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Abstract—Spiking Neural P systems (in short, SNP systems)
are computing models based on living neurons. SNP systems are
non-deterministic and parallel, hence making use of a parallel
processor such as a graphics processing unit (in short, GPU)
is a natural candidate for simulations. Matrix representations
and algorithms were previously developed for simulating SNP
systems. In this work, our two results extend previous works in
simulating SNP systems in the GPU: (a) the number of neurons
the simulator can handle is now arbitrary; (b) SNP systems
are now represented in a dense instead of sparse way. The
impact in terms of time and space of these extensions to the
GPU simulator are analysed. As expected, SNP systems with
more neurons need more simulation time, although the simulator
performance can scale (i.e. perform better) with larger GPUs. The
dense representation helps in the simulation of larger systems.

Index Terms—Membrane computing, Spiking neural P sys-
tems, GPU computing, CUDA, Sparse Matrix-Vector

I. INTRODUCTION

A branch in natural computing called membrane computing
bases its computational model from that of biological cells [9].
P systems are parallel, nondeterministic, and computationally
universal models in membrane computing. These systems cur-
rently cannot entirely be implemented on modern technology
although some of their components or restricted versions have
been simulated. The focus of this work is on spiking neural
P systems (SNP systems for short) [5]. In SNP systems the
neurons are vertices in a digraph, and edges between neurons
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are called synapses. Neurons process spikes and send these to
other neurons using synapses.

There are already efforts in creating simulators for P sys-
tems such as [1]–[4] for SNP systems, including a survey in
[7]. In this work we extend such simulators, specifically the
current implementation of the CUDA SNP (CuSNP) simulator
from [4]. We use the Compute Unified Device Architecture
(CUDA for short) which is a general purpose parallel com-
puting platform and programming model using the GPUs by
NVIDIA. GPUs are massively parallel processors which can
launch hundreds to thousands of threads.

A. Spiking Neural P Systems
The reader is assumed to be familiar with the basics of

membrane computing and formal language theory found in
many monographs such as [9]. An SNP system Π is a construct
Π = (O, σ1, . . . , σm, syn, out), where:

1. O = {a} is the alphabet containing a single symbol (the
spike).

2. σ1, . . . , σm are neurons of the form σi = (ni, Ri), 1 ≤
i ≤ m where:
(a) ni ≥ 0 is the initial number of spikes contained in

σi

(b) Ri is a finite set of rules of the following two
forms:
(i) (Spiking Rule) E/ac → ap; d where E is a reg-

ular expression over O and c ≥ p ≥ 1, d ≥ 0.
(ii) (Forgetting Rule) as → λ, for s ≥ 1, with the

restriction that for each rule of type (i) in Ri

we have as /∈ L(E);
3. syn ⊆ {1, 2, . . . ,m} × {1, 2, . . . ,m} with i �= j for all

(i, j) ∈ syn, 1 ≤ i, j ≤ m (synapses between neurons);



4. in, out ∈ {1, 2, . . . ,m} indicate the input and output
neurons, respectively.

A spiking rule is applied as follows: if a neuron σi contains
k spikes, and ak ∈ L(E), k ≥ c, then the rule E/ac → ap; d ∈
Ri can be applied. This means we remove c spikes so that
k − c spikes remain in σi, the neuron then fires and produces
p spikes after d time steps. Spikes are fired after step t + d
where t is the current time step of the computation. If d = 0,
the spikes are fired immediately. Between step t and t+d, we
say σi has not fired the spike yet and is closed, i.e. σi cannot
receive spikes from other neurons connected to it. If neurons
with a synapse to σi fire, the spikes are lost. At step t + d,
the spikes are fired, and σi is now open to receive spikes. At
t+ d+ 1, σi can apply a rule.

A forgetting rule is applied as follows: If σi contains exactly
s spikes, then the rule as → λ from Ri can be applied,
meaning all of the s spikes are removed from σi. Rule of
type (i) where E = ac can be written in the shortened form
of ac → ap; d. In the case two or more rules of σi are
applicable at the same step, only one rule is applied and is
non-deterministically chosen. A configuration of the system
at step t is denoted as Ct = 〈r1/k1, . . . , rm/km〉, where for
1 ≤ i ≤ m and σi contains ri spikes and remains closed for
ki more steps.

A computation is any (finite or infinite) sequence of con-
figurations such that: (a) the first term is the initial configu-
ration C0; (b) for each n ≥ 1, the nth configuration of the
sequence is obtained from the previous configuration in one
transition step; and (c) if the sequence is finite (called halting
computation) then the last term is a halting configuration, i.e.
a configuration where all neurons are open and no rule can be
applied. Two common ways to obtain the output of an SNP
system are as follows: obtaining the time interval between
exactly the first two steps when the output neuron σout spikes
or between 0 and until the system halts. In this work, we
consider systems that produce their output as given in [6]. To
demonstrate our CuSNP simulator later in this work, we make
use of SNP systems that solve the NP-complete Subset Sum
problem. The Subset Sum problem asks if, given a finite set
V = {v1, . . . , vn} ⊂ N and S ∈ N, is there a V ′ ⊆ V whose
elements sum to S? More information about SNP systems
solving Subset Sum in a uniform and nonuniform way are
given in detail in [6].

B. Matrix Representation

In [11] a matrix representation for SNP systems without
delay was first introduced. In [4] the representation was
modified to include delays. We use the example shown at
Figure 1 to illustrate the representation from [4].

Let Π be an SNP system with m neurons and n rules. The
following definitions are from [4].

Definition 1: The Configuration Vector C(k) =
〈c1, ..., cm〉, where ci is the amount of spikes in σi at time
k.

For the example in Figure 1, we have the Configuration
Vector as C0 = 〈2, 1〉.

Figure 1. An example of SNP system

Definition 2: The kth status vector is denoted by St(k) =
〈st1, ..., stm〉 such that,

sti =

{
1 if neuron m is open
0 if neuron m is closed

For the example in Figure 1, we have the Status Vector as
St0 = 〈1, 1〉. Several Status Vectors can be gathered together
by rows in a Status Matrix.

Definition 3: The countdown vector at time step k is
represented by D′(k) = 〈d′1, ..., d′m〉 such that

d′i =

⎧⎪⎨
⎪⎩
−1 if rule i is not fired
0 if rule i is activated
≥ 1 if rule i is fired but has a delay

Note that d′ tells us the time remaining before a rule releases
its spikes. Several Countdown Vectors can be disposed by rows
in a Countdown Matrix.

For the example in Figure 1, we have the Countdown Vector
as D′0 = 〈−1,−1,−1,−1〉

Definition 4: We then define the System Configuration of
Π as Conf (k) at time step k with m neurons and n rules by
the following:

Conf (k) = (C(k), St(k), D′(k))

For the example in Figure 1, we have the System Configu-
ration as Conf0 = (C0, St0, D′0).

Definition 5: A Spiking Matrix of SNP system Π is defined
as follows

S(k) =

[
s
(k)
ij

]
q×n

Where:

s
(k)
ij =

{
1 if Ej is satisfied and rj is applied in instance i

0 otherwise

and q is the number of valid spiking vectors from a single
configuration Conf (k).

For the example in Figure 1, we have the Spiking Matrix
as follows:

S0 =

⎡
⎢⎢⎣
1 0 1 0
1 0 0 1
0 1 1 0
0 1 0 1

⎤
⎥⎥⎦

Definition 6: An Indicator Matrix of system Π is defined
as follows

IM (k) =

[
im

(k)
ij

]
q×n



where

im
(k)
ij =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
1 if rule rj with delay d fired at time step

s where s = k − d (i.e. the rule fired
and is done with its delay)

0 otherwise

For the example in Figure 1, we have the Indicator Matrix
as follows:

IM0 =

⎡
⎢⎢⎣
1 0 1 0
1 0 0 0
0 1 1 0
0 1 0 0

⎤
⎥⎥⎦

Definition 7: A Status Matrix of system Π is defined as
follows

SM (k) =

[
St

(k)
ij

]
q×m

where

St
(k)
ij =

{
1 if neuron σi is open at instance j

0 otherwise

For the example in Figure 1, we have the Status Matrix as
follows:

S0 =

⎡
⎢⎢⎣
1 1
1 0
1 1
1 0

⎤
⎥⎥⎦

Definition 8: The Transition Matrix of system Π can be
defined as follows

TM =
[
tmij

]
n×m

where

tmij =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

p if rule ri is in neuron σs (s �= j and
(s, j) ∈ syn) and is applied producing p spikes

−c if rule ri is in neuron σj

and is applied consuming c spikes
0 otherwise

From the definition of TM , we define two more matrices
based from TM (Production and Consumption) as follows

TM+ =
[
tm+

ij

]
n×m

, TM− =
[
tm−

ij

]
n×m

where

tm+
ij =

{
tmij if tmij > 0

0 otherwise
, tm−

ij =

{
tmij if tmij < 0

0 otherwise

For the example in Figure 1, we have the Production and
Consumption Transition Matrices as follows:

TM+ =

⎡
⎢⎢⎣
0 2
0 1
1 0
1 0

⎤
⎥⎥⎦TM− =

⎡
⎢⎢⎣
−2 0
−2 0
0 −1
0 −1

⎤
⎥⎥⎦

Definition 9: The Net Gain Matrix is defined as:

NG(k) =
[
C(k+1) − C(k)

]
q

i.e. each row for w, 1 ≤ w ≤ q is a single Net Gain Vector.
We can compute for NG(k) by:

NG
(k)
q×m = St

(k)
q×m ⊗ (IV

(k)
q×n ∗ TM+

n×m) + S
(k)
q×n ∗ TM−

n×m

where ⊗ is the elementwise multiplication for matrix.
For the example in Figure 1, we have the Net Gain Vector:

NG0 =

⎡
⎢⎢⎣
−1 1
−2 −1
−1 0
−2 −1

⎤
⎥⎥⎦

After solving NGk, we can now compute for Ck+1 using the
equation Ck+1 = Ck +NGk. In the example from Figure 1,
we can arrive to the next Configuration Vector C1.

C1 =

⎡
⎢⎢⎣
2 1
2 1
2 1
2 1

⎤
⎥⎥⎦+

⎡
⎢⎢⎣
−1 1
−2 −1
−1 0
−2 −1

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
1 2
0 0
1 1
0 0

⎤
⎥⎥⎦

II. CUSNP

CuSNP is a simulator for nondeterministic SNP Systems
with delays that can run in the CPU or GPU. The GPU
simulator is implemented using CUDA C. Algorithm 1 from
[4] is used in CuSNP. Algorithm 1 uses a queue, implemented
with a 1-dimensional array, to store system configurations so
the computation tree is processed in a breadth first manner. The
steps are repeated until the computation halts or an arbitrary
number of iterations from the user is achieved. The algorithm
generates the Indicator, Countdown, and Status matrices based
on their definitions above and using the Spiking Vector. For
generating the spiking matrix S

(k)
q×n, we define other vectors

and matrices from [4].
Definition 10: The Applicability Vector AP for a system

Π with m neurons and n rules at timestep k is defined as
follows

AP (k) = 〈ap(k)1 , ap
(k)
2 , ..., ap(k)n 〉

where

ap
(k)
i =

⎧⎪⎨
⎪⎩
1 if regular expression Ei of rule ri is satisfied

and ri can be fired
0 otherwise

Definition 11: The Count Vector CV (k) = 〈cv(k)1 ,
cv

(k)
2 , . . . , cv

(k)
m 〉 where cv

(k)
i , 1 ≤ i ≤ m contains the number

of applicable rules of neuron i based on Ck. We compute
the number of possible nondeterministic outcomes q of Π, as
follows: q =

∏m
i=1 cv

(k)
i .

In Figure 1, we have AP 0 = 〈1, 1, 1, 1〉, CV 0 = 〈2, 2〉 and
q = 4.

Definition 12: The Change Frequency Vector FV (k)

where for each fv
(k)
i ∈ FV (k), 1 ≤ i ≤ m :

fv
(k)
i =

{
1 if i = 1

fv
(k)
i−1 ∗ cv(k)i otherwise

Definition 13:



Algorithm 1 Main simulation algorithm for a non-
deterministic SNP system Π

1: Given a queue Q which initially contains the system
configuration Conf (0)

Require: Q
2: Get a Conf (k) = (C

(k)
1×m, St

(k)
1×m, D

′(k)
1×n) from Q.

3: Generate the Spiking Matrix S
(k)
q×n, where q is the number

of possible nondeterministic outcomes Π has based on
Conf (k).

4: Generate the Indicator Matrix IM
(k)
q×n, D′(k)

q×n, and Status
Matrix SM

(k)
q×m,

5: NG
(k+1)
q×m = SM (k) ⊗ (IM (k) ∗ TM+) + S(k) ∗ TM−.

6: Collect all D′(k)
1×n vectors to form matrix D

′(k+1)
q×n .

7: for d′ ∈ D′(k) do
8: d′ ← MAX(d′ − 1,−1)
9: end for

10: w ← 1
11: while w ≤ q or (Ck and Ck−1 �= zero vector) do
12: Generate a new system configuration Conf

(k+1)
w =

{C(k) +NGw, SM
(k+1)
w , D

′(k+1)
w }.

13: Add the new configuration to Q
14: end while
15: return Q

By assigning a total order for each rule ri that can fire with
respect to its neuron i, we have a closed formula for generating
SV , i.e. the Order Vector O(k) = 〈o(k)1 , o

(k)
2 , ..., o

(k)
n 〉. Based

from the definition above, we can generate the Spiking Matrix
S
(k)
(q×n) by using Algorithm 2.
In Figure 1, we have FV 0 = 〈1, 2〉 and O0 = 〈1, 2, 1, 2〉.

Algorithm 2 Compute Spiking Vector

Require: Conf (k)

1: Generate AP (k), CV (k), q, FV (k), O(k) from the defini-
tions above

2: i ← 1
3: while i ≤ q do
4: j ← 1
5: while j ≤ n do
6: if ap(k)i = 1 and

(oi − 1) ≡ �(j − 1)/fv
(k)
σs � mod cv

(k)
σs then

7: s
(k)
ij ← 1

8: else
9: s

(k)
ij ← 0

10: end if
11: j → j + 1
12: end while
13: i → i+ 1
14: end while

III. CURRENT LIMITATIONS AND SOLUTIONS

In this section we focus on extending the CuSNP simulator
in [4]. The first limitation in the CuSNP of [4] is simulating an

SNP system Π with a maximum of 1024 neurons. This neuron
limitation comes from the hardware limitation of CUDA
devices only having 1024 threads per block and is also caused
by how q is computed in Π from Definition 11. The second
limitation from [4] is how the transition matrices (TM+ and
TM−) tend to be sparse, causing unnecessary space usage.
Next we discuss how to improve the CuSNP simulator and fix
both limitations.

From the definition of q, it is the product of all the elements
in the Count Vector so it requires O(m) time to compute it
sequentially. To improve the computation time for q we use a
multiblock parallel prefix scan. A scan is a generalized term
of the prefix sum wherein the operation is applicable not only
to addition but to other binary operations. In this case we
apply it to the multiplication operation for computing q. We
use a work-efficient, and step-efficient scan algorithms from
[10]. For SNP systems with at most 1024 neurons we use the
algorithm from [4]. For SNP systems with more than 1024
neurons we use the multiblock parallel prefix scan.

Next, we use an example to demonstrate the prefix scan.
Consider an arbitrary input

CV = 〈2, 1, 3, 1, 3, 4, 1, 2, 2, 3, 1, 2, 5, 3, 1, 2, 〉
and consider block size of 4. We put this CV in an array
to compute for the prefix scan of each block in CP0 then
retrieve the last element of each block CP1 as follows:
CP0 = [2, 2, 6, 6, 3, 12, 12, 24, 2, 6, 6, 12, 5, 15, 15, 30], CP1 =
[6, 24, 12, 30]

After getting the prefix scan of each block we compute for
the prefix scan of the individual block’s respective prefix scan,
i.e. CP2 = [6, 144, 1728, 51840]. To compute the final prefix
scan we retain the first block of the prefix scanned CP0. To
compute the following blocks we multiply CP2 to the elements
one block after the first in CP0. Now the cumulative product
of the array is completed in parallel with the following values.

CP = [2, 2, 6, 6, 18, 72, 72, 144, 288, 864, 864, 1728, 8640, 25920, 25920, 51840].

SNP systems are typically not fully connected, making their
transition matrices sparse. Next we discuss a variation of the
Compressed Sparse Row (CSR) format approach based on
[8]. In [8] they discuss the use of the CSR format in the
transformation of the Transition Matrices. However we modify
the CSR representation to only use two resultant arrays instead
of three from the original CSR format by transforming the
Transition Matrix into a 1-dimensional array and storing only
the index of non-zero elements instead of storing the row and
column on different arrays in the original CSR format.

Due to how the Transition Matrices TM+ and TM− are
defined, we need to modify how the reduction of the matrices
will be handled to further reduce the number of resultant arrays
from four (reductions of both TM+ and TM−) to just three.

Algorithm 3 shows how both TM+ and TM− are checked
for sparsity at the same time. We note that algorithm 3
produces only a partial reduction of the sparse arrays due to
how zero elements are checked in line 3. From this, there are
cases where the arrays are dense, or TM+ and TM− have a



Algorithm 3 Sparse to dense matrix representation of Transi-
tion Matrix
INPUT: TM+ and TM−

OUTPUT: TMr+, TMr−, TMIndex

1: Initialize empty arrays TMr+, TMr−, TMIndex
2: for i in 0, ..., N ∗M do
3: if TM+

i or TM−
i �= 0 then

4: Append TM+
i to TMr+

5: Append TM−
i to TMr−

6: Append i to TMIndex
7: end if
8: end for

zero element in one and non-zero element in the other resulting
to at most 50% increase in the total memory footprint of the
transition matrices.

TM
+

=

⎡
⎢⎢⎢⎢⎣

1 1 0 0 0
0 0 0 1 0
1 0 0 0 0
0 0 0 0 2
0 0 0 23 1

⎤
⎥⎥⎥⎥⎦

TM
−

=

⎡
⎢⎢⎢⎢⎣

0 0 −4 −2 −1
0 0 0 −1 0
−1 0 0 −3 0
0 0 0 0 −2
0 0 0 −1 0

⎤
⎥⎥⎥⎥⎦

As an example, we use a set of transition matrices
given above. Following Algorithm 3 we have the follow-
ing vectors: TMr+ = 〈1, 1, 0, 0, 0, 1, 1, 0, 2, 23, 1〉, TMr−

= 〈0, 0,−4,−2,−1,−1,−1,−3,−2,−1, 0〉, TMIndex =
〈0, 1, 2, 3, 4, 8, 10, 13, 19, 23, 24〉. From these values we can
compute the compression ratio, i.e. there were 50 elements
initially in TM+ and TM− that were reduced to 33 elements
giving the compression ratio of 50/33 or about 1.51. Note
that such transformations in the matrices lead to changes
in the algorithms that use the transformed matrices. The
algorithms affected in the simulator are generation of the
Applicability Vector and computation of Net Gain. A worst
case example is shown using the transition matrices de-
rived from Figure 1 where the resulting vectors are TMr+

= 〈0, 2, 0, 1, 1, 0, 1, 0〉, TMr− = 〈−2, 0,−2, 0, 0,−1, 0,−1〉,
TMIndex = 〈0, 1, 2, 3, 4, 5, 6, 7〉 which not only have the
same contents as the original transition matrices, but also have
an extra vector TMIndex, resulting to more memory usage.

Algorithm 4 Generate Applicability Vector
Input: TM−, Rules, RuleOwner, M
Output: AP (k)

1: Initialize empty vector AP (k)

2: for i in 0, ..., N do
3: consume ← TM−

i∗M+RuleOwneri

4: if Rule i can be fired and C
(k)
i + consume ≥ 0 then

5: APi ← 1
6: else
7: APi ← 0
8: end if
9: end for

Algorithm 4 shows how Applicability Vectors are generated
using the sparse TM− array. Algorithm 5 on the other hand
makes adjustments on how elements on TM− are accessed.

Algorithm 5 Generate Applicability Vector with transformed
matrix
Input: Transformed TM−, TMIndex array, Rules,
RuleOwner, M
Output: AP (k)

1: Initialize empty vector AP (k)

2: for i in 0, ..., N do
3: if z ← BinarySearch(TMIndex, i ∗ M +

RuleOwneri) is successful then
4: consume ← TM−

z

5: else
6: consume ← 0
7: end if
8: if Rule i can be fired and C

(k)
i + consume ≥ 0 then

9: APi ← 1
10: else
11: APi ← 0
12: end if
13: end for

In Algorithm 4, consume gets its value directly from TM−,
so the algorithm makes use of binary search to find whether
the target index with respect to its original form exists in the
transformed matrix. Non-existence of the target index means
that the value of the index in the sparse array is 0.

Algorithm 6 Compute Net Gain Vector

Input: TM+, TM−, S(k), St(k), IM (k), q,M,N
Output: NG(k)

1: for i in 0, ...,M ∗ q do
2: r ← i/M ; c ← i mod M
3: pos ← 0;neg ← 0
4: for x in 0, ..., N do
5: pos+ = IMr∗N+x ∗ TM+

x∗M+c

6: neg+ = Str∗N+x ∗ TM−
x∗M+c

7: end forNGi ← (Si ∗ pos) + neg
8: end for

Similar to how the Applicability vector is computed, the
change from Algorithm 6 to Algorithm 7 is about how the
transition matrices are accessed. In Algorithm 6 the access to
the transition matrices are straightforward while binary search
is again used to check the existence of the element in Algo-
rithm 7. Note that the changes in the algorithms affect their
computation time. For generating the Applicability Vector, the
time complexity changed from O(N) to O(N log y), while on
the computation of the Net Gain Vector, the time complexity
changed from O(M ∗ q ∗N) to O(M ∗ q ∗N log y) where y
refers to the size of the reduced Transition Matrix.

IV. TESTING AND RESULTS

We use the CuSNP simulator in [4] with |V | for Subset
Sum ranging from 3 to 17 due to hardware limitations. Such
set instances as inputs are currently sufficient to demonstrate



Algorithm 7 Compute Net Gain Vector using Transformed
Transition Matrices
Input: Transformed TMr+, TMr−, TMIndex array,
S(k), St(k), IM (k), q,M,N
Output: NG(k)

1: for i in 0, ...,M ∗ q do
2: r ← i/M ; c ← i mod M
3: pos ← 0;neg ← 0
4: for x in 0, ..., N do
5: if z ← BinarySearch(TMIndex, x ∗ M + c) is

successful then
6: pos+ = TMr+z ∗ IMr∗N+x

7: neg+ = TMr−z ∗ Str∗N+x

8: end if
9: end forNGi ← (Si ∗ pos) + neg

10: end for

the changes made to the algorithms. Integers between 50 and
100 inclusive were chosen randomly and a random half of the
generated set was chosen to serve as the solution. The same set
is used for uniform and nonuniform systems and is averaged
over five runs. All simulation results were collected using the
NVIDIA Profiler. The simulation was done in a system running
on Ubuntu 16.04 with Intel Core i7-4750HQ CPU at 2.00GHz,
an NVIDIA GeForce GTX 950M GPU with 640 CUDA cores
at 1GHz and 2GB of VRAM, and 8GB of system memory.
The simulator is compiled using nvcc on CUDA version 8.0.
Nvprof, a profiling tool developed by NVIDIA, is used for
measurements. Another simulation for a different set of inputs
is made both with the previous hardware discussed and another
faster machine running on Ubuntu 16.04 with Intel Core i7-
6700 CPU, an NVIDIA GeForce GTX 1070 GPU with 1920
CUDA cores at 1.84GHz with 8GB of VRAM, and 32GB of
system memory. Source code for this work is given in http:
//aclab.dcs.upd.edu.ph/productions/software/cusnp v170218.

Recall the following distinction between the SNP systems
from [6] we use in our experiments, given instance V =
{v1, v2, . . . , vn} and S of Subset Sum. On the one hand,
uniform solutions have the same set of rules and neurons
since such solutions depend only on the size |V | and not on
the values of each vi and S. On the other hand, nonuniform
solutions can have more or less neurons and rules for the same
size |V | since such solutions depend on the values of |V |, each
vi, and S.

First, we compare the average kernel time for the compu-
tation of q which involves prefix scan. In Figure 2, we can
see that computations involving less than 1024 neurons runs
with similar time compared to CuSNP in [4]. The original
function is used and the occasional time differences is due to
the GPU being used by other computer processes impacting
runtime. The increase in runtime with regards to inputs greater
than 1024 can be explained due to the function computing q
requiring twice the number of reads and writes in the global
memory upon implementation of said function, leading to

Figure 2. Computation of q Kernel Time Average

a significant slowdown due to the slower speed of global
memory compared to shared memory.

Figure 3. Uniform Memory Footprint

Figure 4. Nonuniform Memory Footprint

Next we show how much memory is reduced when using
the dense and transformed Transition Matrices compared to the
sparse and original form of the Transition Matrices used by
CuSNP in [4]. In Figure 4, we can see a significant reduction
of the memory footprint for each input size. We note that these



values are the cumulative memory footprint of the Transition
Matrices, i.e. for the sparse version these correspond to both
TM+ and TM− while for the dense version they are the total
memory footprint of TMr+, TMr− and TMIndex. Other
factors affecting the memory footprint of CuSNP not included
in this work are part of our future work.

Next we discuss the effect of the dense matrices to the
runtime of kernels that use such matrices. In Figures 5 and 6,
we can see a significant rise in kernel runtimes on both uniform
and nonuniform simulations when generating the Applicability
Vector. The same increase can be seen when computing the
Net Gain vector, although the runtime is slower due to how
each element in the vector is computed. Quantifying the
results, we can see that when generating the Applicability
Vector, there is 83% to 98% slowdown compared when using
sparse matrices. Computing Net Gain Vector on the other hand
has a slowdown of 18% to 73%.

We also notice that runtimes of some inputs are faster
even when compared to lower input sizes. This is due to
the simulator stopping at some configuration Ck and Ck−1

being zero vectors, so that there are no spikes left in the
system and no more computations can be done. There are
also certain inputs that lead to a configuration, particularly
in the nonuniform solutions, where there is a “large number”
of spikes in the output neuron (the output neuron in [6] fires
only at exactly S spikes) even if the neuron cannot fire. Such
configurations lead to “wasted” computations due to such large
values that occupy the GPU in loops for a while.

Figure 5. Generate Applicability Vector runtime.

Next we briefly discuss the results of our CuSNP simulator
with our second and faster machine, both in CPU and GPU.
In this faster machine we can simulate larger inputs, i.e. large
values of |V | and vi, since both CPU and GPU have more
memory. The input sets for the nonuniform solutions used are
inputs with set size of each V ranging from 3 to 19 and each
vi ranging from 1 to 150 inclusive. The inputs are run in
CuSNP with our machines with GTX 950m and GTX 1070
GPUs which we label as machine A and B, respectively. Only
nonuniforms solutions are provided in what follows. Although
uniform solutions also work with our CuSNP, their runtimes
are not provided since their runtimes are much larger due to

Figure 6. Compute Net Gain runtime.

larger values of vi used here. Another limitation imposed for
this comparison is that runtimes considered for our CuSNP is
20 minutes maximum, while the uniform solutions for such
values of vi can run for more than 1 hour.

In Figures 7,8,9, and 10 we see some trend can be observed
in the graphs of the machine A and B with regards to the
runtime of the simulator. They both follow a similar curve
albeit machine A takes longer time finishing the computation.
Similar trends can be seen when generating the Applicability
Vector, computation of the Net Gain Vector, and computing for
q. These trends are due to machine A having a slower GPU
running only at 1GHz compared to machine B at 1.8GHz.
Another thing to note is that machine A can only handle inputs
up to size 16 while machine B can handle inputs up to size
19. This is due to machine B having more VRAM of 8GB
compared to machine A only having 2GB of VRAM. There
are also no records regarding size 18 for machine B due to
the simulator taking longer than the 20 minute restriction. The
situation on input size 18 is due to the output neuron having
large number of spikes, e.g. 800, even if the neuron only fires
at exactly 450 spikes. This makes the simulator enter a large
number of loops, and eliminating such loops are recommended
for future work.

It is also noteworthy that the total memory consumption of
the GPU is dependent on a hard-coded value called MAX−Q
which is the maximum number of possible outcomes the SNP
system can have for any configuration. MAX − Q is used
for allocating GPU memory of the vectors and matrices of the
simulation. A computation for a certain input can run with
lower consumed memory if MAX − Q is lowered but may
also cause the simulator to fail due to insufficient memory
allocation.

V. CONCLUSIONS AND FUTURE WORK

In this work, certain optimisations are made with regards
to input limit and memory footprint of the transition matrix
of the CuSNP in [4]. A generalised prefix scan was used to
simulate SNP systems with more than 1024 neurons unlike in
[4]. A modification of CSR is given to form dense matrices
in our CuSNP. Changes to the algorithms using the transition



Figure 7. Nonuniform Simulator Runtime

Figure 8. Compute Net Gain Comparison

matrices are also presented that shows how the new dense
matrices are used during simulation. One motivation in this
work is to increase the size of the SNP systems that CuSNP
can simulate. In this way, making sure that the memory
usage in the GPU of the transition matrices are reduced was
necessary. As expected, additional computations for the sparse
matrices to our dense matrices result in slower runtimes. We
intend to optimise the calculation of q next. In this work
and in [4] the value of q is fixed, i.e. independent of any
configuration, for the entire simulation. Dynamic calculation
of q, upper bounded by the value in this work, can allow
simulations of larger SNP sytems. It is also interesting to use
other matrix representations and their transformations. Fur-
ther optimisations in the implementation of CuSNP can also
improve runtime, such as halting the simulation immediately
depending on the spikes found or not found in the output
neuron.
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and M. Á. Martı́nez-del-Amor. CuSNP: Spiking Neural P Systems
Simulators in CUDA. Romanian Journal of Information Science and
Technology, 20(1):57–70, 2017.
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