is an implication of M.

Definition 2.1: LetLbe a set of implications and
L be an implication.

(1) L follows from L L⊨Lð Þ if each subset of A
respecting L also respects L.

(2) L is complete if every implication of the
context follows from L.

(3) L is non-redundant if for eachL∈L;L∖ Lf g=⊨L:
(4) L is (an implication) basis for M if L is

complete and non-redundant.

Figure 2 Formal context of fish and its concept lattice



It can obtain a basis from the pseudo-intents
(Guigues and Duquenne, 1986) called stem basis
(SB). An SB for the formal context of living beings
is provided in Figure 2 (down). It is important to
remark that SB is only an example of a basis for a
formal context. In this paper, no specific property
of the SB is used, so it can be replaced by any
implication basis.

In order to work with formal contexts, SB and
association rules, the CONEXP1 software has been
selected. It is used as a library to build the
module that provides the implications (and
association rules) for the reasoning module of
our system. The reasoning module is a produc-
tion system (designed for Aranda-Corral and
Borrego-Díaz, 2010). Initially it works with SB,
and entailment is based on the following result:

Theorem 2.2: Let S be a basis for M and {A1,…,
An}∪Y⊆A. The following conditions are
equivalent:

1) S∪ A1;…Anf g⊢pY (⊢ p is the entailment with
the production system).

2)M⊨ A1;…Anf g→Y:

Stem basis is an adequate knowledge base (KB)
for the production system to reason about attri-
butes and concepts. However, SB is designed to
entail true implications only, without any excep-
tions to the object set nor implications with a
low number of counterexamples in the context.

Another, more important question arises when
working on predictions. In this case, the goal is to
obtain methods for selecting a result among all
entailed conclusions (eventually they are mutu-
ally incoherent), and Theorem does not provide
such a method. Therefore, it is better to consider
association rules (with confidence) instead of true
implications, and the initial production system
must be revised for working with confidence.

Researching logical reasoning methods for
association rules is a relatively recent and
promising line of research (Balcázar, 2010). In
FCA, association rules are implications between
sets of attributes. Confidence and support are

defined as usual. Recall that the support of X,
supp(X) of a set of attributes X is defined as the
proportion of objects that satisfy every attribute
of X, and the confidence of an association rule
is conf(X→Y) = supp(X∪Y)/supp(X). Confidence
can be interpreted as an estimate of the probabil-
ity P(Y|X), the probability of an object satisfying
every attribute of Y under the condition that it
also satisfies every one of X. CONEXP software
provides association rules (and their confidence)
for formal contexts (called Luxenburger basis
Luxenburger, 1991).

FORMAL CONCEPT ANALYSIS BASED
REASONING ON COMPLEX SYSTEM

Complex networks are a widely used representa-
tion of selected features from a CS. The topological
structure of the network aids in understanding a
considerable number of characteristics of the
associated CS. When the goal is to reason with
qualitative features, it can be interesting to extract
emergent concepts from these interactions. It is
here where FCA can play a relevant role.

The selection of FCA for processing qualitative
information about CS lies in the fact that human
reasoning—in fact, our BR skills—about the dy-
namics and organization of a CS has a qualitative
nature. Therefore, human reasoning and conjec-
tures about the CS can be expressed in qualitative
terms (possibly choosing thresholds and multi-
valued attributes). Once qualitative hypothesis
are presented, even non-symbolic mechanisms
for reasoning can be useful to validate the conjec-
tures. The qualitative reasoning process by means
of FCA would be depicted as in Figure 3. The
observer has to select attributes and objects they
consider relevant to determine CS dynamics, and
the reasoning focuses on the associated subcontext
by selecting interesting attributes (contextual
selection). Then he/she can consider the elements
of CS as objects of a formal context. This context
(often with a huge size) is built by means of data
extraction and processing, expert observations,
data mining and so on. It is expected that reason-
ing with the contextual selection provides some
information about the CS. If the goal is to reason
with qualitative features, it is interesting to extract1 http://sourceforge.net/projects/conexp/

http://sourceforge.net/projects/conexp/


• The question on whether a new event (object)
has a property (attribute) is raised. Some other
properties (attributes) of this object are known
{A1,…An}.

• The subcontext induced by a selection of
attributes is used to compute a KB L , called
contextual KB. This KB consists of a set of impli-
cations among attributes, extracted from the
subcontext.

• A reasoning system (Aranda-Corral et al.,
2011b) is executed on the contextual KB, taking
{A1,…An} as initial facts. The results are
attributes inferred from the object.

Note that it only computes those attributes
entailed from the set of attributes selected by the
user. Therefore, we would need to understand
the topology of the lattice to properly choose the
attributes to reason with.

SCALE-FREE RESIDUE OF CONCEPT
LATTICES

Given an attribute set for the objects of a CS, the
CLCS is the CL built from the monster context

Figure 3 Formal concept analysis (FCA)-based model for qualitative reasoning with complex systems

emergent concepts from these interactions. Here, 
FCA can play a relevant role. In Aranda-Corral 
et al., 2011b, this approach was applied for reason-
ing with contextual selections.
The full model (described in Aranda-Corral 

et al., 2011a) is composed of events (objects), which 
have a number of properties (attributes). They
constitute a universal formal context M (the monster 
context). Thus, M can be considered as the global 
memory from which subcontexts are extracted. 
Once the specific context is considered, it is inter-
esting to consider the knowledge extracted from 
the formal context (implication basis or association 
rules Aranda-Corral et al., 2011a).

Using Formal Concept Analysis Reasoning 
for Prediction

The case of inferring properties about future 
events when the monster model presents attri-
butes of past events (used in forecasting, Forecast-
ing/Prediction section) is particularly interesting. 
When some attributes are known to be satisfied 
by a future event, the inference process consists 
of three steps:



associated to the CS. Note that the CLCS can be
considered as a directed graph (as the Hasse
diagram indicates) or as a non-directed graph if
necessary. The analysis of CLCS reveals interest-
ing concepts for better understanding the
structure and dynamics of CS. It is also useful
to consider the role some attributes play in the
qualitative study of CS (Aranda-Corral et al.,
2013). It should be noted that the CLCS is a
complex network of semantic relationships that
is not bounded by the self language, as in other
semantic networks (Motter et al., 2002). This is
because there are concepts that are not repre-
sented by a single language term nor a intelligi-
ble definition by the observer. Complex
networks with extreme structural topology are
expected to appear. The complexity of such CLCS
lies in the fact that the combinatorial nature of
FCA covers every formal concept.

Recall that a scale-free network is one whose
degree distribution follows a power law, at least
asymptotically: the fraction P(k) of nodes in the
network having k connections to other nodes
goes for large values of k as P(k)∼ ckγ where c is
a normalization constant and γ is a parameter
whose value is typically in the range 2< γ< 3,
although occasionally it may lie outside these
bounds (as we will see later). The asymptotic
behavior means that, in practice, few empirical
phenomena obey the power law distribution for
all the values (Clauset et al., 2009). It is more
common for this behavior to appear from a
certain threshold xmin. The scale-free residue of a
CLCS is the set of its nodes whose degree is
greater than xmin.

It is expected that the topological analysis of the
dynamics of CLCS shows a big picture of the CS
itself. Normally one will expect that the CLCS
has a topology similar to other CLs, even similar
to CLs associated to random formal contexts (with
similar density). However, as it will be discussed
in the following examples, the degree distribution

is not usually very large although there are many
attributes in play. As a consequence of this, the
lattice is very complex, exhibiting a different
topological structure than, for example, the lattices
extracted from random contexts.

It is possible to refine the choice of xmin (Clauset
et al., 2009). We use xmin as the degree value with
the maximum frequency within the CLCS (the
maximum of the degree distribution). Lastly, it
should be noted that CLCS are not random
networks, whose degree distribution follows a
Poisson law (Albert and Barabási, 2002).

The Scale-Free Conceptualization Hypothesis

The analysis of the topology of CLs is a promising
method for addressing the issue raised in the
introduction, namely whether sound qualitative
modelizations (in our case, the CLs) share a similar
structure. The rest of the paper is devoted to study-
ing the following hypothesis, which provides a
solution in a number of CS of different natures:

Scale-Free Conceptualization Hypothesis (SFCH):
Only if the attribute set selected to observe the Complex
System is computable, objective, and induces a Concept
Lattice that provides a sound analysis of the CS (from
the point of view of some type of BR), then its degree-
distribution is scale-free.

FORECASTING/PREDICTION

Two very different CS have been selected, both in
which prediction (or diagnosis) is a relevant aim
for humans. The first one (the Spanish soccer
league) is a CS where a great number of levels,
factors and agents take part. The goal is to
simulate human forecasting of soccer matches
(Aranda-Corral et al., 2013; see previous

Table 1 Features of the complex system (CS) studied for prediction

CS Information Spatial feature Context size Information quality

Sport Complete No Big Rich
Darfur Incomplete Yes Medium Poor



Aranda-Corral et al., 2011a; Aranda-Corral et al.,
2011; Aranda-Corral et al., 2011b). The second
one is an experimental application of a CS where
spatial features are relevant, the Darfur conflict
(Table 1). In Aranda-Corral et al., 2013, the
authors show that in the case of prediction of
soccer bets, simple statistical forecasting rules,
which are usually simplified models, produce
better predictions than more complex methods.
This is especially true when the future values of
a criterion are highly uncertain (as it was already
shown in other cases Andersson et al., 2003).

Complex Systems in Sport

The first case represents a nice example of suc-
cessful application of BR on CS by means of
FCA tools. The study of CS associated to sport

is increasing in importance due to economic
(and political) reasons. Several pieces of evidence
about prediction in betting markets or match
forecasting have encouraged many projects in
this field of application. In Aranda-Corral et al.,
2013, we focus our efforts on forecasting of soccer
results. In this case study, a monster model is
constructed by considering matches as objects
and selecting qualitative attributes related to
team features and previous results (Aranda-
Corral et al., 2011). The monster context covers—
among other information—all the matches from
the 2005/06 season to the 2010/11season of the
Spanish Premier League. The attributes express
properties of the teams involved in the match,
and they are booleanized if necessary (Aranda-
Corral et al., 2011a; Aranda-Corral et al., 2011).

Table 2 shows the main parameters of the
cumulative CLCS. Figure 4 shows the log-log

Table 2 Data on accumulated concept lattice associated to complex systems for soccer (up) and Darfur (down)

Oj j Aj j Density (%) |CL| < k > xmin sc (%) γ

05/06 842 94 13.31 27 434 8.27 7 77.62 5.33
05/07 1684 94 13.30 81 490 9.47 9 60.87 6.08
05/08 2526 94 13.26 140 739 9.97 9 68.2 6.34
05/09 3368 94 13.37 243 959 10.62 10 63.6 6.84
05/10 4210 94 13.36 324 146 10.82 10 66.20 6.69

3-month intervals Oj j Aj j Density (%) |CL| < k >
1 787 81 14.73 294 5.310
4 3148 81 14.63 5864 7.676
7 5509 81 13.63 44 911 9.595
10 7870 81 10.61 62 870 9.678

Figure 4 Log-log degree distribution of concept lattice associated to complex systems for sport forecasting (four and five 
seasons)

 



scale distribution that represents the scale-free
residue behavior.

It is worthwhile to note the growth and size of γ
in the distributions shown in Table 2. One explana-
tion for this behavior is based on Barabási et al.,
1999, where the asymptotic behavior of scale-free
networks is studied. In the work mentioned, two
models of limit behavior are shown. In one of
them, the number of nodes in the network remains
constant, and the distribution tends to be a
Gaussian one. In our case, if it is supposed that
the process starts from a node set with 294 nodes
(the power set of attribute set), and in each step,
new objects are added, new relations in the lattice
emerge. From this point of view, the CLCS shows
a distribution that is between pure scale-free and
Gaussian (in the sense described in Albert and
Barabási, 2002; Barabási andAlbert, 1999; Barabási
et al., 1999). According to SFCH, the closer the
CLCS degree distribution is to being purely scale-
free, the richer and more useful the information
on CS dynamics will be.

It is not possible to predict how the attribute
distribution of new objects (matches) will be;
therefore, only the complexity of the reasoning
process (production system execution) of their

initial attributes can be estimated. In order to
figure out how the frequent rule-based computa-
tions will be (to better understand the complexity
of logical reasoning in a CLCS), it is interesting to
analyse the topological structure of concept nodes
that are involved in frequent deduction tasks. For
example, Figure 5 (left) depicts deduction network
of level 10 of CLCS for sport forecasting.

The deduction network of level p is built as fol-
lows. Let RLmax be the maximum number of rules
whose left side is contained by the extension of
one concept (meaning, this value is set by the
concept whose intension contains the left side of
more rules). In the same way as for RLmax, RRmax

is computed, this time considering, the right side
of the rules. The nodes of the deduction network
are the concepts of CLCS whose intents contain
both the left side of at least the p% of RLmax rules,
and the right side of at least p% of RRmax rules in
the KB extracted from the context.

For example, the deduction network of level 10
contains 715 nodes and 1296 arcs and its diameter
is 7. The diameter (considered as a directed graph)
suggests that a reasonable (upper bound) estima-
tion of rule firings by the production system is 7 (a
deduction made by the reasoning system induces

Figure 5 Deduction graph for sport forecasting for p=10 (left) and p=20 (right)



of spatial features of events and interactions in the
region. It is worth noting that the information
increases in a different way that is in the CS of
sport forecasting: via multiple resources, hetero-
geneous data and frequent incorporation of new
information resources. In the current state of the
project, the analysis uses the already cited Hagan
and Rymond-Richmond (2008) and other sources:
aerial military attacks on civilians and humanitarian
agents in Sudan, 1999–2011,2 Darfur - Destruction
of 1,000 Villages,3 Crisis in Darfur4 and North
Sudan.5 Nevertheless, a number of new informa-
tion sources and data will be considered shortly.

Preliminary experiments with this data
showed a significant number of false positives
(meaning that the system predicts attacks to
villages that did not really occur) and a small
number of false negatives (something more
serious). This behavior could be explained by
two reasons. On one hand, the information
contained in the data is poor in some cases (there
even exist a number of ambiguities), affecting
the variety and accuracy of the attributes. The

2 http://www.sudanbombing.org/
3 http://bbs.keyhole.com/ubb/ubbthreads.php?
ubb=showflatNumber = 721111site_id=1
4 http://www.ushmm.org/maps/projects/darfur/
5 http://bbs.keyhole.com/ubb/ubbthreads.php?
ubb=showflatNumber = 393317

Figure 6 Deduction graph for the alternative attribute set on sport forecasting for p=10 (left) and p=20 (right)

a path in the  CLCS).  The existence  of  many  
connected components is useful to decide which 
attributes are relevant to frequently achieve a 
certain result by prediction (those that appear in 
the same connected component as the attributes 
related with the goal). The deduction network  
keeps the same properties for other values of p 
(see Figure 5 right for p = 20; Figures 6).

Darfur Conflict

The second CS is the Darfur Conflict. The impor-
tance and its character as a contemporary, rela-
tively unknown episode of genocide are the main 
motivations for working with the information 
available about this topic. The conflict represents 
a very CS, and the information about its dynamics 
can be collected from different sources (the US 
government, non-governmental organizations, 
academic research groups, etc.).
The key feature that differentiates the multilevel 

nature of this CS from the one aforementioned is 
that the information is more difficult to process 
and to compute than in the former example. 
Excellent references such as Hagan and Rymond-
Richmond (2008) provide a number of insights 
on the conflict that may be considered. Further-
more, geolocation services allow the consideration

http://www.sudanbombing.org/
http://bbs.keyhole.com/ubb/ubbthreads.php?ubb=showflatNumber=721111site_id=1
http://bbs.keyhole.com/ubb/ubbthreads.php?ubb=showflatNumber=721111site_id=1
http://www.ushmm.org/maps/projects/darfur/
http://bbs.keyhole.com/ubb/ubbthreads.php?ubb=showflatNumber=393317
http://bbs.keyhole.com/ubb/ubbthreads.php?ubb=showflatNumber=393317


Barabási (2002) to asymptotically obtain a free-
scale network.

On the other hand, from the point of view of
the reasoning, the deduction graphs of Levels 10
and 20 for the CLCS show a very complex
network (Figure 8), where only one period of
the conflict is represented (1986 nodes and 6413
links). It is highly connected, suggesting that
it does not provide any information about
which attributes are more relevant to predict a
certain result.

Figure 7 Degree distributions of Darfur complex system (4 and 10 3-month periods) and their Gauss approximations

Figure 8 Deduction graph for Darfur p=10 (left) and p=20 (right)

Gauss distribution of node degrees in the 
associated CLCS (Table 2 and Figure 7) indicates 
that there are no key features within the concept 
population to exploit in the reasoning process. 
This fact is reinforced when it is found that the 
cumulative CLCS stabilizes after 10 periods (that 
is, there are no any new relevant information). 
This phenomenon suggests that to obtain a 
scale-free distribution, more attributes are neces-
sary to increase the number of concepts, which is 
one of the requirements shown in Albert and



Finally, it is interesting to remark that target
attributes (the concept ‘attack a village’) in CLCS
associated to Darfur are not in the tail of the
distribution, whereas in sport forecasting, target
attributes (win, lose and drawn) have a high
degree. This fact can explain how the attribute
selection is essential in this last case.

Testing Scale-Free Conceptualization
Hypothesis with Other Concept Lattices:
Attribute Set Influence

The quality of available data on a domain is very
sensitive when reasoning techniques are applied
to it. In the former section, the correlation be-
tween the quality of available data and the SFCH
was demonstrated. In this section, it will be
shown that the quality of available information
is as relevant as the choice of the attribute set
used to model the problem.

In the domain of soccer results, most of the pa-
rameters considered are quantitative. Thus, one of
the most sensitive parts of the attribute creation/
modelization process is the choice of proper thresh-
olds to be used in the data discretization process.

In a second experiment, a different attribute set
was built to model the CS in sports results
forecasting. Most of the attributes present in this
new attribute set were also present in the former
one, but had different thresholds. The former
attribute set tried to represent/capture the
regular behavior of teams in competition to be
able to predict results.

The changes in this new attribute set affected
not only the performance of predictions
produced by the system (which decreased signif-
icantly) but also to the degree distribution of the
CLCS (Figure 9 and Table 3).

To test the performance of predictions, two attri-
bute selections on the monster context have been
considered, one taken from the new attribute set
and one from the former. Both are of the same size

Figure 9 Log-log degree distribution of concept lattice associated to complex systems for the alternative attribute set of sport
forecasting (four and five seasons)

Table 3 Data on accumulated concept lattice associated to complex systems for the alternative attribute set on soccer

Oj j Aj j Density (%) |CL| < k >

05/06 842 26 50.51 46 439 11.39
05/07 1684 26 50.76 75 032 12.26
05/08 2526 26 50.88 91 625 12.64
05/09 3368 26 50.83 104 261 12.92
05/10 4210 26 50.91 115 206 13.15



(12 attributes). Successful predictions for the 2011
season are shown in Figure 10.

Finally, the deduction graph of level 10 in this
case (Figure 6) shows a less complex (1899 nodes
and 3480 links) network than in the case of
Darfur, but one that is more complex than that
of the soccer case.

CLASSIFICATION

To illustrate the SFCH in the descriptive analysis
of other systems (oriented in this case for classifi-
cation of objects within the CS), four contexts
have been selected (see Table 4):

Mushrooms6 (context M): A mushroom dataset,
being described in terms of physical characteris-
tics, where objects are mushrooms and attributes
are qualitative properties of the mushrooms. The
formal context associated to the data can be un-
derstood as a qualitative description of the current
state of evolution of a type of vegetables.

Tic-tac-toe7 (or T3): End results of the tic-tac-toe
game. The objects are possible results of the game,
and the attributes describe the configuration of the
board at the end of the game. This dataset has

been selected as a non-CS example, to obtain a
CL from a well-known formal context that does
not come from a CS.

Wine8 (context W): A dataset containing different
wines (objects) where the attributes are their
qualitative properties. It could be enriched with
more specific attributes related to biological sys-
tems associated with its production/processing
(Borneman et al., 2009).

Car evaluation9 (context C): A dataset repre-
senting the acceptability of cars. The objects are
cars, and the attributes are the subjective qualita-
tive properties of cars. For the purposes of this
paper, the context collects qualitative information
about the automobile industry, its evolution and
products.

Two of those contexts, the wine and mush-
room contexts, consist of a cataloguing carried
out by humans of the result of the evolution of
a CS. Those show a scale-free residue
(R2> 0.95). The context T3 is not based on
classification of a CS, and the distribution sat-
isfies R2< 0.75. Lastly there is a special case,
the car evaluation context, which displays an
intermediate behavior that we conjecture to be
a consequence of the attempt to describe objects

Figure 10 Successful predictions for season 2011 using two different attributes selection

Table 4 Data on concept lattice associated to complex systems for other contexts (see also Figure 11)

Oj j Aj j Density (%) |CL| < k > xmin sc (%)

M 8124 119 19.33 238 709 11.453 11 63.04
T3 958 29 34.48 59 504 10.637 9 67.27
W 68 178 20.48 25 408 9.370 8 70.92
C 1728 25 28 12 639 9.438 7 98.96

8 http://archive.ics.uci.edu/ml/datasets/Wine
9 http://archive.ics.uci.edu/ml/datasets/Car+Evaluation

6 http://archive.ics.uci.edu/ml/datasets/Mushroom
7 http://archive.ics.uci.edu/ml/datasets/Tic-Tac-Toe
+Endgame

http://archive.ics.uci.edu/ml/datasets/Mushroom
http://archive.ics.uci.edu/ml/datasets/Tic-Tac-Toe+Endgame
http://archive.ics.uci.edu/ml/datasets/Wine
http://archive.ics.uci.edu/ml/datasets/Car+Evaluation


produced within a CS (the automobile industrial
complex) by means of subjective attributes
(opinion), thus allowing for contradictory opin-
ions. This borderline case study presents an
intermediate degree distribution (see Figure 11)
with 0.85<R2< 0.9

WORDNET SUBSYSTEMS

As it was already mentioned, FCA provides
concepts (semantically sound attribute sets),
which may not be definable in terms of the self at-
tribute language. These languages (attribute sets)
are ad hoc, but it is unknown what occurs if we
choose an existing (real) language. Under SFCH,
it should occur that real languages provide sound

cognitive term sets semantically organized by
scale-free law. To demonstrate this, the WordNet
database (http://wordnet.princeton.edu/) was
considered. WordNet is a lexical database of
English in which words are grouped into sets of
cognitive synonyms (synsets).WordNet represents
the state-of-art of our own language evolution in
such a dimension. To build the formal context,
each single word has been considered as an
object and each possible synset as an attribute,
in which an object owns an attribute if the word
belongs to the corresponding synset. WordNet,
considered as a formal context, produces a CL
very similar to the structure of the synsets. Two
smaller word subsets have been considered
(Table 5): adverbs and verbs. In both cases SFCH
holds (Figure 12).

Figure 11 Log-log degree distribution for mushroom and T3 (up), wine and car evaluation contexts (down)

http://wordnet.princeton.edu/


RANDOM CONTEXTS

In order to show how specific the topological
structure of CLCS is, we compare it with the CL
associated to random contexts (that is, random
Boolean matrices). Such contexts represent a set
of observations (objects with attributes) of a
system whose behavior seems to be random,
from the perspective of the selected attribute
set. It is expected that the absence of a strong
relationship among attributes will be represented
in the associated CL. Random contexts (and
associated CL) are useful to contrast the SFCH.
To show whether a scale-free residue exists or
not in a certain type of CLCS, an experiment
was carried out to compare the CLCS with the

CLs associated to random contexts. In this exper-
iment, two sets of 10 000 random formal contexts
with a fixed density, number of objects and
number of attributes were generated (Table 6).

The fixed parameters take the size and dimen-
sion values of the first two monster contexts for
soccer (Table 2). Results show that the degree
distributions of CLCS are very different from
the distributions of CL associated to random
formal contexts (a random context can be inter-
preted as the result of the observation of the CS
by means of non-relevant attributes or a qualita-
tive observation of a chaotic system). In Figure 13,
the degree distribution of CL associated to ran-
dom formal contexts is shown, which does not
follow a power law distribution. Also this has

Table 5 Scale-free conceptualization hypothesis for WordNet subsets

Oj j Aj j Density (%) |CL| < k > sc (%)

Adverbs 4481 3621 0.03 3529 2.187 100
Verbs 11 529 13 767 0.02 12 222 2.967 100

Table 6 Data on random formal contexts and its concept lattices. The parameters Oj j; Aj j and density are taken from the
formal contexts on soccer domain

Dataset Oj j Aj j Density (%) Average R2

m1 842 94 13.31 0.847606
m2 1684 94 13.30 0.8037136
m3 2526 94 13.26 0.809734

Figure 12 Log-log degree distribution for adverbs and verbs subcontexts of WordNet



The second one represents the use of BR by
the self agents, which lives within the system
to study, BR2. The third use of BR, BR3,
considers that the designed system uses BR to
simulate agents within the CS to achieve the
goal. The last one is used only in a specific case,
where the aim is to simulate a specific behavior
within a CS.

The SFCH relates CLCS topology with the in-
formation about CS in two interesting CS, (Sport
and Darfur conflict). The positive case is thor-
oughly analysed in (Aranda-Corral et al., 2013).
The negative one, the case of the Darfur conflict
(with Gauss distribution) shows that the use of
data of poor quality produces a CLCS with a
topology that prevents successful reasoning,
because it does not allow sound discrimination
of target attributes. We are currently adding
new attributes and data to the last CS in order
to enrich the information. A third example, using
another attribute set in the domain of Sport
shows that a bad attribute selection can be as
bad as the use of poor quality data.

Concept lattice associated to CS strongly de-
pends on the use of specific terms (attributes),
as they have a direct influence on concept rela-
tionships. Because in CL, each concept represents
the definition of a new term; CLCS should be
similar to semantic networks. In Motter et al.,
2002, the semantic network among the concepts
expressed by (English language) terms is studied,
which also has a scale-free distribution. In

Figure 13 Two representative examples of log-log degree distribution of random contexts with density similar to sport
forecasting (accumulated for one and two seasons)

been studied by means of a goodness of fit test 
(χ2 test), to prove that the degree distribution of 
CL associated to random formal contexts does 
not follow the power law distribution from xmin. 
Finally, it is worth noting that in the degree distri-
bution of CL associated to random formal con-
texts, a kind of phase transition always appears 
(see also Figure 13).

CONCLUDING REMARKS AND
FUTURE WORK

This paper is devoted to studying the relation-
ship between the structures of qualitative repre-
sentations of CS and their usefulness in solving 
basic problems of CS research, such as prediction, 
classification and descriptional complexity. In 
order to clarify the results, only classical FCA is 
used (that is, Boolean attributes or booleanization 
of attributes by means of thresholds), but it could 
be expanded to multivalued attributes by using 
other well-known methods developed for this 
kind of attribute (Ganter and Wille, 1999).
Throughout the paper, a number of CLCS have 

been studied. Table 7 shows their main features. 
It is worthy to note that, to cover a wide variety 
of cases, different kinds of BR have been consid-
ered, both within the CS and in its analysis. The 
first is the one used for modelling the system 
(extracting a set of recognizable qualitative fea-
tures for describing phenomena/objects), BR1.



contrast to the aforementioned work, our net-
work is not sparse, because we do not use terms,
but rather concepts (which are specified by an
attribute set and not by an isolated term). In
Motter et al., 2002, P(k)∼ ckγ, with γ= 3.5, but in
the distribution of CLCS studied here γ> 3.5,
suggesting that the scale-free residue contains a
very small amount of nodes with high connectiv-
ity. The network representing words and syno-
nymic relationship between them analysed in
Albert and Barabási (2002) has γ= 2.8. Another
example is the semantic network associated to
Roget’s Thesaurus (Roget, n.d.; Steyvers and
Tenenbaum, 2005), with γ= 3.19. It remains to be
studied what happens if we expand the language
by inserting new language terms defined from
the available information.

In another experiment, two more CLCS of fore-
casting of soccer results have been analysed.
Those obtained from the two attribute selections
used to obtain the predictions that are shown in
Figure 10. The aim was to investigate if the SFCH
could also be useful to refine the attribute selec-
tion taken (from the monster context) to reason
about the CS. Although the first experiments
showed promising results, a deep analysis of
the relationships between reasoning entailment
and CLCS need to be performed.

As preliminary results, it is worth noting that
both attributes selections respect the SFCH
(Figure 14). This means that the CLCS associated
to the attribute selection that produces good
predictions presents a scale-free degree distribu-
tion, whereas the other does not.

Another interesting feature observed is the size
of the CL associated to both attribute selections.
Whereas the attribute selection that produces
good predictions has 198 concepts, the other has
3094. Taking into account that the number of
attributes and the object set considered are the
same, it suggests that a simpler CL will provide
sounder reasoning as was already observed in
the analysis of Forecasting/Prediction section. A
more thorough analysis of the internal structure
of these CLs could lead to clues on how to
modify the current attribute selection in order to
improve it.

Future work will also focus on finding a rela-
tionship between the human involvement in CS
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and the degree distribution of CLCS, in order to
discover how useful the information behind CS
could be in making short-term predictions.
Although the experiments show that SFCH is a
sound work hypothesis, it is only descriptive.
We aim to demonstrate the strong ties among
SFCH and the performance of the reasoning
systems designed on the CLCS.
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