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Abstract—This paper reports two general methods for
extraction of cell-electrode electrical model parameters in
cell culture (CC) assays. The presented approaches can
be applied to CC assays based on electrical cell-substrate
impedance spectroscopy (ECIS) technique for real-time
supervision, providing the cell number per square centimeter,
i.e., the cell density, as main result. Both of the proposedmeth-
ods - minimization of system equations and data predictive
model - search, during the experiment, the optimum values of
the electrical model parameters employed for the electrode-
cell model. The results of this search enable a fast and efficient
calculation of the involved cell-electrode model parameters
and supply real-time information on the cell number. For the
sake of experimental validation, we applied the proposed methods to practical CCs in cell growth assays with a cell line
of AA8 Chinese hamster ovarian fibroblasts and the Oscillation Based Test technique for bioimpedance measurements.
These methods can be easily extrapolated to any general cell lines and/or other bioimpedance test methodologies.

Index Terms— Bioimpedance, cell-culture, ECIS, electrical electrode model, OBT.

I. INTRODUCTION

MANY biological and medical assays are based on the 
preparation of a cell culture (CC) for a given cell

line and then observation of the cell progress over time
after applying a given product such as a toxin or a drug,
external conditions, a protocol, etc. [1]. This is a common and
useful procedure employed in biomedical labs and exploited in
fields such as cell biology [2], genetics [3], biochemistry [4],
pharmacology [5], tissue engineering [6], immunology [7],
and food control [8]. A CC assay requires seeding a number
of cells on a substrate, commonly a Petri dish, and applying
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several conditions or protocols, defined in the context of the
assay. To obtain information at a given time instant about
the cell status, e.g., their size, number, type, and health,
it is generally required to “kill” the cells and fix them [1]
for microscope observation. This is why these assays are
commonly called “end-point protocols”: the CC finishes when
its observation is decided. For this reason, CC assays need
many parallel preparations in terms of observation points
specified in the assay description, requiring subsequent statis-
tical analysis, significant human workload, and many material
resources.

To overcome the drawbacks of end-point protocols, Giaever
and Keese [9] proposed the so-called Electrical Cell-Substrate
Sensing (ECIS) technique as an alternative procedure to per-
form real-time monitoring of CCs, thereby avoiding multiple
samples. This study suggested testing the impedance of a
CC when it is positioned between two electrodes (when 4-
wires setups are used, the current lines of the applied elec-
tric field do not correctly sense the cells). Given that cells
are attached to the CC substrate (electrodes), it is possible
to have an estimation of the cell number by measuring
the bioimpedance between the two electrodes. There results
were developed by leveraging prior studies [10]–[13], which
demonstrated the feasibility of the impedance-based technique.
Practical information reported in most previous ECIS studies
includes the growth evolution over time by monitoring the
bioimpedance measured between the two electrodes (resistive
and capacitive components) from cell seeding to confluence



(electrode surface full of cells) phases. These data are reliable
for CC characterization and have been useful for biomedical
teams. However, the evolution of the cell numbers over time
has not been reported. The key to access this information relies
on the knowledge of the electrical model for the electrode-
cell system, which is mandatory for decoding the electrical
bioimpedance measurements.

The first proposal for an electrode-cell electrical model
was described in [10]. This approach considered the cell
culture as a monolayer and obtained the solution of Maxwell’s
equations for the electrical field in the electrode-cell interface.
To find the solution, parameter values such as Rb (barrier
resistance between cells), h (electrode-cell interface distance),
and r (cell radius) were proposed and selected to fulfill
the equations derived. In a subsequent study, Huang et al.
[14], considered a single cell on top of an electrode and
extracted the electrical performance of the system by sim-
ulating its electrical response to an AC signal with finite-
element simulation tools. A new resistance Rgap – the so-
called gap resistance –was incorporated to the electrode-
cell electrical model that represented the obstruction to the
electrical current flowing along the electrode-cell interface,
which usually extends several nanometers. They also included
a geometrical parameter ff – the so-called fill factor – that
described the percentage of electrode area covered by the
cells. Other approaches [15] employs a RC model to evaluate
the load response associated to cells, as suggested in [10],
without considering their size or any other cell properties.
Recently, a novel approach [16] was proposed to employ the
model in [14] with empirical parameter fitting, modifying the
dependence of Rs – the so-called spreading resistance – on
ff. This dependence may be due to changes in extracellular
composition during the experiment. The main conclusions in
this study were that electrode mismatch precluded the use of
the same parameter values for the electrode-electrical model,
requiring evaluation for each sample or CC. The electrode
impedance was observed to evolve over time throughout the
assay (several days in this case). In addition, it was necessary
to wait until the confluence phase of the CC to apply the
proposed fitting model.

The present study proposes the use of empirical data for
electrode-cell electrical model calculations as in [16], but
incorporating only the initial data measurements of the CC
assay and calculating the electrode-cell parameter values for
calibration. Herein, we propose two approaches to find the
values of the parameters in the electrical model in real time.
The first one is based on the analytical solution of the electrical
response obtained by minimization of system equations (MSE).
The parameter values are provided from the equations that
describe the system solution. As an example, we applied the
Oscillation Based Test (OBT) method to measure the system
bioimpedance.

Machine Learning (ML) algorithms are increasingly rel-
evant to data science and experimental data from bioim-
pedance sensing is not an exception. The application of ML
algorithms to analyze bioimpedance cell measurements has
been previously evaluated by the authors [17]. Following
this idea, the second method searches for the best-fitting

Fig. 1. 8E10E commercial electrodes from Applied Biophysics (AB).
This is the substrate employed in the CC assays evaluated in this study.
Each well contains 10 circular microelectrodes (diameter of 250 μm)
connected in parallel and 1 reference electrode (GND).

parameter values from a design space generated by moving
the corresponding cell-electrode electrical parameter within
a given range while evaluating the parameter proposal using
the OBT equations. These parameter values are employed for
training a k-nearest neighbor (KNN) algorithm [18], which
will be applied for data decoding after the calibration phase.

The article is organized as follows. Section II describes
the material and methods, the CC protocol, the electrode-cell
electrical model, and the main OBT equations employed. Both
of the proposed experimental fitting models, i.e., MSE and data
predictive model (DPM), are described in detail in Section III.
The main results from the same CC data are reported and
compared in Section IV. Finally, conclusions are highlighted
in Section V.

II. MATERIALS AND METHODS

A. Cell-Culture Assay
The experimental assays were based on commercial elec-

trodes provided by AB [2] (Fig. 1). These devices contain
eight separated wells, each with ten circular biocompatible
gold microelctrodes of 250-μm diameter in parallel for input
current, and a large ground electrode for output current. This
study was performed using a cell line described next.

The biological sample under test (SUT) was formed by
Chinese hamster ovarian fibroblasts. This cell line is identified
as AA8 (American Type Culture Collection). This sample was
immersed in a McCoy’s medium supplemented with 10 %
(v/v) foetal calf serum, 2 mM L-glutamine, 50 μg/mL strep-
tomycin, and 50 U/mL penicillin. The growing environment
was established at 37 ◦C and 5 % CO2 in a humid atmosphere.
Different initial cell numbers were seeded for our experiments,
namely 2.500, 5.000, and 10.000, obtained by dilution of
an initially high cell density. Petri-dish cultures were also
made with the same cell density for further matching with
the proposed bioimpedance (BioZ) test.

B. Cell-Electrode Electrical Model
A CC assay was initiated in the aforementioned commercial

devices. As pointed out above, the system had eight wells, each
with a two-electrode configuration: input and output (Fig. 1).
Cells were deployed on the electrodes along with the medium
solution. The cell-electrode electrical model describes the
behavior of a CC and corresponding electrodes. Fig. 2 shows
the electrode model in a saline solution, while Fig. 3 shows



Fig. 2. Electrode electrical model immersed in an ionic solution. A double
layer is formed near the electrode; an Inner Helmholtz Plane is defined
by the distance at which water dipoles are aligned with the electrode
surface. An Outer Helmholtz Plane is defined as the distance at which
solvated ions are aligned near the electrode.

Fig. 3. BioZ electrical model: electrical model of an electrode in a saline
solution considering the influence of the cells covering an ff percentage
of the electrode area.

its evolution considering the influence of the cells covering
an ff percentage of the electrode area. This model has been
extensively explored in the literature, [9]–[14] and [19]. To test
the cell growth over the electrodes, the OBT measurement
technique was employed [20]. The sensor system in the OBT
architecture forms an oscillator where the biological interface
is connected as a load (Z) into the main loop. As a result,
a biological sensor is created. The CC assay growth is related
to changes in bioimpedance, which generate variations over
the amplitude and frequency of the signal generated in the
oscillator. The OBT technique is just an example. In OBT the
central frequency can be tuned by the band pass filter [13],
the reactive impedance due to the cell membrane capacitance
is very high for the lower frequency spectrum (up to several
kHz). The sensor frequency selection ensures that electrical
current lines do not pass through the cell. The proposed fitting
methods can be easily extrapolated to other measurement
techniques.

A previous study [16] described the changes on electrical
model parameters and their importance to predict the values

of ff or cell density in real time, as well as the equations and
parameters of the sensor and its configuration to collect data.

The BioZ electrical model shown in Fig. 3 is described by
Rgap, Rs , and the following parameters:

R1 = Rct

(1 − f f )
R2 = Rct

f f
C1 = Cdl · (1 − f f ) C2 = Cdl · f f (1)

where Rct and Cdl are the charge transfer resistance and the
double-layer capacitor, respectively [19], modeled in Fig. 2.
The parameters R1, R2, C1, and C2 model the electrical
behavior of the microelectrodes covered by the cells. Nodal
analysis provides the transfer function that models the BioZ:

Hz(s) =
k2 · s2 + k1 · ω0z

Qz
· s + k0 · ω2

0z

s2 + ω0z
Qz

· s + ω2
0z

(2)

where,

k2 = Rs k1 = Rs + Rgap · R1

2 · Rgap + R1 + R2

k0 = Rs + R1 · (Rgap + R2)

Rgap + R1 + R2

ω0z =
√

Rgap + R1 + R2

Rgap · (R · C)2 Qz = ω0z
Rgap · R · C

2 · Rgap + R1 + R2

(3)

C. OBT System
As mentioned in Section II.A, the measurement method we

applied for transforming BioZ into a measurable variable was
OBT. This is simply a possible technique; any other could be
used. The electronic system oscillates at a given amplitude and
frequency. These two parameters are defined by the BioZ value
of the CC and can provide the cell growth information along
with a proper knowledge of the sensor electrical model. The
oscillation system used to measure BioZ was reported in [16];
the same block diagram and parameter values were applied in
the present study.

The Barkhausen stability criterion – see below Equation (4)
– is the mathematical condition that the closed-loop feedback
system must fulfill to obtain sustained oscillations. Thus,
the oscillation parameters aosc and fosc can be derived by
setting the real and imaginary parts of Equation (4) to 0:

1 + H (s = j�) · N(aosc,�osc) = 0 (4)

where ωosc = 2π fosc, and H (s = jω) is the transfer function
with no linear element of the OBT, which includes the BioZ,
a band-pass filter, and other electronic elements; N(aosc,
ωosc) is the descriptive function of the comparator, that is,
the linearized mathematical description of the comparator,
whose calculation was described in [20]. Equation (4) will
be used as a demonstrative vehicle to show how both fitting
methods work; any other system equations could be employed.

III. ESTIMATION METHODS OF REAL-TIME
EXPERIMENTAL CELL-CULTURE GROWTH

In this section, the two methods proposed for analysis of the
measurements provided by the sensor are compared. Firstly,



Fig. 4. Flowchart of the MSE method. A cost function is used to estimate
Rsi and fp from the initials measurements, and Rgap,ΔRs, and ff for each
measurement.

minimization of the module of the function in Equation (4),
denoted as MSE. Secondly, DPM, which is a method based on
electrical parameter fitting from initial experimental measures.

Both methods rely on the numerical solution of the dynamic
models for the system and the oscillation condition expressed
in Equation (4). In particular, the oscillation condition is given
by Equation (4), where the real and imaginary parts, denoted
as eq1 and eq2, respectively, from now on (defined in the
Appendix as Equations (1) and (2), respectively), must be zero.

A. Minimization of System Equations
This method is based on a previous study [16]. Joining

eq1 and eq2, derived by setting the real and imaginary parts
of Equation (4) to zero, and three parameters derived from
the electrochemical interface and the cells under test, namely
Rgap, �Rs , and ff, we have 2 equations and 3 variables. The
solution for these equations, as previously reported in [16],
is found by setting the values of Rgap and �Rs through a
calibration experiment using a previous cell line, given that
these values seem to be specific to each cell line and well type.
However, herein, the method is focused on a different approach
for the estimation of cell growth; the major advantage of this
approach is that it enables estimation with no previous experi-
ments by minimizing a multivariable function with constraints.
This function must contain the three unknown variables and
meet the oscillation condition defined in Equation (4).

Fig. 4 shows the flow diagram of the on-line estimation
process. It minimizes a cost function, which is explained
below, after each CC measurement to obtain Rgap, �Rs , and
ff. We waited for a few hours at the beginning of the each
experiment until Rsi and f p , which is one of the poles in
Equation (2) used to estimate initial values of Rct and Cdl ,
could be estimated.

Matlab was the environment used to conduct all testing. The
Matlab function used to minimize the function was fmincon,
which finds the minimum of a constrained nonlinear multivari-
able function. The fmincon algorithm used was sqp [21]. The
function to be minimized must ensure that the Barkhausen
stability criterion is fulfilled. Therefore, we employed the

following function:

f (Rgap,�Rs , f f ) =
√

(eq12 + eq22) (5)

This function implies that the module of the real and
imaginary parts in Equation (4) must be 0. Given that both
terms are squared, it is ensured that eq1 and eq2 cannot
compensate each other to minimize f (Rgap, �Rs , ff) to 0.
In this way, it is ensured that the Barkhausen stabilization
criterion is fulfilled, i.e., eq1 and eq2 are 0.

Note that fmincon needs a starting value per execution for
each variable, as expressed in Equation (6), in addition of
possible restrictions (or bounds) of such variables, expressed
in Equation (7).

f fn = f fn−1 Rgap = 500� �Rs = 0� (6)

f fbounds = [
0.05 0.999

]
%1

Rgap.bounds = [
100 2e3

]
�

�Rs.bounds = [ −Rsi 2 · Rsi
]
� (7)

The initial value of ff for each fmincon iteration is the value
of ff at the previous point of the experiment. The ff limits its
value to the range [0,1]. The initial value of Rgap for each
fmincon iteration is 500 �. The limits for Rgap precludes that
it becomes negative and excessively large, that is, its variation
is allowed for positive values (negative ones do not make
physical sense). The initial value of �Rs for each fmincon
iteration is 0 �. The limits imposed on �Rs prevent Rs from
becoming negative, or too large, but still allow for a wide
variation range.

The estimation process is described next. First, it is required
to wait for the CC to begin to grow. Then, using the initial
values of fosc and aosc, the position of the pole, fp, as well
as the initial values of Rs and Rsi , are calculated as in [16].
This is achieved by the fmincon minimization procedure of
the function expressed in Equation (5), using fp and Rs as
unknown variables together with ff (the values of Rgap and
�Rs are the same as in Equation (6), and the initial value
of ff is estimated from the initial cell number in each well).
This estimation is only computed at the beginning of the
experiment, with the initial conditions and bounds provided
in Equation (8) below.

f fn = f fini f p = 90Hz Rs = 500�

fbounds = [
0.05 0.999

]
%1

f p.bounds = [
0.1 1e3

]
Hz

Rs.bounds = [
0.1 2e3

]
� (8)

At this point, it is already possible to estimate the values
of Rgap, �Rs , and ff at any arbitrary point of the experiment
through fmincon. Interestingly, note that Rgap and �Rs do
not affect the electrode-cell model when ff → 0, that is, at the
beginning of the experiment.

B. Dataset Predictive Model
Note that the first proposed method, i.e., MSE, finds the

most suitable operation point for the sensor, which corresponds
to a certain oscillatory solution. This requires a certain amount
of computational power at every iteration.



TABLE I
PARAMETER BOUNDS

An alternative approach is presented in this section. The
DPM method relies on the definition of a full dynamic model
for the whole growing process in which the cell-electrode
interface is evolving through the experiment; the values for
Rs and Rgap are not constant in this case.

A certain degree of variance across the different electrodes
involved in the experimental setup is assumed. According to
Fig. 2, values for Cdl , Rct , and Rs can be computed to provide
an electrical model from the electrode material and conductive
ion concentration in the solution [19]. Nominal values for such
parameters are Cdl = 32nF, Rct = 1.3 M�, and Rs = 500�.

Fig. 5 shows a general diagram of the DPM process. This
method requires the computation of a multivariate dataset
accounting for the variation of the electrode-model electrical
parameters over a certain range (Input Range). Then, a KNN
algorithm [18] network is trained using this multivariate
dataset to provide the parameters that better fit our experi-
mental data during the calibration step (Electrical Parameter
Determination).

Using the electrical parameters computed in the calibration
step, a prediction of ff values is obtained through a linear
regression from the expected ff curves for such electrical
values. The algorithm steps are described in detail next.

1) Dataset Generation: As described above, the electrode
model is a source of significant error in terms of how the
electrical parameters contribute to the ff estimation. The fact
that real electrodes introduce some uncertainty and dispersion
across different devices cannot be neglected. To generate a
multivariate dataset establishing the relation between ff and
the electrical model, a range for the electrical parameters is
defined. TABLE I reports the ranges of Cdl , Rct , and Rs

obtained from the MSE method.
A numerical simulation was performed using the aforemen-

tioned parameters and setting ff to zero (initial status). The
results are depicted in Fig. 6 and Fig. 7, where the amplitude
and frequency sensor output are described for the whole
multivariate range. The contribution arising from Rct to the
frequency and amplitude curves is almost negligible. This is
why we present Rct and Cdl as the dependent variables.

2) KNN Training and Prediction: Training a KNN Network
using the previously described dataset enables the prediction of
the closest point to a given output value from the sensor (aosc

and fosc) over the early stage of the experiment. The KNN
algorithm provides the most suitable fitting for the electrical
model that corresponds to the experimental data acquired over
the initial period (ff → 0).

3) Fill Factor (Ff) Estimation: At this point, the electrical
model parameters are known, thus enabling the calculation of
ff from the electrical model. The analysis of the frequency and
amplitude curves in terms of ff already revealed a nearly linear

behavior [11]. Hence, to estimate the value of ff, it is sufficient
to compute the maximum frequency ( fmax) (corresponding to
ff → 1) from the electrical model to describe a linear function
using all the known elements:

fosc = fosc. max − fosc. min

f fmax − fmin
· f f + fosc. min (9)

where ffmax = 1 and ffmin = 0. Then, we have that:

fosc = ( fosc. max − fosc. min) · f f + fosc. min (10)

which can be rewritten and solved for ff:

f f = fosc − fosc. min

fosc. max − fosc. min
(11)

where fosc corresponds to the frequency experimentally mea-
sured and ff is the estimated fill factor.

IV. RESULTS

In this section, we report the results for each estima-
tion method. As a comparison metric, we obtained the cell
concentration, i.e., Ncell /cm2, obtained by traditional meth-
ods, optically counting the number of cells with the Leica
DMI1 inverted microscopy every 24h until the confluence
phase was reached. The cell concentration (Ncon) was obtained
by using ff in Equation (12) below.

Traditional cell counting was obtained as the mean of 3
counting samples. This traditional counting method provides
an error margin. We estimated the cell area for the upper and
lower margins of this traditional counting method to obtain
the cell-density error margin in the MSE and DPM methods.

Ncon = Ncell

Awell [cm2] where Ncell = Awell

Acell
× f f (12)

where Ncell is the cell number in the well at any arbitrary
moment, Awell is the well area, and Acell is the mean cell
area. In our case, we considered that rcell = 13.3μm.

A. Minimization of System Equations
Results related to the MSE method are depicted in Fig. 9.

Note that for each initial cell number, the error was very
small. Indeed, for the greatest initial cell number, the error
was minimum (10.000 is a very small cell number). The initial
error was not acknowledged given that it was caused by some
perturbations resulting from the adaptation of the cells to the
wells and deviations of temperature, humidity, and CO2 from
their ideal values. These deviations were due to the opening of
the incubator; they were corrected after a few hours. Note that,
for initial cell numbers of 5.000 and 10.000, the error ranges
of the traditional counting method and MSE were similar after
48 hours from the starting point of the experiment until the
end.

B. Dataset Predictive Model
For DPM, Fig. 9 illustrates the prediction for the same

experimental values as in the previous method. The resulting
curves provide good matching with the experimental ones.
There exists some dispersion probably due to the electrode
shape and sensing surface. For most of the results, the mean



Fig. 5. Flowchart of the DPM method. This flowchart depicts the
steps needed to estimate the value of ff using the DPM method. The
algorithm generates a dataset for potential experimental results using
the analytical sensor model. This dataset encodes a function of fosc and
aosc with respect to variations on electrical parameters (such as those
introduced by the electrodes). An estimate of such electrical parameters
is performed from the initial measurements acquired to enable real-time
prediction of different ff values.

Fig. 6. Frequency dataset for variation of the electrical parameters Cdl
and Rs.

value of the cell radius estimation (blue line) is evaluated
within statistical significance with respect to traditional count-
ing methods (which may have a certain dispersion in some
measurements).

C. Comparison
Both methods provided a good enough estimation of the

cell concentration. By comparing Fig. 9 and Fig. 8, we can
see that DPM was better for a low initial cell number and for
the first hours of the experiment, while the MSE method was

Fig. 7. Amplitude dataset for variation of the electrical parameters Cdl
and Rs.

Fig. 8. Comparison of cell concentration between traditional methods
and the DPM method for three initial cell numbers (2500, 5000, and
10000 cells), where the red line represents the traditional counting
method with its error range (vertical red line), and the blue line represents
the estimation of cell concentration using the DPM method with its error
range (blue dashed lines).

better for a higher initial cell number and from the middle to
the end of the experiment.

TABLE II shows the mean relative errors of both methods
with respect to traditional counting in row er. The relative



Fig. 9. Comparison of cell concentration between traditional methods
and the MSE method for three initial cell numbers (2500, 5000, and
10000 cells), where the red line represents the traditional counting
method with its error range (vertical red line), and the blue line represents
the estimation of cell concentration using the MSE method with its error
range (blue dashed lines).

TABLE II
RELATIVE ERROR

error was estimated through the next equation:

er = 1

n

n∑
i=1

( |Ncon.method (i) − Ncon.trad (i)|
Ncon.trad (i)

)
(13)

where er is the mean relative error, Ncon.method and Ncon.trad

denote the cell concentration vectors estimated by each method
and by traditional counting, respectively, and n is the number
of samples employed to estimate er . The first row shows

the mean relative error of the whole experiment. The next
rows show the mean relative error when ff was less than
0.5 and greater or equal than 0.5, respectively. The MSE
method provided better estimates of cell concentration when
ff was greater than 0.5 and for experiments whose initial cell
numbers were high. By contrast, the DPM method provided
better estimates of cell concentration when ff was lower than
0.5 and for experiments whose initial cell numbers were low.

V. CONCLUSIONS

Two analytical methods were proposed in this study to
obtain the evolution of cell concentration in a growth experi-
ment of CC assay. Previous methods reported by the authors
[16] apply an estimation algorithm which requires the full
experiment information to be able to perform estimation. The
proposed methods allow to estimate the cell concentration
during the experiment (in real-time) without having to wait
until the end of the experiment. The ECIS technique, along
with the electrical model of an electrode in a saline solution,
were applied to estimate the bioimpedance of a CC assay in
each well and the ff parameter, thereby achieving real-time
prediction of the cell density present in the assay.

Each method has a working zone, defined by the experi-
ment progress and initial cell concentration, where it is more
accurate. A comparison of the ranges of both methods (Fig. 9
and Fig. 8, in dashed blue line) with the ranges of traditional
counting (Fig. 9 and Fig. 8, in dashed red line) shows that
the proposed methods achieve positive results. In addition
TABLE II reports the error and the best working zone of each
method in order to evaluate their accuracy.

The parameters Rgap and �Rs do not affect when ff is low
[16]. The MSE method was less accurate in this part of the
experiment given that it estimates these parameters for each
measurement. By contrast, when ff is high, Rgap and �Rs

affect the most (their estimations are more accurate) and thus
the estimation of ff (and cell concentration) is more accurate.

The DPM method is based on a previous estimation of the
cell-electrode model parameters. This estimation provides a
very accurate estimation of the ff when this parameter is low,
given that Rgap and �Rs do not affect in the interval ranging
from the beginning to the middle of the experiment. When the
ff was high, small errors in the value of Rgap and �Rs could
cause a decrease in accuracy.

For this reason, we conclude that the combination of both
methods can probably result in a general procedure for more
accurate estimates of the cell concentration at any point of the
experiment without prior calibration. According to the results
obtained, we consider that using the DPM method when the
estimated ff is low and the MSE method for ff greater than
a certain value, in particular when ff > 0.5, can give rise to
a better fitting method. For future experiments, both methods
will be combined and their accuracy and operation will be
verified.

APPENDIX

Below are the equations obtained by calculating the real
and imaginary parts in Equation (4). Note that eq1 and eq2



are Equations (1) and (2) in this appendix.

Re(1+HB P(s)·HZ(s)·HC M P.F(s)·N(aosc,�osc))=0 (1)

Im(1+HB P(s)·HZ(s)·HC M P.F(s)·N(aosc,�osc))=0 (2)

where s = j·ωosc, HZ is the transfer function of the cell-
electrode electrical model; HB P and HC M P.F are the transfer
functions of the band-pass filter and the pre-comparator filter
of the OBT system, respectively; and N(aosc, ωosc) is the com-
parator describing function of the OBT system [20]. Estimates
of N(aosc, ωosc), HB P , and HC M P.F are reported in [16].
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