Spiking Neural P system without delay simulator
implementation using GPGPUs *

Francis Cabarle
Algorithms & Complexity Lab
Department of Computer

Henry Adorna
Algorithms & Complexity Lab
Department of Computer

Miguel
Martinez-del-Amor
Research Group on Natural

Science Science Computing
University of the Philippines University of the Philippines University of Seville, Spain
Diliman Diliman

fccabarle@up.edu.ph

ABSTRACT

This paper presents a parallel simulator for a type of P sys-
tem known as spiking neural P system (SNP system) us-
ing general purpose graphics processing units (GPGPUs).
GPGPUs, unlike the more conventional and general pur-
pose, multi-core CPUs, are used for parallelizable problems
due to their architectural optimization for parallel compu-
tations.

Membrane computing or P systems on the other hand, are
cell-inspired computational models which compute in a max-
imally parallel and non-deterministic manner. SNP systems,
w/c compute via time separated spikes and whose inspira-
tion was taken from the way neurons operate in living or-
ganisms, have been represented as matrices.

The matrix representation of SNP systems provides a crucial
step into their simulation on parallel devices such as GPG-
PUs. Simulating the highly parallel nature of SNP systems
necessitates the use of hardware intended for parallel com-
putations. The simulator algorithms, design considerations,
and implementation are presented. Finally, simulation re-
sults, observations, and analyses using an SNP system that
generates all numbers in N - {1} are discussed.

Keywords
Membrane computing, Parallel computing, GPU computing,
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1. INTRODUCTION

1.1 Parallel computing: Via graphics process-
ing units (GPUs)

The trend for massively parallel computation is moving from

the more common multi-core CPUs towards GPGPUs for
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several significant reasons [8][9]. One important reason for
such a trend in recent years include the low consumption in
terms of power of GPGPUs compared to setting up machines
and infrastructure which will utilize multiple CPUs in order
to obtain the same level of parallelization and performance
[10]. Another more important reason is that GPGPUs are
architectured for massively parallel computations since un-
like the architectures of most general purpose CPUs, a large
part of GPGPUs are devoted for arithmetic operations and
not on control and caching [8][9]. Arithmetic operations
are at the heart of many basic operations as well as sci-
entific computations, and these are performed with larger
speedups when done in parallel as compared to performing
them sequentially.

1.2 Parallel computing: Via Membranes

Membrane computing or its more specific counterpart, a P
system, are Turing complete computing models (for some P
system types or variants) that perform computations nonde-
terministically, exhausting all possible computations at any
given time. This type of unconventional model of compu-
tation was introduced by Gheorghe Paun in 1998 and takes
inspiration, similar to other members of natural computing
(e.g. DNA/molecular computing, neural networks, quan-
tum computing), from nature [5][6]. Specifically, P systems
try to mimic the constitution and dynamics of the living
cell: the multitude of elements inside it, and their interac-
tions within themselves and their environment, or outside
the cell’s skin membrane. Before proceeding, it is impor-
tant to clarify what is meant when it is said that nature
computes, particularly life or the cell: computation in this
case involves reading information from memory from past or
present stimuli, rewrite and retrieve this data as a stimuli
from the environment, process the gathered data and act
accordingly due to this processing [1]. Thus, we extend the
classical meaning of computation presented by Allan Turing.

SN P systems differ from other types of P systems precisely
because they are mono-membranar and only use one type of
object in their computations. These characteristics, among
others, are meant to capture the workings of a special type of
cell known as the neuron. Neurons, such as those in the hu-
man brain, communicate or ’compute’ by sending indistinct
electro-chemical signals more commonly known as action po-
tential or spikes [2]. Information is then communicated and
encoded not by the spikes themselves, since the spikes are



unrecognizable from one another, but by means of time du-
ration, as well as the number of spikes sent/received from
one neuron to another, oftentimes under a certain time in-
terval [2]. The time duration between two spikes, or several
successive spikes, transmit the information.

It has been shown that SN P systems, given their nature, are
representable by matrices [3][4]. This representation allows
design and implementation of an SN P system simulator
using parallel computing machines such as GPGPUs.

1.3 Simulating SNP systems in GPGPUs

A matrix representation of SN P systems seem somewhat
intuitive due to their graph-like nature and properties (as
will be further shown in the succeeding sections such as in
subsection 2.1). Matrix operations, algorithms and such in
parallel computing literature (e.g. [11] and [12] to name a
few recent ones done on GPGPUs) have been studied and
are available in vast quantities for years now. It would thus
seem then that a matrix represented SN P system simulator
implementation on highly parallel computing devices such
as GPGPUs be a natural confluence of the previous points
made. The matrix representation of SN P systems bridges
the gap between the theoretical yet still computationally
powerful SN P systems and the applicative and more tan-
gible GPGPUs, via an SN P system simulator. The design
of the simulator, including the algorithms deviced, archi-
tectural considerations, are then implemented using a par-
ticular type of GPGPU, namely NVIDIA CUDA (compute
unified device architecture). NVIDIA CUDA extends the
widely known ANSI C programming language and allows
programmers to perform parallel computations, via GPG-
PUs manufactured by NVIDIA.

This paper starts out by introducing and defining the type of
SNP system that will be simulated. Afterwards the NVIDIA
CUDA model and architecture are discussed, baring the scal-
ability and parallelization CUDA offers. Next, the design of
the simulator, constraints and considerations, as well as the
details of the algorithms used to realize the SNP system are
discussed. The simulation results are presented next, as well
as observations and analysis of these results. The paper ends
by providing the conclusions and future work.

The objective of this work is to start the foundations for
the creation of P system simulators, in this particular case
an SN P system, using highly parallel devices such as GPG-
PUs. Correctness, in terms of implementation algorithms
and hardware design considerations, of the output and fi-
delity to the computing model is a part of this objective.

2. SPIKING NEURAL P SYSTEMS

2.1 Computing with SN P systems

The type of SNP systems focused on by this paper (scope)
are those without delays i.e. those that spike or transmit
signals the moment they are able to do so [3][4]. A variant,
which allows for delays before a neuron produces a spike,
are also available [2]. An SNP system without delay is of
the form:

1= (0,01,...,0m,syn,in,out),

where:

1. O = {a} is the alphabet made up of only one object,
the system spike a.

2. 01,...,0m,m are m number of neurons of the form
i = (ng, Ri), 1 <3 <m,
where:

a) n; > 0 gives the initial number of as i.e. spikes
contained in neuron o;

b) R; is a finite set of rules of with two forms:

(b-1) E/a® — a, are known as Spiking rules, where
F is a regular expression over a, and ¢ > 1,
such that ¢ > 1.

(b-2) a® — A, are known as Forgetting rules, for
s > 1, such that for each rule E/a® — a of
type (b-1) from R;, a® ¢ L(E).

3. syn = {(4,7) |1 < 4,5 < m, i # j} are the synapses
i.e. connection between neurons.

4. in,out € {1,2,...,m} are the input and output neu-
rons, respectively.

Furthermore, rules of type (b-1) are applied if o; contains k
spikes, a* € L(E) and k > ¢. Using this type of rule uses up
or consumes k spikes from the neuron, producing a spike to
each of the neurons connected to it via a forward pointing
arrow i.e. away from the neuron. In this manner, for rules of
type (b-2) if o; contains s spikes, then s spikes are forgotten
or removed once the rule is used. Rules of type (b-1) can be
simplified with the notation

(b-3) a* = a

where the regular expression E = af, again consuming k
spikes and producing a spike.

The non-determinism of SN P systems comes with the fact
that more than one rule of the several types are applicable
at a given time, given enough spikes. The rule to be used is
chosen non-deterministically in the neuron. However, only
one rule can be applied or used at a given time [2][3][4]. The
neurons in an SN P system operate in parallel and in unison,
under a global clock [2]. For Figure 1 no input neuron is
present, but neuron 3 is the output neuron, hence the arrow
pointing towards the environment, outside the SNP system.

The SN P system in Figure 1 is II, a 3 neuron system whose
neurons are labeled (neuron 1/01 to neuron 3/03) and whose
rules have a total system ordering from (1) to (5). Neuron
1/01 can be seen to have an initial number of spikes equal
to 2 (hence the a? seen inside it). There is no input neuron,
but o3 is the output neuron, as seen by the arrow pointing
towards the environment (not to another neuron). More
formally, IT can be represented as follows:

IT1 = ({a}, 01,002,038, syn,out) where o1 = (2,R1), n1 =
2, R1 = {a®/a — a}, (neurons 2 to 3 and their n;s and R;s
can be similarly shown), syn = {(1,2),(1,3),(2,1),(2,3)}
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Figure 1: An SNP P system II, generating all num-
bers in N - {1}, from [4].

are the synapses for II, out = o3. This SN P system gen-
erates all numbers in the set N - {1}, hence it doesn’t halt,
which can be easily verified by applying the rules in II, and
checking the spikes produced by the output neuron os.

2.2 Matrix representation of SNP systems

A matrix representation of an SN P system makes use of
the following vectors and matrix definitions [3][4] . It is
important to note that, just as in Figure 1, a total ordering
of rules is in order.

Configuration vector C}, is the vector containing all spikes
in every neuron on the kth computation step/time, where
C) is the initial vector containing all spikes in the system at
the beginning of the computation. For II (in Figure 1 ) the
initial configuration vector is Co =< 2,1,1 >.

Spiking vector which shows, at a given configuration Cj, if a
rule is applicable (has value 1) or not (has value 0 instead).
For II we have the spiking vector S, =< 1,0,1,1,0 > given
Coy. Note that a 2nd spiking vector, S, =< 1,0,1,1,0 >, is
possible if we use rule (2) over rule (1) instead (but not both
at the same time, hence we cannot have a vector equal to <
1, 1, 1, 1, 0>, so this Sy is invalid ). Validity in this case
means that only one among several applicable rules is used
and thus represented in the spiking vector. We can have all
the possible vectors composed of 0s and 1s with length equal
to the number of rules, but have only some of them be valid,
given by W later at subsection 4.2.

Spiking transition matriz Mn is a matrix comprised of a;;
elements where a;; is given as

—c, rule r; is in 0; and is applied consuming c spikes;

p, ruler; isin o, (s # j and (s,j) € syn)
and is applied producing p spikes in total;
0, ruler; isin os (s # j and (s,j) ¢ syn).

For I1, the My is as follows:

-1 1 1
-2 1 1

Mp=| 1 -1 1 (1)
0 0 -1
0 0 -2
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Figure 2: NVIDIA CUDA automatic scaling, hence
more cores result to faster execution, from [9].

In such a scheme, rows represent rules and columns represent
neurons.

Finally, the following equation provides the configuration
vector at the (k + 1)th step, given the configuration vector
and spiking vector at the kth step, and Mp:

Cr41=Ck + Sk Mn. (2)

3. THE NVIDIA CUDA ARCHITECTURE
NVIDIA, a well known manufacturer of GPUs, released in
2006 the CUDA programming model and architecture [10].
Using extensions of the widely known C language, a pro-
grammer can write parallel code which will then execute
in multiple threads within multiple thread blocks, each con-
tained within a grid of (thread) blocks. These grids belong to
a single device i.e. a single GPGPU. Each device/GPGPU
has multiple cores, each capable of running its own grids.
The program run in the CUDA model scales up or down, de-
pending on the number of cores the programmer currently
has in a device. This scaling is done in a manner that is
abstracted from the user, and is efficiently handled by the
architecture as well. Automatic and efficient scaling is shown
in Figure 2. Parallelized code will run faster with more cores
than with fewer ones [9].

Figure 3 shows another important feature of the CUDA
model: the host and the device parts. Device pertains to
the GPGPU/s of the system, while the host pertains to the
CPU/s. A function known as a kernel function, is a function
called from the host but executed in the device.

A general model for creating a CUDA enabled program is
shown in Listing 1.

Listing 1: General code flow for CUDA program-
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Figure 3: NVIDIA CUDA programming model
showing the sequential execution of the host code
alongside the parallel execution of the kernel func-
tion on the device side, from [7].

ming
//allocate memory on GPU e.g.
cudaMalloc ( (voidxx)&dev_a, N x sizeof(int)

//populate arrays

//copy arrays from host to device e.g.
cudaMemcpy( dev_a, a, N % sizeof(int),
cudaMemcpyHostToDevice)

//call kernel (GPU) function e.g.
add<<<N, 1>>>( dev_a, dev_b, dev_c );

// copy arrays from device to host e.g.
cudaMemcpy( ¢, dev_c, N x sizeof( int),
cudaMemcpyDeviceToHost )

//display results

//free memory e.g.
cudaFree( dev_a );

Lines 2 and 21, implement CUDA versions of the standard C
language functions e.g. the standard C function malloc has
the CUDA C function counterpart being cudaMalloc, and
the standard C function free has cudaFree as its CUDA C
counterpart.

Lines 8 and 15 show a CUDA C specific function, namely
cudaMemcpy, which, given an input of pointers ( from List-
ing 1 host code pointers are single letter variables such as
a and c¢,while device code variable counterparts are prefixed
by dev_ such as dev_a and dev_c ) and the size to copy ( as
computed by the sizeof function ), moves data from host to

device ( parameter cudaMemcpyHostToDevoce ) or device
to host ( parameter cudaMemcpyDeviceToHost).

A kernel function call uses the double < and > operator, in
this case the kernel function

add << N,1 >> (dev_a,dev_b,dev_c).

This function adds the values, per element (and each ele-
ment is associated to 1 thread), of the variables dev_a and
dev_b sent to the device, collected in variable dev_c before
being sent back to the host/CPU. The variable N in this
case allows the programmer to specify N number of threads
which will execute the add kernel function in parallel, with
1 specifying only one block of thread for all N threads.

3.1 Design considerations for the hardware and

software setup

The kernel function i.e. code that is executed in parallel
in the device, needs to have its results initially moved from
the CPU/host to the device, and then back from the de-
vice to the host after computation. This movement of data
back and forth should be minimized in order to obtain more
efficient, in terms of time, execution. Implementing an equa-
tion such as (2), which involves multiplication and addition
between vectors and a matrix, can be done in parallel with
the previous considerations in mind. In this case, Ck, Sk,
and Mt are loaded, manipulated, and pre-processed within
the host code, before being sent to the kernel function which
will perform computations on these function arguments in
parallel. In order to represent C, Sk, and M, text files are
created in order to house each input, whereby each element
of the vector or matrix is entered in the file in order, from
left to right, with a blank space in between as a delimiter.
The matrix however is entered in row-major ( a linear array
of all the elements, rows first, then columns) order format
i.e. for the matrix Mm seen in (1), the row-major order
version is simply

-1,1,1,-2,1,1,1,-1,1,0,0, —1,0,0, —2 (3)

Row major ordering is a well-known ordering and represen-
tation of matrices for their linear as well as parallel manip-
ulation in corresponding algorithms [8]. Once all computa-
tions are done for the (k + 1)th configuration, the result of
equation (2) are then collected and moved from the device
back to the host, where they can once again be operated on
by the host/CPU. It is also important to note that these
operations in the host/CPU provide logic and control of the
data/inputs, while the device/GPU provides the arithmetic
or computational 'muscle’; the laborious task of working on
multiple data or instructions at a given time in parallel,
hence the current dichotomy of the CUDA programming
model [7]. This division of labor is observed in Listing 1 .

3.2 Matrix computations and CPU-GPGPU in-

teractions
Once all 3 initial and necessary inputs are loaded, as is to
be expected from equation 2, the device is first instructed to
perform multiplication between the spiking vector Sk and
the matrix My. To further simplify computations at this
point, the vectors are treated and automatically formatted



by the host code to appear as single row matrices, since vec-
tors can be considered as such. Multiplication is done per el-
ement (one element is in one thread of the device/GPGPU),
and then the products are collected and summed to produce
a single element of the resulting vector/single row matrix.

Once multiplication of the S; and My is done, the result is
similarly added to the Cy, once again element per element,
with each element belonging to one thread, executed at the
same time as the others.

For this simulator, the host code consists largely of the pro-
gramming language Python, a well-known high- level, ob-
ject oriented programming (OOP) language. The reason
for using a high-level language such as Python is because
the initial inputs, as well as succeeding ones resulting from
exhaustively applying the rules and equation 2 require ma-
nipulation of the vector/matrix elements or values as strings
to be concatenated, checked on (if they conform to the form
(b-3) for example) by the host, as well as manipulated in
ways which will be elaborated in the following sections along
with the discussion of the algorithm for producing all possi-
ble and valid spiking vectors and configuration vectors given
initial conditions. A language such as Python is well-suited
for such a task, and can be byte-compiled like a C program
for improved performance. The host code/Python part thus
implements the logic and control as mentioned earlier, while
in it, the device/GPU code which is written in C executes
the parallel parts of the simulator.

4. SIMULATOR DESIGN AND IMPLEMEN-

TATION

The current SNP simulator, which is based on the type of
SNP systems currently without time delays, is capable of
implementing rules of the form (b-3) i.e. whenever the reg-
ular expression F is the same as the number of spikes con-
sumed in that rule. Rules are entered in the same manner
as the earlier mentioned vectors and matrix, as blank space
delimited values (from one rule to the other, belonging to
the same neuron) and $ delimited ( from one neuron to the
other). Thus for the SNP system II shown earlier, the file
r containing the blank space and $ delimited values is as
follows:

22$1$12 (4)

That is, rule (1) from Figure 1 has the value 2 in the file
r (though rule (1) isn’t of the form (b-3) it nevertheless
consumes a spike since its regular expression is of the same
regular expression type as the rest of the rules of I ). An-
other implementation consideration was the use of lists in
Python, since unlike dictionaries or tuples, lists in Python
are mutable, which is a direct requirement of the vector/-
matrix element manipulation to be performed later on (con-
catenation mostly). Hence a C, =< 2,1,1 > is represented
as [2,1,1] in Python. That is, at the kth configuration of
the system, the number of spikes of neuron 1 are given by
accessing the index (starting at zero) of the configuration
vector Python list variable confVec, in this case if

confVec=1[2,1,1] (5)

then confVec|0] = 2 are the number of spikes available at

that time for neuron 1, confVec[l] = 1 for neuron 2, and
so on. The file r, which contains the ordered list of neurons
and the rules that comprise each of them, is represented as
a list of sub- lists in the Python/host code. For SNP system
IT we have the following:

r= [[27 2]7 [1]7 [17 2” (6)
Neuron 1’s rules are given by accessing the sub-lists of r

(again, starting at index zero) i.e. rule (1) is given by
r[0][0] = 2 and rule (4) is given by r[2][1] = 1.

4.1 Algorithm simulator implementation
The general algorithm is shown in Algorithm 1.

Algorithm 1 Overview of the algorithm for the SNP system
simulator
Require: creation of files confVec, M, and r

I. (HOST) Load inputs: configuration vector file confVec,
spiking transition matrix file M, and rule criteria file 7.
Note that M and r need only be loaded once since they are
unchanging for an SN P system.

II. (HOST) Determine if a rule/element in r is applicable
based on its corresponding spike value in confVec, and
then generate all valid and possible spiking vectors in a list
of lists spikVec given the 3 initial inputs.

III. (DEVICE) From part II., run the kernel function on
spikVec, which contains all the valid and possible spiking
vectors for the current confVec and r. This will generate
the succeeding Cis and their corresponding Sis.

IV. (HOST+DEVICE) Repeat steps I to IV (except in-
stead of loading Co as confVec, use the generated Cis in
III) until a zero configuration vector (vector with only zeros
as elements) or further Cys produced are repetitions of a Cj,

produced at an earlier time. (Stopping criteria in subsection
4.1)

Step IV of Algorithm 1 makes the algorithm stop with 2
stopping criteria to do this:

One is when there are no more available spikes in the sys-
tem (hence a zero value for a configuration vector), and the
second one being the fact that all previously generated con-
figuration vectors have been produced in an earlier time or
computation, hence using them again in part I of Algorithm
1 would be pointless, since a redundant, infinite loop will
only be formed.

Another important point to notice is that either of the stop-
ping criterion from 4.1 could allow for a deeply nested com-
putation tree, one that can continue executing for a signifi-
cantly lengthy amount of time even with a multi-core CPU
and even the more parallelized GPGPU. Each line in Algo-
rithm 1 mentions which part/s the simulator code runs in,
either in the device (DEVICE) or in the host (HOST)
part.



4.2 Closer inspection of the SN P system sim-

ulator
The more detailed algorithm for part II of Algorithm 1 is
as follows.

A few definitions are in order at this point:

E=|r| )

U = |ovi|loval...loval,m € Nyn < 0o (8)

where
lovnl

means the total count of the number of rules in the nth neu-
ron which satisfy the regular expresion E in (b-3). X gives
the total number of neurons, while ¥ gives the expected
number of valid and possible Sis which should be produced
in a given configuration.

During the exposition of the algorithm, the previous Python
lists (from their vector/matrix counterparts in earlier sec-
tions) (5) and (6) will be utilized. For part IT Algorithm
1 we have a sub-algorithm (Algorithm 2) for generating all
valid and possible spiking vectors given input files M (the
list version of (3)) , confVec, and r.

Algorithm 2 Algorithm further detailing part II in Algo-
rithm 1

II-1 Create a list tmp, a copy of r, marking each element
of tmp in increasing order of N, as long as the elemen-
t/s satisfy the rule’s regular expression E of a rule (given
by list ). Elements that don’t satisfy E are marked with 0.

II-2 To generate all possible and valid spiking vectors from
tmp, we go through each neuron i.e. all elements of tmp,
since we know a priori ¥ as well as the number of elements
per neuron which satisfy E. We only need to iterate
through each neuron/element of tmp, w times, where w is
both the largest and last number in the sub-list/neuron,
which tells us how many elements of that neuron satisfy F
(from II-1). We then produce a new list, tmp2, which is
made up of a sub-list of strings from all possible and valid
{1,0} strings i.e. spiking vectors per neuron.

II-3. To obtain all possible and valid {1,0} strings (Sks),
given that there are multiple strings to be concatenated (
as in tmp2’s case ), pairing up the neurons first, in order,
and then exhaustively distributing every element of the first
neuron to the elements of the 2nd one in the pair.

As an illustration of Algorithm 2, consider (5), (6), and (1)
as inputs to our SNP system simulator. The following details
the production of all valid and possible spiking vectors using
Algorithm 2.

Initially from II-1 of Algorithm 2, we have

r=tmp = [[2,2], [1], 1, 2]].

Proceeding to illustrate II-2 we have the following passes.

1t pass: tmp = [[1, 2], [1],[1, 2]

Remark/s: previously, tmp[0][0] was equal to 2, but now has
been changed to 1, since it satisfies E ( configVec[0] = 2
w/c is equal to 2, the number of spikes consumed by that
rule).

2nd pass: tmp = [[1, 2], [1],1,2]

Remark/s: previously tmp[0][1] = 2, which has now been
changed (incidentally) to 2 as well, since it’s the 2nd element
of neuron 1 which satisfies F.

3rd pass: tmp = [[1,2], [1], [1, 2]]
Remark/s: 1st (and only) element of neuron 2 which satisfies
E.

4th pass: tmp = [[1,2],[1],[1,2]
Remark/s: Same as the 1st pass

Sth pass: tmp = [[1,2],[1], 1, 0]
Remark/s: element tmp[2][1], or the 2nd element/rule of
neuron 3 doesn’t satisfy F.

Final result: tmp = [[1, 2], [1],[1, 0]

At this point we have the following, based on the earlier
definitions:

¥ = 3 ( 3 neurons in total, one per element /value of con fVec)
U = |UV1||UV2HO'V3| =2x1x1=2

W tells us the number of valid strings of Is and 0s i.e. spik-
ing vectors, which needs to be produced later, for a given
configuration, in this case we have confvec. There are only
2 valid spiking vectors from (5) and the rules given in (6)
encoded in the Python list r. These spiking vectors are

<0,1,1,1,0 > (9)

<1,0,1,1,0 > (10)

In order to produce these spiking vectors algorithmically as
in Algorithm 2 , it’s important to notice that first, all possi-
ble and valid spiking vector strings ( made up of Is and 0s)
per neuron have to be produced first, which is facilitated by
II-1 of Algorithm 2 and its output (the current value of the
list tmp ).

Continuing the illustration of II-1, and illustrating I1-2 this
time, we iterate over neuron 1 twice, since its w = 2, i.e. neu-

ron 1 has only 2 elements which satisfy E, and consequently,
it is its 2nd element,

tmp[0][1] = 2.

For neuron 1, our first pass along its elements/list is as fol-
lows. Its 1st element,

tmp[0][0] = 1

is the first element to satisfy E, hence it requires a I in its
place, and 0 in the others. We therefore produce the string



10’ for it. Next, the 2nd element satisfies E and it too,
deserves a 1, while the rest get 0s. We produce the string
01’ for it.

The new list, tmp2, collecting the strings produced for neu-
ron 1 therefore becomes

tmp2 = [[10, 01]]

Following these procedures, for neuron 2 we get tmp2 to be
as follows:

tmp2 = [[10,01], [1]]

Since neuron 2 which has only one element only has 1 pos-
sible and valid string, the string 1. Finally, for neuron 3, we
get tmp2 to be

tmp2 = [[10,01], [1], [10]]

In neuron 3, we iterated over it only once because w, the
number of elements it has which satisfy FE, is equal to 1
only. Observe that the sublist

tmp2[0] = [10,01]

is equal to all possible and valid {1,0} strings for neuron 1,
given rules in (6) and the number of spikes in con figVec.

Illustrating II-3 of Algorithm 2, given the valid and possi-
ble {1,0} strings (spiking vectors) for neurons 1, 2, and 3
(separated per neuron-column) from (5) and (6) and from
the illustration of II-2, all possible and valid list of {1,0}
string/s for neuron 1: ['10’,’01’], neuron 2: ['1’], and neuron
3: ['107].

First, pair the strings of neurons 1 and 2, and then distribute
them exhaustively to the other neuron’s possible and valid
strings, concatenating them in the process (since they are
considered as strings in Python).

10"+ 1 => 101
7017

and

’10’
01’ 4’1" => '011

now we have to create a new list from tmp2, which will house
the concatenations we’ll be doing. In this case,

tmp3 = [101, 011]

next, we pair up tmp3 and the possible and valid strings of
neuron 3

1017 + ’10° => 10110’
017

and

107’

0117 + ’10° => ’01110°
eventually turning tmp3 into
tmp3 = [10110,01110]

The final output of the sub-algorithm for the generation of
all valid and possible spiking vectors is a list,

tmp3 = [10110, 01110

As mentioned earlier, ¥ = 2 is the number of valid and
possible Sis to be expected from r, M, and Co = [2,1,1]
in II. Thus tmp3 is the list of all possible and valid spiking
vectors given (5) and (6) in this illustration. Furthermore,
tmp3 includes all possible and valid spiking vectors for a
given neuron in a given configuration of an SN P system
with all its rules and synapses (interconnections). Part II-3
is done ( X — 1) times, albeit exhaustively still so, between
the two lists/neurons in the pair.

5. SIMULATION COMPUTATION RESULTS,

OBSERVATIONS, AND ANALYSIS
The SNP system simulator (combination of Python and CUDA
C) implements the algorithms in section 4 earlier. A sample
simulation run with the SNP system II is shown below (most
of the output has been truncated due to space constraints )
with Cp = [2,1,1]

*x*x*xSN P system simulation run STARTS herex*x**
Spiking transition Matrix:

Rules of the form a"n/a™m -> a or a"n ->a loaded:
[12), 121’ )$J’ 717’ )$)’ )1)’ ?2)]

Initial configuration vector: 211

Number of neurons for the SN P system is 3
Neuron 1 rules criterion/criteria and total order

tmpList = [[’10’, ’01’], [’1°], [’10°’]]

All valid spiking vectors: allValidSpikVec =
[[>10110°, ’01110°]]
A1l generated Cks are allGenCk =

[’2-1-1>, ’2-1-2’, ’1-1-2’]

End of CO
*k
Kok
Kk

initial total Ck list is

[2-1-1>, °2-1-2°, ’1-1-2"]

Current confVec: 212
A1l generated Cks are allGenCk =

[’2-1-1°, °2-1-2°, ’1-1-2°, ’2-1-3°, *1-1-3’]
Kok
Kk
*k
Current confVec: 112
A1l generated Cks are allGenCk =

[2-1-1>, ’2-1-2>, °1-1-27, °2-1-3°, ’1-1-3’,



12-0-27, 2-0-1’]
k%
%%

Current confVec: 109
A1l generated Cks are allGenCk = [’2-1-1’, ’2-1-2’,

1-0-7°, *0-1-97, ’1-0-8’, *1-0-9’]
%%

*k
*k

No more Cks to use (infinite loop/s otherwise). Stop.

*xx*xSN P system simulation run ENDS here**xx

That is, the computation tree for SNP system II with Cy
= [2,1,1] went down as deep as confVec = 109. At that
point, all configuration vectors for all possible and valid spik-
ing vectors have been produced. The Python list variable
allGenCk collects all the Cis produced. The final value of
allGenCk for the above simulation run is

allGenCk = [2-1-1°, '2-1-2°, *1-1-2°, '2-1-3, '1-1-8’, *2-0-
27, °2-0-1°, '2-1-4°, '1-1-4°, '2-0-8’, °1-1-1°, '0-1-2°, "0-1-1’,
0-1-57, °1-1-57, '2-0-4’, '0-1-8’, '1-0-2’, ’1-0-17, '2-1-6’, ’1-
1-67, '2-0-5°, °0-1-4’, '1-0-3°, *1-0-0°, '2-1-7’, "1-1-7°, "2-0-
6, '0-1-57, ’1-0-4’, '2-1-8’, '1-1-8’, '2-0-7", 0-1-6’, '1-0-5,
9-1-9°, °1-1-9°, '2-0-8’, 0-1-7’, ’1-0-6’, *2-1-10°, ’1-1-10,
9-0-9°, 0-1-8’, ’1-0-7’, 0-1-9°, ’1-0-8’, *1-0-97]

It’s also noteworthy that the simulation for IT didn’t stop
at the 1lst stopping criteria (arriving at a zero vector i.e.
Ck, = [0,0,0] ) since II generates all natural counting num-
bers greater than 1, hence a loop (an infinite one) is to be
expected. The simulation run shown above stopped with
the 2nd stopping criteria from Section 4. Thus the simula-
tion was able to exhaust all possible configuration vectors
and their spiking vectors, stopping only since a repetition of
an earlier generated confVec would introduce a loop (trig-
gering the 2nd stopping criteria). Graphically (though not
shown exhaustively) the computation tree for II is shown in
Figure 4.

The con fVecs followed by (...) are the confVecs that went
deeper i.e. produced more Cxs than Figure 4 has shown.

6. CONCLUSIONS AND FUTURE WORK
Using a highly parallel computing device such as a GPGPU,
particularly NVIDIA CUDA, an SN P system simulator was
successfully designed and implemented as per the objective
of this work. The simulator was shown to model the work-
ings of an SN P system without delay. The use of a high
level programming language such as Python for host tasks,
mainly for logic and string representation and manipulation
of values (vector/matrix elements) provided the necessary
expressivity to implement the algorithms created to produce
and exhaust all possible and valid configuration and spiking
vectors. For the device tasks, CUDA C allowed the manip-
ulation of the NVIDIA CUDA enabled GPGPU which took
care of repetitive and highly parallel computations (addition
and multiplication essentially).
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Figure 4: The computation tree graphically repre-
senting the output of the simulator run over II with
Co =2, 1, 1]



Future versions of the SNP system simulator will focus on
several improvements. These improvements include the use
of an algorithm for matrix computations without requiring
the input matrix to be transformed into a square matrix
(this is currently handled by the simulator by padding zeros
to an otherwise non-square matrix input). Another improve-
ment would be the simulation of systems not of the form
(b-3). Byte-compiling the Python/host part of the code to
improve performance as well as metrics to further enhance
and measure execution time are desirable as well. Finally,
deeper understanding of the CUDA architecture, such as
inter- thread /block communication, for extremely large sys-
tems with equally large matrices, is required. These im-
provements as well as the current version of the simulator
should also be run in a machine or setup with higher versions
of GPGPUs running NVIDIA CUDA.
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