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Abstract In the framework of Membrane Computing,

several tools to tackle the P versus NP problems by means

of frontiers of the efficiency expressed in terms of syntactic

or semantic ingredients, have been developed. In this

paper, an overview of the results in computational com-

plexity theory concerning to membrane systems (tissue-

like and cell-like approach) with symport/antiport rules

(where objects are transported without evolving), is given.

The frontiers are formulated regarding the length of com-

munication rules, the kind of rules implementing the pro-

duction of an exponential number of cells/membranes in

polynomial time, and the role of the environment. An

interesting remark of the obtained results refers that the

underlying structure to membrane systems (directed graph

versus rooted tree) does not matter in this context.

Keywords P systems � Computational complexity theory �
Structure � Cell division � Membrane fission

1 Introduction

Membrane Computing, as a branch of Natural Computing,

takes inspiration from the nature when developing mech-

anisms to solve problems. In this field, different kinds of

bio-inspired devices are investigated, the so-called mem-

brane systems or P systems, which are inspired by the

structure and behavior of cells of living beings. Different

variants of these systems have been studied, both inspired

by the chemical reactions ocurring within cells in cell-like

systems [1] or the transport of substances between cells in

tissue-like or neural-like systems [2, 3]. For a compre-

hensive and wider explanation of these systems and their

several variants, we invite the reader to see [4, 5]. Several

kinds of fields, as economics, molecular biology, ecosys-

tems and fault diagnosis, among others, have been solved

in this framework [6, 7, 8]. Apart from these real-life

applications, more theoretical fields can be addressed.

From the universality of the systems to the classes of

problems that can be efficiently solved by families of them,

Membrane Computing represents a different perspective to

deal with existing theories.

Membranes of living cells are composed primarily of

lipids and proteins with a variable amount of carbohydrates

attached to the surface. It makes the cytoplasmatic mem-

brane a semipermeable or selectively permeable layer,

letting certain molecules to pass through the membrane.

Thanks to this, a membrane acts as a barrier for the cell,

‘‘defending’’ it from the environment. In fact, it is known

that a high amount of genes code specifically for them [9].

The most common type of integral membrane proteins is

the transmembrane protein, that is, proteins that pass

through the membrane and ‘‘connect’’ the exterior of the

cell with the insides of it. One of the main roles of this kind

of protein is the passing of specific substances across the
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membrane. Depending on the protein, the substance and

where is it coming from, to former one lets the last one pass

or not.

Integral membrane proteins that let pass molecules

across the membrane only in one direction are called

symporters, and antiporters cotransport molecules or ions

in opposite directions. This kind of behavior is crucial in

some life processes [10].

In this sense, we can think about membrane systems

replicating this behavior through symport/antiport rules.

They were first introduced in tissue P systems, giving an

abstraction of the transport of substance from a cell to

another one or the interchange of molecules with their own

environment, and later in cell-like systems [11]. These

systems are inspired by the transport of substances within a

cell between different organelles. Division rules [12, 13]

and separation rules [14, 15] have been considered in these

systems as a method to obtain an exponential amount of

space in terms of regions in linear time and obtain efficient

solutions to presumably intractable problems.

This paper is devoted to study the frontiers of efficiency

obtained in terms of systems explained before, and tries to

clarify the idea that when new frontiers between the

complexity classes P and NP it is irrelevant if we are

working with a P system viewed as a rooted tree or as a

directed graph. The paper is structured as follows. Sects. 2

and 3 are devoted to introduce these models both syntactic

and semantically, giving the classical definition and by

adding division or separation rules. In Sect. 4 recognizer

membrane systems are introduced as a computational

device capable of solve decision problems. Next, some

techniques used to prove the efficiency of recognizer

membrane systems are explained.

2 Tissue-like P systems with symport/antiport
rules

2. E(C;
3. M1; . . .;Mq are multisets over C;
4. R is a finite set of communication rules of the form

(i, u / v, j), where u, v are multisets over C, some of

them non-empty, and i; j 2 f0; 1; . . .; qg with i 6¼ j.

5. iout 2 f0; 1; 2; . . .; qg.

A tissue P system with symport/antiport

rulesP ¼ ðC; E;M1; . . .;Mq;R; ioutÞ of degree q� 1 can

be viewed as a set of q cells labelled by 1; . . .; q such that:

(a) M1; . . .;Mq are multisets over the working alphabet

representing the objects initially placed in the q cells of the

system; (b) E is the set of objects initially located in the

environment of the system, all of them available in an

arbitrary number of copies; (c) R is a finite set of com-

munication rules over C; and (d) iout represents a distin-

guished zone which will encode the output of the system.

We use the term zone i (0� i� q) to refer to cell i in the

case 1� i� q and to refer to the environment in the case

i ¼ 0. A rule (i, u / v, j) is called a symport rule if u ¼ k or

v ¼ k. A rule (i, u / v, j) is called an antiport rule if u 6¼ k
and v 6¼ k. The length of rule ði; u=k; jÞ (resp., (i, u / v, j))

is defined as j u j (resp., j u j þ j v j). If E ¼ ; then we say

that the tissue P system is without environment.

A symport rule ði; u=k; jÞ, with i 6¼ 0; j 6¼ 0, provides a

virtual arc from cell i to cell j. An antiport rule (i, u / v, j),

with i 6¼ 0; j 6¼ 0, provides two arcs: one from cell i to cell j

and another one from cell j to cell i. Thus, every tissue P

systems has an underlying directed graph whose nodes are

the cells of the system and the arcs are obtained from

communication rules. In this context, the environment can

be considered as a virtual node of the graph such that their

connections are defined by the communication rules of the

form (i, u / v, j), with i ¼ 0 or j ¼ 0.

2.2 Semantics

An instantaneous description or configuration Ct at an

instant t of a tissue P system with symport/antiport rules is

described by all multisets of objects over C associated with

all the cells present in the system, and the multiset of

objects over CnE associated with the environment at that

moment. Recall that initially there are infinite copies of

objects from E in the environment, and hence this set is not

properly changed along the computation. The initial con-

figuration of the system P is ðM1; . . .;Mq; ;Þ.
A symport rule ði; u=k; jÞ is applicable to a configuration

Ct at an instant t if the following holds: (a) there exists a

zone labelled by i and other zone labelled by j at config-

uration Ct; and (b) multiset u is contained in such zone i.

When applying a rule ði; u=k; jÞ, the objects specified by

multiset u are sent to zone j.

Inspired by the functioning of living cells in human tissues, 
tissue P systems are based on the transport of substances 
between cells, that is, the components initially placed in the 
system are not changed through the whole computation. It 
is important to remark that objects do not evolve in these 
systems, so new mechanisms must be implemented in order 
to solve computationally hard problems.

2.1 Syntax

Definition 1 A tissue P system with symport/antiport 
rules of degree q � 1 is a tuple P ¼ ðC; E; M1; . . .; 
Mq; R; ioutÞ, where:

1. C is a finite alphabet;



An antiport rule (i, u / v, j) is applicable to a configu-

ration Ct at an instant t if the following holds: (a) there

exists a zone labelled by i and a zone labelled by j at

configuration Ct; (b) multiset u is contained in sich zone i;

and (c) multiset v is contained in such zone j. When

applying a rule (i, u / v, j), the objects specified by multiset

u are sent to such zone j and, at the same time, bringing the

objects specified by multiset v into such zone i.

The rules of a tissue P system with symport/antiport

rules are applied in a non-deterministic maximally parallel

manner: at each step we apply a multiset of rules which is

maximal, so no further applicable rules can be added.

Given a tissue P system with symport/antiport rules P,

we say that configuration Ct yields configuration Ctþ1 when

the rules from R are applied following the previous

remarks.

A computation of P is a (finite or infinite) sequence of

configurations such that: (a) the first term of the sequence is

the initial configuration of the system; (b) each non-first

term of the sequence is obtained from the previous con-

figuration by applying rules of the system in a non-deter-

ministic manner; and (c) if the sequence is finite (called

halting computation) then the last term of the sequence is a

halting configuration.

2.3 Cell division and cell separation

Here, we introduce new types of rules (cell division and

cell separation) inspired by the mitosis and the membrane

fission processes, in the framework of P systems with

symport/antiport rules. These rules provide a mechanism to

construct an exponential workspace (expressed in terms of

number of objects and number of cells) in linear time.

Definition 2 A tissue P system with symport/antiport

rules and cell division of degree q� 1 is a tuple

P ¼ ðC; E;M1; . . .;Mq;R; ioutÞ, where:

1. P ¼ ðC; E;M1; . . .;Mq;R; ioutÞ is a tissue P system

with symport/antiport rules;

2. The set R also contains rules of the form

½ a �i ! ½ b �i½ c �i, where 1� i� q; i 6¼ iout and a; b; c 2
C (division rules).

A division rule ½ a �i ! ½ b �i½ c �i is applicable to a con-

figuration Ct at an instant t if there exists a cell labelled by

i 6¼ iout at configuration Ct and object a is contained in such

cell. When applying a division rule ½ a �i ! ½ b �i½ c �i to such

cell i, under the influence of object a, this cell is divided

into two new cells with the same label; in the first copy,

object a is replaced by object b and in the second one,

object a is replaced by object c; all the other objects

residing in such cell i are replicated and copies of them are

placed in the two new cells.

Definition 3 A tissue P system with symport/antiport

rules and cell separation of degree q� 1 is a tuple

P ¼ ðC;C0;C1; E;M1; . . .;Mq;R; ioutÞ, where:

1. P ¼ ðC; E;M1; . . .;Mq;R; ioutÞ is a tissue P system

with symport/antiport rules;

2. fC0;C1g is a partition of C, that is, C ¼ C0 [ C1,

C0;C1 6¼ ;, C0 \ C1 ¼ ;;
3. The set R also contains rules of the form

½ a �i ! ½C0 �i½C1 �i, where 1� i� q; i 6¼ iout and a 2
C (separation rules).

A separation rule ½ a �i ! ½C0 �i½C1 �i 2 R is applicable

to a configuration Ct at an instant t if there exists a cell

labelled by i at configuration Ct and object a is contained in

such cell. When applying a separation rule ½ a �i !
½C0 �i½C1 �i to such cell i, under the influence of object a,

the cell with label i is separated into two new cells with the

same label; at the same time, object a is consumed; the

objects from C0 are placed in the first cell and those from

C1 are placed in the second cell.

With respect to the semantics of these variants, the rules

of such P systems are applied in a non-deterministic

maximally parallel manner, with the following important

remark: when a cell i is divided (resp., separated), the

division rule (resp., separation rule) is the only one from R
which is applied for that cell at that step. The new cells

resulting from division (resp., separation) could participate

in the interaction with other cells or the environment by

means of communication rules at the next step—providing

that they are not divided (resp., separated) once again.

3 Cell-like P systems with symport/antiport rules

Cell-like P systems, or simply P systems were initially

though as rewriting systems working in a hierachical

structure of membranes and depending on the membrane

that an object is placed, it will evolve in one way or another

one. Later in [11], taking the idea of symport/antiport rules

from tissue P systems, a new framework was developed to

compare the frontiers of efficiency and see if the structure

of the graph associated with the system matters in terms of

problems that can be efficiently solved.

3.1 Syntax

Definition 4 A P system with symport/antiport rules of

degree q� 1 is a tuple

P ¼ ðC; E; l;M1; . . .;Mq;R; ioutÞ;

where:

1. C is a finite alphabet;



2. E(C;
3. l is a rooted tree whose nodes are injectively labelled

with 1; . . .; q;
4. M1; . . .;Mq are multisets over C;
5. R ¼ R1 [ . . . [ Rq, where Ri is a finite set of

communication rules associated with node i, of the

following forms:

– (u, out) or (u, in), where u is a non-empty multiset

over C (symport rules);

– (u, out; v, in), where u, v are non-empty multisets

over C (antiport rules);

6. iout 2 f0; 1; 2; . . .; qg.

A P system with symport/antiport rules P ¼

membrane. When applying a rule ðu; outÞ 2 Ri to such

membrane i, the objects specified by multiset u are sent to

the zone inmediately outside of such membrane, that is, to

zone p(i).

A symport rule ðu; inÞ 2 Ri is applicable to a configu-

ration Ct at an instant t if there exists a membrane labelled

by i at configuration Ct, and multiset u is contained in the

parent p(i) of such membrane. When applying a rule

ðu; inÞ 2 Ri to a membrane i at Ct, the objects specified by

multiset u goes out from the parent p(i) of such membrane

and enters into it.

An antiport rule ðu; out; v; inÞ 2 Ri is applicable to a

configuration Ct at an instant t if there exists a membrane

labelled by i at configuration Ct, multiset u is contained in

such membrane, and multiset v is contained in its parent.

When applying a rule ðu; out; v; inÞ 2 Ri to a membrane i

at Ct, the objects specified by multiset u are sent out of

membrane i into its parent and, at the same time, bringing

the objects specified by multiset v into such membrane.

The rules of a P system with symport/antiport rules are

applied in a non-deterministic maximally parallel manner:

at each step we apply a multiset of rules which is maximal,

so no further applicable rules can be added.

Given a P system with symport/antiport rules P, we say

that configuration Ct yields configuration Ctþ1 by applying

the rules from R following the previous remarks. The

concept of computation is analogous to the one defined for

tissue P systems with symport/antiport rules.

3.3 Membrane division and membrane separation

Here, we introduce new types of rules (membrane division

and membrane separation) inspired by the mitosis and the

membrane fission processes, in the framework of P systems

with symport/antiport rules. These rules provide a mecha-

nism to construct an exponential workspace (expressed in

terms of number of objects and number of membranes) in

linear time.

Definition 5 A P system with symport/antiport rules and

membrane division of degree q� 1 is a tuple

P ¼ ðC; E; l;M1; . . .;Mq;R; ioutÞ, where:

1. P ¼ ðC; E; l;M1; . . .;Mq;R; ioutÞ is a P system with

symport/antiport rules;

2. R ¼ R1 [ . . . [ Rq, where for each i 62 f1; ioutg such

that i is the label of an elementary membrane, Ri also

contains rules of the form ½ a �i ! ½ b �i½ c �i, where

a; b; c 2 C (division rules for elementary membranes).

A division rule ½ a �i ! ½ b �i½ c �i 2 Ri is applicable to a

configuration Ct at an instant t if there exists an elementary

membrane labelled by i at configuration Ct, and object a is

contained in such membrane. When applying a division

ðC; E; l; M1; . . .; Mq; R; ioutÞ of degree q � 1 can be 
viewed as a set of q membranes labelled by 1; . . .; q , 
arranged in a hierarchical structure l given by a rooted tree 
whose root is called the skin membrane labelled by 1, such 
that: (a) M1; . . .; Mq are multisets over the working 
alphabet representing the objects initially placed in the q 
membranes of the system; (b) E is the set of objects ini-
tially located in the environment of the system, all of them 
available in an arbitrary number of copies; (c) R1; . . .; Rq 
are finite sets of communication rules over C (Ri is asso-
ciated with the membrane i of l); and (d) iout represents a 
distinguished zone which will encode the output of the 
system. We use the term zone i (0 � i � q) to refer to 
membrane i in the case 1 � i � q and to refer to the envi-
ronment in the case i ¼ 0. The length of rule (u, out) or  
(u, in) (resp., (u; out; v, in)) is defined as j u j (resp., 
j u j þ j  v j). If E ¼ ;  then we say that the P system is 
without environment.

For each membrane i different from the skin membrane, 
we denote by p(i) the parent of membrane i in the rooted 
tree l. We define pð1Þ ¼  0, that is, by convention the 
‘‘parent’’ of the skin membrane is the environment.

3.2 Semantics

An instantaneous description or configuration Ct at an 
instant t of a P system with symport/antiport rules is 
described by the membrane structure at instant t, all mul-

tisets of objects over C associated with all the membranes 
present in the system, and the multiset of objects over C n E  
associated with the environment at that moment. Recall 
that initially there are infinite copies of objects from E in 
the environment, and hence this set is not properly changed 
along the computation. The initial configuration of the 
system is ðl; M1; . . .; Mq; ;Þ.

A symport rule ðu; outÞ 2 Ri is applicable to a config-
uration Ct at an instant t if there exists a membrane labelled 
by i at configuration Ct, and multiset u is contained in such



rule ½ a �i ! ½ b �i½ c �i to an elementary membrane labelled

by i at configuration Ct, under the influence of object a,

such membrane is divided into two new membranes with

the same label; in the first copy, object a is replaced by

object b and in the second one, object a is replaced by

object c; all the other objects residing in such membrane

i are replicated and copies of them are placed in the two

new membranes.

Definition 6 A P system with symport/antiport rules and

membrane separation of degree q� 1 is a tuple

P ¼ ðC;C0;C1; E; l;M1; . . .;Mq;R; ioutÞ, where:

1. P ¼ ðC; E; l;M1; . . .;Mq;R; ioutÞ is a P system with

symport/antiport rules;

2. fC0;C1g is a partition of C, that is, C ¼ C0 [ C1,

C0;C1 6¼ ;, C0 \ C1 ¼ ;;
3. R ¼ R1 [ . . . [ Rq, where for each i 62 f1; ioutg such

that i is the label of an elementary membrane, Ri also

contains rules of the form ½ a �i ! ½C0 �i½C1 �i, where
a 2 C (separation rules for elementary membranes).

A separation rule ½ a �i ! ½C0 �i½C1 �i 2 Ri is applicable

to a configuration Ct at an instant t if there exists an ele-

mentary membrane labelled by i at configuration Ct, and
object a is contained in such membrane. When applying a

separation rule ½ a �i ! ½C0 �i½C1 �i to an elementary mem-

brane labelled by i, under the influence of object a, such

membrane is separated into two new membranes with the

same label; at the same time, object a is consumed; the

objects from C0 are placed in the first membrane and those

from C1 are placed in the second membrane.

With respect to the semantics of these variants, the rules

of such P systems are applied in a non-deterministic

maximally parallel manner, with the following important

remark: when a membrane i is divided (resp., separated),

the division rule (resp., separation rule) is the only one

from Ri which is applied for that membrane at that step.

The new membranes resulting from division (resp., sepa-

ration) could participate in the interaction with other

membranes or the environment by means of communica-

tion rules at the next step—providing that they are not

divided (resp., separated) once again.

4 Solving decision problems by means
of membrane systems

Originally called accepting membrane systems in [16],

recognizer membrane systems are devices devoted to solve

decision problems. It is worth noting that solving decision

problems can be described by recognizing a certain lan-

guage associated with it.

4.1 Recognizer membrane systems

From now, the term membrane system is used to refer any

cell-like or tissue-like P system introduced at the previous

sections. An arbitrary membrane system of the order q� 1

will be described by a tuple

ðC;C0;C1; E; l;M1; . . .;Mq;R; ioutÞ

where we can think that C0 ¼ C1 ¼ ; for membrane sys-

tems without separation rules and l is not explicitely

defined in tissue P systems.

Next, we introduce the concept of recognizer associated

with the membrane systems defined in the previous

sections.

Definition 7 A recognizer membrane system

P ¼ ðC;C0;C1; E;R; l;M1; . . .;Mq;R; iin; ioutÞ

is a membrane system verifying the following:

– The working alphabet C has two distinguished objects

yes and no, with at least one copy of them present in

some initial multiset, but none of them initially present

in E;
– there exists an additional alphabet R (the input

alphabet) strictly contained in C such that E � C n R;
– M1; . . .;Mq are multisets over C n R;
– iin 2 f1; . . .; qg is the label of the input region;

– the output zone iout is the environment;

– all computations halt;

– if C is a computation of P, then either object yes or

object no (but not both) must have been released into

the environment, and only at the last step of the

computation.

For each multiset m over the input alphabet R, a com-

putation of P with input multiset m starts from the con-

figuration ðl;M1; . . .;Miin þ m; . . .;Mq; ;Þ, where the

input multiset m has been added to the content of the input

region iin. That is, we have an initial configuration asso-

ciated with each input multiset m over R in recognizer

membrane systems. We denote by Pþ m the membrane

system P with input multiset m.

We denote by TC (respectively, TDC, TSC) the class of

recognizer tissue P systems with symport/antiport rules

(resp., with division rules or separation rules). For each

natural number k� 1, we denote by TCðkÞ (resp., TDCðkÞ,
TSCðkÞ) the class of recognizer tissue P systems with

symport/antiport rules (resp., with division rules or with

separation rules) such that the length of the communication

rules is at most k. If the set associated with the environment

is empty then we write cTC , dTDC, dTSC , cTCðkÞ, dTDCðkÞ,
dTSCðkÞ, respectively.



We denote by CC (respectively, CDC, CSC) the class of

recognizer P systems with symport/antiport rules (resp.,

with division rules or separation rules). For each natural

number k� 1, we denote by CCðkÞ (respectively, CDCðkÞ,
CSCðkÞ) the class of recognizer P systems with symport/

antiport rules (resp., with division rules or with separation

rules) such that the length of the communication rules is at

most k. If the set associated with the environment is empty

then we write cCC , dCDC, dCSC, cCCðkÞ, dCDCðkÞ, dCSCðkÞ,
respectively.

4.2 Polynomial complexity classes of recognizer

membrane systems

According to [16], we define what solving a decision

problem by a family of recognizer membrane systems with

symport/antiport rules, in a uniform way, means.

Definition 8 A decision problem X ¼ ðIX ; hXÞ is solvable
in polynomial time by a family P ¼ fPðnÞ j n 2 Ng of

recognizer membrane systems (in a uniform way) if the

following hold:

– the family P is polynomially uniform by Turing

machines, that is, there exists a deterministic Turing

machine working in polynomial time which constructs

the system PðnÞ from n 2 N (n expressed in unary);

– there exists a pair (cod, s) of polynomial-time com-

putable functions over IX such that:

– for each instance u 2 IX , s(u) is a natural number

and cod(u) is an input multiset of the system

PðsðuÞÞ;
– for each n 2 N, s�1ðnÞ is a finite set;

– the family P is polynomially bounded with regard

to (X, cod, s), that is, there exists a polynomial

function p, such that for each u 2 IX every compu-

tation of PðsðuÞ þ codðuÞ is halting and it performs

at post pðj u jÞ steps;
– the family P is sound with regard to (X, cod, s),

that is, for each u 2 IX , if there exists an accepting

computation of PðsðuÞÞ þ codðuÞ, then hXðuÞ ¼ 1;

– the family P is complete with regard to (X, cod, s),

that is, for each u 2 IX , if hXðuÞ ¼ 1, then every

computation of PðsðuÞÞ þ codðuÞ is an accepting

one.

under complement and polynomial-time reductions

(see [16], for details).

5 Efficiency of computing models

Let us recall that each computing model provided a

mathematical definition of the informal idea of solving

abstract problemas by means of mechanical procedure

(algorithm). A computing model which is equivalent in

power to Turing machines is called universal. An algorithm

in a universal computing model is efficient if it runs in

polynomial time.

An abstract problem is called tractable if it can be

solved by an efficient algorithm in a universal computing

model, that is, if it is solvable by a polynomial-time

algorithm (the upper bound of computational resources is

polynomial). The complexity class of decision

tractable problems is denoted by P. An abstract problem is

called intractable if it cannot be solved by a polynomial-

time algorithm (the lower bound computational resources

is exponential).

Let us recall that NP-complete problems are problems

with no known polynomial-time algorithm but not yet

proven to be intractable. They are merely conjectured to be

so (assuming that P 6¼ NP) and we say that NP-complete

problems are presumably intractable. A computing model

with the ability to provide polynomial-time solutions to

intractable problems (resp., NP-complete problems) is

called an efficient computing model (resp., presumably

efficient computing model).

Given two computing models M1 and M2, we say that

M1 is a submodel of M2, denoted by M1 � M2, if and only

if each mechanical procedure in M1 is also a mechanical

procedure in M2. Thus, if M1 � M2 then model M2 is

obtained from model M1 by adding some syntactic or

semantic ingredients, and each mechanical solution S inM1

to an abstract problem X is also a mechanical solution S in

M2. Let us assume that M1 and M2 are computing models

such that: (a)M1 is non-efficient; (b)M2 is efficient; and (c)

M1 � M2. Then, we can think that passing from computing

modelM2 to computing modelM1 amounts to passing from

non-efficiency to efficiency. In this context, we also say

that ingredients added to M1 to produce M2, provides a

frontier of the efficiency, that is, a borderline of the

tractability of abstract problems.

Let SX be a polynomial-time solution to an NP-complete

problem X in a presumably efficient computing model M2.

In order to prove that P 6¼ NP would be enough to show

that removing the ingredients needed to obtain M2 from M1

is not possible to produce a polynomial-time solution to X.

In order to prove that P ¼ NP would be enough to generate

from SX a new polynomial-time solution to X such that

According to this definition, we say that for each u 2 IX , 
the recognizer membrane system PðsðuÞÞ þ codðuÞ is 
confluent, in the sense that all possible computations of the 
system must give the same answer.

If R is a class of recognizer membrane systems, then we 
denote by PMCR the set of all decision problems which 
can be solved in polynomial time (and in a uniform way) 
by means of systems from R. The class PMCR is closed



does not use the ingredients needed to obtain M2 from M1.

A grpahical representation of this can be seen in Fig. 1

Let us recall that the classical approach to tackle the the

P versus NP problem is to consider it an NP-complete

problem and try to prove that it is a problem in class P. If

this is possible then P ¼ NP, otherwise P 6¼ NP. Accord-

ing with the previous considerations, each frontier of the

efficiency provides a new and unconventional way to

attack the P versus NP problem.

5.1 Techniques

In order to obtain results that provide frontiers of the

efficiency in the framework of Membrane Computing,

three important techniques (dependency graph technique,

simulation technique and algorithmic technique) have been

used. Next, these techniques are briefly described.

5.1.1 Dependency graph technique

Let P be a recognizer tissue P system where all its com-

munication rules have length 1. In this case, each rule of P
can be activated by a single object (note that this holds also

for division or separation rules). Hence, there exists in

some sense, a dependency between the object triggering the

rule and the object or objects produced by its application.

Then, a directed graph (dependency graph) can be asso-

ciated with P verifying the following relevant property:

there exists an accepting computation of P if and only if

there exists a path between two distinguished nodes in the

dependency graph associated with it (see [17] and [18] for

more details).

5.1.2 Simulation technique

Let us define the meaning of efficient simulations in the

framework of recognizer tissue P systems. Given two

recognizer tissue P systems, P and P0, we say that P0

simulates P in an efficient way if the following holds: (a)

P0 can be constructed from P by a deterministic Turing

machine working in polynomial time; and (b) There exists

an injective function, f, from the set CompðPÞ of com-

putations of P onto the set CompðP0Þ of computations of

P0 such that:

H There exists a deterministic Turing machine that

constructs computation f ðCÞ from computation C in

polynomial time.

H A computation C 2 Comp ðPÞ is an accepting

computation if and only if f ðCÞ 2 Comp ðP0Þ is an

accepting one.

H There exists a polynomial function p(n) such that for

each C 2 Comp ðPÞ we have jf ðCÞj � pðjCjÞ.

5.1.3 Algorithmic technique

The technique consists of the construction of a determin-

istic algorithm A working in polynomial time that receives

as input a tissue P system P from F and an input multiset

m of P. Then, algorithm A reproduces the behaviour of a

computation of Pþ m. In particular, if the given tissue P

system is confluent then the algorithm will provide the

same answer of the system, that is, the answer of algorithm

A is affirmative if and only if the system Pþ m has an

accepting computation (and then, any computation is an

accepting one).

6 On efficiency of membrane systems
with symport/antiport rules

In this section we analyze the computational efficiency of

recognizer membrane systems (tissue-like P systems or

cell-like P systems) with symport/antiport rules.

6.1 Basic membrane systems with symport/antiport

rules

We analyze the limits on efficient computation of basic

membrane systems (tissue-like P systems or cell-like P

systems) with symport/antiport rules.

It is worth noting that in this kind of tissue P systems, an

exponential workspace (expressed in terms of the number

of objects) can be constructed in linear time. Indeed, let us

consider a cell-like or a tissue-like P system of degree 1

whose set of the environment is E ¼ fa1; . . .; anþ1g, with
n� 1, and the finite set of rules is

R ¼ fð1; ai=a2iþ1; 0Þ j 1� i� ng. Then 2n objects anþ1 can

be produced in n computation steps. However, this property

is not enough in order to efficiently solve computationally

hard problems. Indeed, on the one hand, families of rec-

ognizer basic tissue P systems which solve problem can be

efficiently simulated by a family of recognizer basic tran-

sition P systems solving the same problem (see [19], for

Fig. 1 A new way to tackle the P vs. NPproblem



details). On the other hand, it is well known that only

problems in class P can be solved in polynomial time by

means of families of recognizer basic transition P systems

[20]. Then we have the following result:

Proposition 1 P ¼ PMCTC ¼ PMCCC.

6.2 Membrane systems with symport/antiport rules

and division rules

Allowing the use of division rules to create an exponential

workspace in terms of cells or membranes seems powerful.

Here we analyze the efficiency of recognizer tissue-like

and cell-like P systems with symport/antiport rules from a

computational complexity point of view. Specifically, the

ability to solve computationally hard problems by means of

families of such recognizer membrane systems is studied.

By using the technique of dependency graph associated

with tissue-like and cell-like P systems with cell division

and communication rules with length at most 1, it has been

proved that this kind of membrane systems can only effi-

ciently solve problems in class P (see [17] and [21], for

details).

Proposition 2 P ¼ PMCTDCð1Þ \ PMCCDCð1Þ

On the one hand, in [22], a polynomial-time solution of

the HAM-CYCLE problem, a well known NP-complete

problem, was given by using a family of recognizer tissue P

systems with cell division and communication rules of

length at most 2. On the other hand, in [23], a polynomial-

time solution of the HAM-CYCLE problem, was given by

using a family of recognizer P systems with membrane

division division and communication rules of length at

most 2. Therefore, we have:

Proposition 3 NP [ co- NP � PMCTDCð2Þ \ PMCCDCð2Þ.

6.3 Membrane systems with symport/antiport rules

and separation rules

by using a family of recognizer P systems with membrane

separation and communication rules of length at most 3.

Therefore, we have:

Proposition 5 NP [ co- NP � PMCTSCð3Þ \ PMCCSCð3Þ.

6.4 Membrane systems with symport/antiport rules

and without environment

By using the algorithmic technique, it has been proved that

only problems in class P can be solved in polynomial time

by means of families of tissue-like P systems with symport/

antiport rules and cell separation but without environment

(see [25] for tissue-like P systems and [26] for cell-like P

systems). Therefore, we have:

Proposition 6 P ¼ PMC
cTSC

¼ PMC
cCSC

By using the simulation technique, it has been proved

that each family of recognizer tissue-like (resp., cell-like) P

systems with cell division which use communication rules

of length at most k� 1 and solve a decision problem X in

polynomial time, can be efficiently simulated by means of

a family of recognizer cell-like P systems with cell division

and without environment which use communication rules

of length at most k� 1, solving X in polynomial time (see

[27] for cell-like P systems, and [28] for cell-like P sys-

tems). Therefore,

Proposition 7 For each k� 1 we have:

PMC
cTDCðkÞ

¼ PMCTDCðkÞ ¼ PMC
cCDCðkÞ

¼ PMCCDCðkÞ

7 New frontiers of the tractability

In this section, new frontiers of the tractability in terms of

membrane systems with symport/antiport rules, are

obtained.

– From Propositions 1 and 3, a frontier of the tractability

is obtained when the use of cell division rules (resp.

membrane division rules) are allowed in basic tissue P

systems (resp. cell-like P systems) with symport/

antiport rules.

– From Propositions 2 and 3, we deduce that in the

framework of recognizer tissue P systems with cell

division, the length of the communication rules

provides a borderline of the tractability of decision

problems. Specifically, passing from length 1 to length

2, amounts to passing from non-efficiency to efficiency,

assuming that P 6¼ NP.

– From Propositions 4 and 5, we deduce that in the

framework of recognizer tissue-like (resp., cell-like) P

systems with cell separation (resp., membrane separa-

tion), the length of the communication rules provides a

borderline of the tractability of decision problems.

By using the simulation technique, it has been proved that 
only problems in class P can be solved in polynomial time 
by means of families of tissue-like (resp. cell-like) P sys-
tems with cell separation (resp. membrane separation) 
which use communication rules with length at most 2 (see 
[24] for tissue-like P systems and [14] for cell-like P 
systems).

Proposition 4 P ¼ PMCTSCð2Þ \ PMCCSCð2Þ

On the one hand, in [15], a polynomial-time solution of 
the SAT problem was given by using a family of recognizer 
tissue P systems with cell division and communication 
rules of length at most 3. On the other hand, in [14], a 
polynomial-time solution of the SAT problem, was given



Specifically, passing from length 2 to length 3, amounts

to passing from non-efficiency to efficiency, assuming

that P 6¼ NP.

– From Propositions 5 and 6, we deduce that in the

framework of recognizer tissue-like (resp., cell-like) P

systems with cell separation (resp., membrane separa-

tion), and the communication rules with length at most

3, the environment provides a borderline of the

tractability of decision problems. Specifically, passing

from don’t have environment to have environment,

amounts to passing from non-efficiency to efficiency,

assuming that P 6¼ NP.

– From Proposition 7, we deduce that in the framework

of recognizer tissue-like (resp., cell-like) P systems

with symport/antiport rules and cell division (resp.,

membrane division), the role of the environment is

irrelevant from a computational complexity point of

view.

8 Conclusions and future work

Membrane systems (tissue-like and cell-like) with symport/

antiport rules, with or without environment, which use

division rules (inspired by the mitosis) or separation rules

(inspired to membrane fission) to implement a mechanism

able to produce an exponential workspace (expressed in

terms of number of objects and number of cells/mem-

branes) in poynomial-time, has been analyzed from a

computational complexity point of view.

Assuming that P 6¼ NP, some frontiers of the efficiency

have been obtained, providing a new (unconventional

computing) technique to address the P versus NP problem.

In this context, has been shown that the structure (a di-

rected graph in the tissue-like approach and a rooted tree

in the case of cell-like approach) is not relevant. It seems

interesting to study if the structure matters when working

with active membranes in cell-like P systems or with active

cells in tissue-like P systems. Another relevant research

line is the fact that PSPACE-complete problems as

QBF� SAT can be efficiently solved by means of a family

of cell-like P systems with symport/antiport with length at

most 3 and division rules [29]. Here, the hierarchized

structure formed by the rules of the system helps in the

simulation of the quantifiers. On the contrary, in [30] it has

been demonstrated that the upper bound of tissue-like P

systems with symport/antiport rules and division rules is

the complexity class P#P, obtaining a frontier between

these two complexity classes from the Membrane Com-

puting framework. Several families of membrane systems

have the exact characterization of P, but it is not usual to

have the equivalent complexity class if the family can

solve presumably hard problems, so another interesting

research topic is to characterize existing membrane com-

puting families.
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tions of Membrane Computing in Systems and Synthetic Biology.

Springer, Cham, Switzerland (2014)
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15. Pérez-Jiménez, M.J., Sosı́k, P.: An optimal frontier of the effi-

ciency of tissue P systems with cell separation. Fundam. Inf.

138(1–2), 45–60 (2015)
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tractability by cell-like membrane systems. In: Subramanian,

K.G., Rangarajan, K., Mukund, M. (eds.) Formal Models, Lan-

guages and Applications, pp. 137–154. World Scientific, Singa-

pore (2006)

21. Macı́as-Ramos, L.F., Song, B., Song, T., Pan, L., Pérez-Jiménez,
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