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Abstract. Typical Solar Years (TSYs) are key parameters for the solar energy industry. In particular, TSYs are mainly 
used for the design and bankability analysis of solar projects. In essence, a TSY intends to describe the expected long-
term behavior of the solar resource (direct and/or global irradiance) into a condensed period of one year at the specific 
location of interest. A TSY differs from a conventional Typical Meteorological Year (TMY) by its absence of 
meteorological variables other than solar radiation. Concerning the probability of exceedance (Pe) needed for bankability, 
various scenarios are commonly used, with Pe90, Pe95 or even Pe99 being most usually required as unfavorable 
scenarios, along with the most widely used median scenario (Pe50). There is no consensus in the scientific community 
regarding the methodology for generating TSYs for any Pe scenario. Furthermore, the application of two different 
construction methods to the same original dataset could produce differing TSYs. Within this framework, a group of 
experts has been established by the Spanish Association for Standardization and Certification (AENOR) in order to 
propose a method that can be standardized. The method developed by this working group, referred to as the EVA 
method, is presented in this contribution. Its evaluation shows that it provides reasonable results for the two main 
irradiance components (direct and global), with low errors in the annual estimations for any given Pe. The EVA method 
also preserves the long-term statistics when the computed TSYs for a specific Pe are expanded from the monthly basis 
used in the generation of the TSY to higher time resolutions, such as 1 hour, which are necessary for the precise energy 
simulation of solar systems. 

INTRODUCTION 

A Typical Solar Year (TSY) is a commonly used tool for design and bankability analysis of solar energy 
projects, such as CSP, and in many other fields. A TSY is similar to the more ubiquitous Typical Meteorological 
Year (TMY), but only includes solar radiation data, such as direct normal irradiance (DNI) for CSP applications, 
whereas a TMY also contains information about many additional meteorological variables, such as temperature, 
humidity, or wind speed. Early developments of TSYs were made at National Renewable Energy Laboratory 
(NREL) for either DNI or global horizontal irradiance (GHI) [1]. They were referred to as TDY and TGY, 
respectively. Although the use of TMY or TSY is not recommended by experts for the precise design of solar-based 
renewable energy conversion systems [2, 3], such as CSP or PV, it has nevertheless become standard practice in the 
evaluation of the economic feasibility of such projects. Similarly to TMYs, TSYs are representative annual time-
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series of typical solar radiation conditions expected at a specific location over a long time period, ideally the lifetime 
of the facility. A TSY does not correspond to any particular year of a specific period, but is artificially built as a 
composition of twelve “typical” months selected from different natural years, themselves extracted from a long-term 
time series of solar radiation data at the location of interest. The selection of those months to be used in the 
generation of the TSY involves a statistical characterization of the long-term time series of the dataset. The 
theoretical features of this synthetic year facilitate the objective quantification of the expected solar irradiance for 
different annual scenarios of available energy amount, usually measured by the probability of exceedance (Pe), and 
the corresponding estimated uncertainty. These valuable properties allow for an objective risk balance and safer 
analysis of the economic feasibility of the projects. Therefore, reliable TSYs for different solar resource scenarios—
usually low-energy or “near worst case” (Pe90 to Pe99) and average or median (Pe50)—are demanded by the 
industry. Unfortunately, there is no scientific consensus on a standard method to generate such TSYs outside of the 
conventional Pe50 scenario. In fact, most likely only one method seems to have been proposed so far for the 
construction of TSYs corresponding to any probability scenario [4]. Nevertheless, the different strategies followed 
by the existing or future methods could undesirably generate different TSYs and thus different financing risk factors 
for the same initial meteorological dataset. 

Within this framework, the Spanish Association for Standardization and Certification (AENOR) has established 
a working group of experts with the goal to design and standardize a method to generate TSYs for any solar energy 
scenario, specifically for applications in solar thermal power plants. In a first step, Fernandez-Peruchena et al. [5] 
recently presented a study that showed that any Pe (hereafter, Pexx) could be inferred by the estimation of the 
continuous cumulative distribution functions (CDF) evaluated from long-term annual series of data of GHI and DNI. 
The present contribution presents a novel procedure for the selection of the most appropriate individual months 
(among all those available in the long-term time series) to generate a TSY for any particular Pexx.  

METHODOLOGY 

For the generation of TSYs, the complete methodology must comprise two parts. In the first part, the annual 
values of each variable in the long-term time series are calculated. With this discrete number of annual values the 
estimated continuous CDF is derived using a Weibull distribution. The estimation of the parameters of the Weibull 
annual distribution is performed here using the fitdistrplus package [6] in R version 3.2.4 (“R: The R Project for 
Statistical Computing,” 2003) with the maximum likelihood method. This procedure is well described and analyzed 
in [5]. This estimated CDF provides the values for any annual probability of exceedance (Pexx), hence for any 
desired scenario, corresponding to design, bankability, etc. It should be clarified here that there is a common 
acceptation of using the concepts of probability of exceedance and percentile (normally referred to as Pe and P, 
respectively) as if they were the same. Both are complementary but should not be confused: for a determined 
percentile value the probability of exceeding that value is the complementary to 100%; for instance, for a percentile 
5, the probability of being exceeded is 95%. Therefore it would not be correct to use a percentile 95 to refer to a 
scenario of low energy. Conversely, a probability of exceedance of 95% (Pe95) more appropriately means that the 
value will be exceeded 95% of the time. In this work we used the concept of probability of exceedance instead of 
percentile, because it is more commonly used by the industry. 

The second part of the method corresponds more specifically to the analysis presented in this work, and is 
referred to as the EVA method, which is an acronym constructed from the Spanish words for seasonality and 
variability. Once the annual target value for a specific Pexx of interest is obtained from the estimated continuous 
CDF in the first part, the next step is to concatenate a subset of twelve calendar months from the long-term time 
series of the original data, which might be measured (preferably) or modeled. Ultimately, this ensemble constitutes a 
TSY for the scenario determined by the target Pexx value. Therefore, the objective of the method is to determine 
which subset of twelve months shall be extracted from the complete long-term dataset. The EVA method is 
composed of two stages. In the first stage, the aim is to find those monthly values that respect two requisites: (i) in 
combination they must be statistically representative of the desired Pexx scenario; and (ii) their annual sum must 
correspond to the Pexx target value. Those monthly values are called “monthly expected values” (MEV), and they 
do not have to be necessarily equal to any of the available monthly values of the long-term time series. With this 
definition, the sum of all MEVs is exactly equal to the annual target value of Pexx. To determine these monthly 
values the method uses the following conditions: 
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1. For each month, the MEV should be the particular value that minimizes its distance to the corresponding 
monthly median (least-squares equation). 

2. The MEV annual sum must be equal to the annual target value of Pexx (binding). 
3. The intra-annual statistics that describe the natural behavior of the solar irradiance at the location of study is 

introduced by a composition of weights that conveniently modifies the least-squares equation. These 
weights, noted 𝑤𝑖, are determined by the product of two factors. The first one (𝑓1𝑖) measures the variability 
of the irradiance during each month relative to the others. Prior to obtain these values the seasonality of the 
monthly time series must be removed by means of a clear-sky model. For this study, the Bird clear-sky 
model described by Iqbal (1983) as Model C [7], particularized to a clean and dry atmosphere version, is 
used. As a measure of the monthly variability the statistic named median absolute deviation (MAD) is 
computed for each month. The second factor (𝑓2𝑖) accounts for each individual monthly energy contribution 
relative to the total annual energy. It is calculated as the mean of the monthly values of each month available 
in the original time series. The weights are combined by the product: 𝑤𝑖 = 𝑓1𝑖 ∙ 𝑓

2
𝑖, for 𝑖 = 1, … , 12.  

 
From a mathematical standpoint, the combination of the three conditions above can be described as a 

minimization problem with constraint. In other words, the problem consists in the minimization of the function: 
 

𝑓(𝑥1, … 𝑥12) =  ∑ �∑ 𝑤𝑖
12
𝑖=1
𝑤𝑖

� �𝑥𝑖 −  𝑃𝑃𝑖50�
212

𝑖=1  (1) 
With the following constraint: 
 

∑ 𝑥𝑖 =12
𝑖=1 𝑃𝑃𝑦  (2) 

 
Where:  
 

𝑖 = 1, … ,12; month of the year. 
 
𝑥𝑖: monthly expected value (MEV) for month 𝑖.  
 
𝑃𝑃𝑖50: median of the available values of month i relative to the long-term time series. 
 
𝑃𝑃𝑦: annual probability of exceedance at the y level (Pexx).  
 
𝑤𝑖: weight. 

This minimization problem is analytically resolved by the method of Lagrange multipliers. After application of 
the procedure an equation is finally obtained. The unknowns of this resulting equation are the 12 MEV(𝑥𝑖) values. 

The second stage simply consists in finding the available monthly values that are closest in distance to the 
corresponding MEV. These distances, called residuals, are obtained as the absolute value of the difference between 
the MEV and the available monthly solar radiation values. Finally, the 12 selected months constitute the desired 
TSY for the specific Pexx of interest. 

In summary, this method can be said to be statistically based and analytically resolved. Because of its general 
definition it can be applied for both components GHI and DNI. Moreover, it should be pointed out that the method 
makes no assumptions about the monthly distributions. This is a key factor that justifies the selection of MAD as a 
measure of variability, since it is a robust statistic. Finally, it should be noted that the normalized weights are 
introduced inverted in function (1) by means of the factor (∑ 𝑤𝑖

12
𝑖=1 𝑤𝑖⁄ ). Therefore, for the 𝑖th month, a low value of 

𝑤𝑖 (low variability and low energy) makes the 𝑖th MEV value closer to the median value of the corresponding 
monthly distribution, comparatively to MEVs whose 𝑤𝑖 are higher.  

RESULTS 

The EVA method has been applied to a wide sample of different climatic locations around the world [5]. The 
selection of these stations is based on the availability of long-term time series (at least 20 years) of high-quality data 
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of surface solar irradiance. The results presented below correspond to the evaluation that has been carried out for 
DNI and GHI at the Burns radiometric station (BRN, 43.52 ºN, 119.02 ºW) of the University of Oregon’s Solar 
Radiation Monitoring Laboratory (UO-SLMR, http://solardat.uoregon.edu/). The high quality of the original data 
has been reinforced through additional quality checks [8]. Note that the irradiance measurements had differing time 
resolutions depending on period (starting at hourly in 1980 and finishing at 5-min from 1995 on). For consistency, 
the time series has been homogenized to the conventional hourly basis throughout. Hourly data were then integrated 
to obtain monthly and yearly values. For this study, the time series of both DNI and GHI covered the complete 33-
year period (1980–2012). The procedure has been applied to derive TSYs for a wide range of Pexx values, including 
the most commonly ones required by the industry, namely: Pe99, Pe95, Pe90 and Pe50. For validation purposes, the 
generated TSYs have been analyzed against the initial long-term time series in order to consider the 
representativeness of each single artificial year under each possible Pexx scenarios. 

To obtain an intuitive perspective of the problem, a possible way is to show the distributions of the monthly 
irradiation values, since the calendar month is the working unit of time adopted by the method. In Fig. 1, the 
distribution of the monthly DNI values is shown by means of boxplot diagrams. Different curves linking the twelve 
calendar months of a year would enclose the area of the total annual energy amount corresponding to different Pexx 
scenarios. Hence, for any specific value of this amount of energy determined by a certain Pexx, there is a set of 
curves whose integral approaches the annual target value of that specific Pexx. The aim of the method is to 
determine the shape of the particular curve that meets the former condition of the integral and provides the most 
representative behavior of the long-term irradiation among all possibilities. 

In Fig. 1, the boxplot diagrams show the set of twelve distributions of monthly DNI values at the Burns station. 
For each boxplot, the interquartile range (IQR) amounts to 50% of the data, between Q1 (25%) and Q3 (75%), and 
the whiskers represent the quantity 1.5·IQR. The mean and median values of each monthly distribution are 
highlighted. Interestingly, each monthly distribution is different from the others, and a normal distribution cannot 
always be assumed in all cases. For instance, in May and September at the Burns station, some values are outside of 
the whiskers interval and can be considered outliers. These circumstances justify the preference of using the robust 
MAD statistic rather than the usual standard deviation as a measure of the variability of the monthly distributions. 
Even though the standard deviation is also a measure of variability in data samples, it presents two important 
disadvantages when the distribution cannot be assumed Gaussian: outliers can strongly influence the standard 
deviation value, and the standard deviation can force a preference for lower vs. higher values, or vice versa. Figure 1 
also shows how the natural seasonal tendency of the time-series exhibits a strong pattern with higher energy values 
during summer months, which is typical of temperate climates. In order to properly compare the variability of the 12 
monthly distributions, the monthly dataset has been seasonally adjusted by means of the clear-sky model. Figure 1 
presents the MEV values calculated with the EVA method for the “near worst-case” scenarios of Pe99 and Pe90 
along with the MEV values obtained with the simplified method that would only use the variability factor 𝑓1𝑖 to 
configure the weights. When only this variability factor 𝑓1𝑖 is taken into account, the winter months (December, 
January and February) have higher weights due to their greater variability (note that, as defined in the Methodology 
section, the higher the variability the higher the weight, and thus the farther the MEV is to the median value of the 
monthly distribution, because of the special way the weights are defined in function (1)) Because winter months are 
naturally less energetic than summer months, MEVs for winter months should have very low values to compensate 
for the contribution of the less variable and more energetic summer months (June, July and August). In other words, 
winter months have to contribute with extremely low energy values relative to the total annual energy amount in 
order to achieve the unfavorable low-energy scenarios Pe99 or Pe90. This occurs in detriment of the higher 
energetic (but less variable) summer months, which cannot contribute to the low annual energy amount with low 
monthly values, but with energy values close to the median. As can be seen in Fig. 1, this is more pronounced for 
the extreme Pe99 case than for the milder Pe90 case. Counting only on variability factor 𝑓1𝑖 by ignoring 𝑓2𝑖 can 
produce a misrepresentation of the possible contribution of the high-energy months to the total amount of annual 
energy in unfavorable cases, such as those determined by scenarios Pe99 or Pe90. The high-energy months (as 
dependent on seasonality) should be considered a major potential contributing factor when extreme years of DNI 
and GHI must be constructed. This is simply because low values of high-energy months can notably reduce the 
available energy of the whole year, and should therefore be taken into account. With the EVA method, this is done 
by means of the energy factor 𝑓2𝑖. As shown in Fig. 1, this produces a different distribution of the contribution of 
each month relative to the annual Pexx value, depending on the variability and energy for that month. Thus, winter 
months may reach low DNI values without being extreme, whereas summer months may reach lower values instead 
of being forced to be closer to the median. In particular, Fig. 1 shows that, for the extreme case represented by Pe99, 
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the MEV values for all months are below their respective IQRs. In contrast, when the method is applied using only 
the first variability factor 𝑓1𝑖, in July the MEV value is still almost within its IQR, whereas extreme values are 
reached in January and December. 

 

 
FIGURE 1. Boxplot diagrams of monthly DNI values for the complete dataset measured at the Burns (BRN) station. The IQR of 

the boxplots is the interquartile [Q1, Q3], and the whiskers equal to 1.5·IQR. The monthly mean and median values of the 
distribution are shown (green dashed and continuous red line, respectively). The MEV values for Pe99 and Pe90 annual values, 

along with those calculated from only the variability factor f1
i are also plotted. 

 
By definition, the sum of the 12 MEVs is exactly equal to the target annual Pexx value. When minimizing the 

residuals, an error is inevitably introduced because the MEV values do not usually coincide with the available 
monthly values of the long-term time series, so that the sum of the residuals is not zero. These errors are presented in 
Figs. 2 and 3 along with the annual values of the constructed TSY over the estimated CDF curve, for DNI and GHI 
respectively. As shown in both figures, the value of the errors differs according to the specific target Pexx value. 
Errors are higher for DNI than for GHI, as could be expected since the former has more interannual variability than 
the latter [9]. Absolute values of the relative errors (in percent relative to the Pexx value) fall within the ranges 0.03–
1.90 and 0.00–0.20 for DNI and GHI, respectively. The highest error is produced in the extreme case (Pe99) for the 
DNI variable (Fig. 2). This suggests that the more extreme Pexx is, the higher the error. However, this is not 
necessarily true in general. In Fig. 3, for instance, the errors for Pe60 and Pe10 are higher than those for Pe99. 
Furthermore, Figs. 1 and 2 show that the errors are not always of the same sign: they can indicate either 
overestimation (negative error) or underestimation (positive error). In general, it can be said that the magnitude of 
the error depends on the number of years available in the long-term time series to generate the TSY, because a 
longer time series implies more possibilities of finding actual monthly values that are closer to the MEV values. 
Finally, it should be highlighted that the errors are very low in all the cases presented in Figs. 2 and 3, and also for 
the pool of locations analyzed elsewhere [5] (not shown). The errors are below the usual standard limits that have 
been established to account for slight corrections –usually consisting in day substitutions- to obtain a better approach 
to the target Pexx. 
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FIGURE 2. DNI annual values and estimated CDF at Burns (BRN) station, along with the annual target Pexx values and the 
estimated annual TSY-Pe values. Errors between the target and estimated TSY values for the different Pexx are also shown. 
 

 
  

FIGURE 3. Same as Figure 2, but for GHI. 
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Finally, it is important to consider that, although the methodology to generate TSYs is based on a monthly time 
unit, the representative annual time series is most usually needed at higher time resolutions. In principle, since the 
TSY is constructed from blocks of monthly periods extracted from the original long-term time series, the original 
time resolution (e.g., hourly) should be conserved. In fact, this desirable feature of the TSY both restricts and 
determines the way it is defined. To evaluate the capability of the EVA method to generate representative years for 
higher time resolutions, the constructed TSYs are set to the original hourly resolution of their constituent months in 
order to compare the frequency distribution of the hourly TSYs with that of the long-term. Figure 4 shows the 
frequency distributions of TSY for Pe95 and Pe50 in the case of DNI at hourly time resolution, compared to that of 
the original long-term time series. The figure shows that the shapes of the frequency distributions of the TSYs are 
quite similar to that of the long-term. The reduction in annual energy from the Pe50 to the Pe95 scenarios is mainly 
produced by the higher DNI values, which appears logical. 

 

 
FIGURE 4. Frequency histograms of sun-up hourly values of DNI for generated TSYs at Pe95 and Pe50 and for the original 

long-term time series. 

CONCLUSION 

TMYS and TSYs are demanded by the solar energy industry because of their usefulness, mainly for the design 
and bankability analysis of solar projects. An issue, however, is that some temporal variability information is lost 
during the construction of such artificial years, with respect to the long-term time series of solar data they are based 
upon. Thus, the use of TMYs or TSYs is not recommended by experts for the precise design of solar energy 
conversion systems. Nevertheless, TMYs and TSYs have become a standard source of data for typifying the 
expected energy production at CSP or PV plants. Due to the lack of scientific consensus on how to define a method 
for generating TSYs, several initiatives have surfaced to propose methods to generate “standard” TSYs or TMYs. 
The design characteristic of representativeness and the constraint of being conformed by data of the historical long-
term time series are the commonly elements used by the proposed methods. Whereas well-established methods exist 
to develop synthetic years for average or median conditions, the current challenge is to represent more extreme solar 
resource situations, such as what a financial institution would consider a worst-case scenario for interest repayment, 
which is indicated by the widely-used concept of probability of exceedance.  

In this work, a novel procedure for generating TSYs of solar irradiance -both DNI and GHI components- for any 
probability scenario is presented. The method, referred to as the EVA method, is based on statistical criteria and it 
has an analytical definition. The objective of the method is the determination of the energy monthly values of each 
calendar month whose annual sum is equal to the annual target value of probability of exceedance Pexx. These 12 
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months are called monthly expected values (MEV). The TSY is comprised by the available 12 calendar months 
whose absolute difference respect to the corresponding MEV is minimal. The EVA method makes use of a 
composition of weights that accounts for: i) the variability of the seasonal adjusted monthly distributions, ii) the 
individual monthly energy contribution of each calendar month respect to the total annual energy. 

The results show that the method provides reasonable results, with low differences between the annual target 
value for a certain probability of exceedance and the annual value of the irradiance generated by the TSY. It also 
preserves the long-term statistics when the constructed TSY of a determined probability of exceedance is set to the 
original higher time resolution of its constituents months (1 hour). It has also other valuable properties such as its 
statistical base and analytical definition, flexibility and facility to be implemented in a software code. 

Deeper research should be carried out to extend the pool of sites where the evaluation presented here is possible. 
Further work should also analyze other essential aspects of bankability, like uncertainty. In particular, it would be 
important to establish how to take the uncertainty in the EVA method into account with respect to the total 
uncertainty in the generation of a TSY. Such uncertainties include those related to the generation of the data in the 
original long-term time series, along with those due to the representativeness of the available dataset (usually of 
limited duration) with respect to actual long-term conditions. It would also be useful to compare results obtained 
from long-term time series of measured data to those derived from other sources, such as satellite-based modeled 
data. Finally, it would be important to carry out a study in which the solar plant’s energy production would be 
analyzed in direct connection with the solar irradiance data. Such study would examine the relations between the 
solar resource and the expected vs. actual energy production, as affected by the use or not of a TSY at the design 
stage. 
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