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Many definitions have been formulated to represent nonactive power for distorted voltages and currents in electronic and electrical
systems. Unfortunately, no single universally suitable representation has been accepted as a prototype for this power component.
This paper defines a nonactive power multivector from the most advanced multivectorial power theory based on the geometric
algebra (GA).The new concept can havemore importance on harmonic loads compensation, identification, andmetering, between
other applications. Likewise, this paper is concerned with a pioneering method for the compensation of disturbing loads. In this
way, we propose a multivectorial relative quality index ̃

𝛿 associated with the power multivector. It can be assumed as a new index
for power quality evaluation, harmonic sources detection, and power factor improvement in residential and commercial buildings.
The proposed method consists of a single-point strategy based of a comparison among different relative quality index multivectors,
which may be measured at the different loads on the same metering point. The comparison can give pieces of information with
magnitude, direction, and sense on the presence of disturbing loads. A numerical example is used to illustrate the clear capabilities
of the suggested approach.

1. Introduction

In recent years, there has been a growing concern for power
system distortion. This is due in part to a proliferation of
nonlinear loads such as air conditioning equipment, com-
puters, fax and copying equipment, and printers, extensively
used in commercial buildings, that are using the same
power network as fluorescent lighting and various electronic
communications equipment. The result of using such highly
nonlinear load is that the current waveform is distorted,
causing excessive harmonic voltages to be generated. The
close proximity of many of these commercial buildings
(hotels, offices, departmental stores, shopping centres, and
hospitals) will definitely contribute to the distortion of the
electric power quality of the feeder supplying these buildings.

With such high cost of poor power quality, researchers
have developed somany technical solutions to eliminate or at
least to reduce the impacts of poor power quality on modern
buildings. Such solutions consist of the design of passive
and active filters as well as designing switching regulators
for computer power supplies. However, to install such power

quality correction devices, people working in the building
industry must first be aware of the problem and appreciate
the cost of the problem as well as knowing the cost of the
solutions. They should also be aware of the power quality
components and the control for each of these components.
The main aim of this research work is to define those
aspects that directly influence the power quality of modern
commercial buildings so that building designers can be aware
of the challenges required in such buildings. Once they are
aware of the problem, the decision to install or not install
correction devices could be clearly made. The harmful and
costly effects of harmonics have been discussed extensively
[1, 2] and spurred stringent requirements by international
institutions regarding the allowed levels of harmonics at the
point of connection to the power supply [3, 4].

The increase of distortion levels caused by faults and
switching events in the residential and commercial loads
affects significantly the power transfer quality of a supply.
As is well known, harmonic presence can have adverse
effects on the linear/nonlinear operation of power systems.
Existing indexes [5] reflect the degree of power disturbance
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but fail to assess the precise form of all the above mentioned
phenomena together. In this paper, a relative quality index
multivector (̃𝛿) is suggested to evaluate the non-active power
in 𝑛-sinusoidal systems in stationary conditions. This has the
advantage of evaluating the power quality at any selected
single-point strategy in a distribution network by means
of this multivectorial indicator. The conventional quantities
based on the concepts of active, reactive, and apparent powers
cannot provide any useful information with regard to the
harmonic power flow.

From a theoretical point of view, in a circuit of any
topology, with sinusoidal or 𝑛-sinusoidal supply voltage, the
apparent power (𝑆)may be analytically decomposed into two
components [6]. These components are the active power (𝑃)
and the non-active power (𝑄

𝐹
), which sum to the apparent

power by the relationship 𝑆2 = 𝑃

2
+ 𝑄

2

𝐹
. In sinusoidal con-

ditions, non-active power has the only value 𝑄
𝐹

= 𝑄

1
=

𝑈

1
𝐼

1
sin 𝜑

1
, and complete compensation is possible so as

to render the overall power factor to be the unity (ideal
condition), and in this case, 𝑆 = 𝑃 ⇒ 𝑄

1
= 0. On the con-

trary, many definitions have been formulated to represent
non-active power for 𝑛-sinusoidal situations in linear and
nonlinear power systems. In fact, the physical reality is that
𝑃 ≤ 𝑆, but there, as sinusoidal case, is not physical jus-
tification, in general, for separating the difference 𝑄2

𝐹
= 𝑆

2
−

𝑃

2 or non-active power into analytical quantities.
Reference [7] argues that “any such decomposition of 𝑆 is

entirely mathematical and subject to the whims and interpreta-
tions of individuals.” In this sense, in 𝑛-sinusoidal operation,
the presence of harmonic distortion on voltage and currents
generates a number of power terms that involve the non-
active power. It is our conviction that apparent power concept
should be represented by a set of adaptable orthogonal terms
to any association criteria. Startingwith theworks of Budeanu
and Fryze, numerous valuable works have appeared [8–
11] aimed to characterize the power equation into different
components, among them reactive and distortion powers,
with diverse names and meanings without a powerful reason
for it. But none of these have succeeded in defining a concept
that not only accounts for the total non-active power but also
satisfies a multivectorial representation. The discussion on
this matter is still open, and there is not yet a generalized
power theory that can be assumed as a common base for
power quality evaluation and harmonic source detection.

It is well known that the distorted current causes distur-
bances on the supply side, because of the nonzero impedance
of the source. The load side of the power system also is
affected by the distorted currents. Therefore, for a generic
metering point, harmonic sources can be located on the util-
ity side and/or costume side, so that both supply and/or load
may be responsible for the distortion origin. In the literature,
several different theories for harmonic sources detection have
been suggested, but the most common method is the “power
direction method” [12] that checks the direction of harmonic
power flow. However, in some applications this approach
is not appropriate to provide correct information about the
source producing harmonic distortion. Furthermore, some
approaches have been proposed for evaluation and detection

harmonic sources. They can be mainly classified in two
groups, single-point and multipoint measurement methods
[13]. Both techniques have their advantages and disadvan-
tages.

Unfortunately, in some practical applications, these
approaches cannot provide correct information about the
customer and the supply side harmonic contributions. Never-
theless, we must recognize that single-point method presents
many advantages as simple instrumentation, low cost, and
easy implementation. For all this, we believe that a good
solution to the problem can be themeasure of amultivectorial
index with its three attributes, magnitude, direction, and
sense, which carries all necessary information. This index is
based on the power multivector concept [14].

The purpose of this paper is to suggest a relative quality
index, with the inherent ability to simultaneously register two
types of information in residential and commercial loads:

(i) detection and control of the dominant harmonic
source;

(ii) optimal compromise between power factor and
power quality.

The key ideas of the approach are the use of the Clifford
algebras (GA) to obtain the power multivector. From this, it
is possible to define the ̃𝛿 quantity.

2. Mathematical Foundations

Geometric algebra is a mathematical structure, developed
over the last 40 years, based on Clifford algebras. A geometric
algebra can be defined simply by specifying appropriate rules
for multiplying vectors. Thus, let V𝑛 be an 𝑛-dimensional
linear space over the real numbers. The geometric product of
vectors 𝑎⊗𝑏, 𝑎, 𝑏 ∈ V𝑛, can be decomposed into a symmetric
inner product

𝑎 ⋅ 𝑏 =

1

2

(𝑎 ⊗ 𝑏 + 𝑏 ⊗ 𝑎) (1)

and an antisymmetric outer product

𝑎 ∧ 𝑏 =

1

2

(𝑎 ⊗ 𝑏 − 𝑏 ⊗ 𝑎) . (2)

Therefore, 𝑎𝑏 has the canonical decomposition:

𝑎 ⊗ 𝑏 = 𝑎 ⋅ 𝑏 + 𝑎 ∧ 𝑏. (3)

The inner product 𝑎 ⋅ 𝑏 is a scalar, and the outer product
𝑎 ∧ 𝑏 is called a bivector (or 2-vector). Geometrically, it
represents a directed plane, in much the same way as a vector
represents a directed line segment (Figure 1). We can regard
𝑎 ∧ 𝑏 as a directed area with a norm ‖𝑎 ∧ 𝑏‖ equal to the
usual scalar area of each parallelogram in Figure 1, with the
direction of the plane in which the parallelogram lies, whose
sense can be assigned to the parallelogram in the plane.
Therefore, just as a vector 𝑎 ∧ 𝑏 represents a directed plane
segment, a trivector (3-vector) 𝑎 ∧ 𝑏 ∧ 𝑐 represents a directed
space segment (the parallelepiped with edges 𝑎, 𝑏, and 𝑐).
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Figure 1: Representation of geometric objects: vector, bivector, and
trivector.

However, the electrical quantities, voltage and current,
have no easy interpretation in classic Clifford algebra. For
a clear representation of these waveforms, a new geomet-
ric algebra has been constructed—a generalization of the
classic Clifford algebra—which we have termed “Generalized
Complex Geometric Algebra” denoted by {CG

𝑛
, ⊙} [15]. In

this framework, C is the complex vector space, G
𝑛
is the

Clifford algebra or geometric algebra associated with the
𝑛-dimensional real space V𝑛, and ⊙ : (R ∘ ⊗) is the new
generalized geometric product. A detailed description of this
new structure, of the geometric product “⊙”, and their
properties is given as 𝑔 in [15].

3. Power Multivector: Control Strategy

3.1. Power Multivector. In classic circuit theory, apparent
power volt-amperes 𝑆 is defined as the product of rms
voltage and rms current at the circuit terminals. In order
to represent the concept of the power multivector in CG

𝑛
,

we introduce a new rule for multiplying geometric phasors
(complex vectors). This rule is the new geometric product
⊙ : (R ∘ ⊗), where R is an application over complex planes
and “⊗” is the classic geometric product.

In this context, consider an arbitrary non-linear one-port
circuit, Figure 2, supplied by the voltage:

𝑢 (𝑡) =

√

2 ∑

𝑝∈𝐿∪𝑁

𝑈

𝑝
sin (𝑝𝜔𝑡 + 𝛼

𝑝
) . (4)

The resulting current has an instantaneous value given by

𝑖 (𝑡) =

√

2 ∑

𝑞∈𝑁∪𝑀

𝐼

𝑞
sin (𝑞𝜔𝑡 + 𝛽

𝑞
) , (5)

where 𝑞 is the harmonic order of 𝑖(𝑡). Figure 2 shows the
circuit of a diode rectifier with a capacitive output filter which
is an example of a nonlinear load with harmonic voltage
source behaviour. This kind of circuit is present in almost all
residential and commercial loads, such as computers, video
monitors, TV sets, and electronic lamp ballasts [16].

D1 D2

RC

D3 D4

u(t)

+
i(t)

Figure 2: Nonlinear circuit with 𝑛-sinusoidal waveforms.

In the {CG
𝑛
, ⊙} structure spanned by an orthonormal

basis {𝜎
1
, 𝜎

2
, 𝜎

3
, . . . , 𝜎

𝑛
}, the associated pth harmonic volt-

age and qth harmonic current can be represented by the
geometric-phasors:

̃

𝑈

𝑝
= 𝑈

𝑝
𝑒

𝑗 𝛼𝑝
𝜎

𝑝
,

̃

𝐼

𝑞
= 𝐼

𝑝
𝑒

𝑗𝛽𝑞
𝜎

𝑞
, (6)

where 𝑈
𝑝
= ‖

̃

𝑈

𝑝
‖, 𝐼
𝑞
= ‖

̃

𝐼

𝑞
‖.

Apparent power can thus be expressed as a multivector ̃𝑆
in the geometric algebra (𝑛-sinusoidal case) in a parallel way
to the apparent power 𝑆 in the complex algebra (sinusoidal
case). In this sense, the generalised geometric product of the
voltage and conjugate current geometric-phasors is given by

̃

𝑆 =

̃

𝑈 ⊙

̃

𝐼

∗
= ∑

𝑝∈𝑁∪𝐿

𝑞∈𝑁∪𝑀

̃

𝑈

𝑝
⊙

̃

𝐼

∗

𝑞
= {

̃

𝑈 ⋅

̃

𝐼

∗
⏟⏟⏟⏟⏟⏟⏟⏟⏟

Ω̃
∙

+

̃

𝑈 ∧

̃

𝐼

∗
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

Ω̃
∧

} , (7)

which obeys the usual conservation law [13] assuming that a
group of voltage harmonics𝑁 exist that have corresponding
current harmonics of the same frequencies, that components
𝐿 of the supply voltage exist without corresponding currents
and that components𝑀 of current exist without correspond-
ing voltages. From (7), one can easily define a complex-scalar
part (̃Ω∙) and a complex-bivector part (̃Ω∧) where, for clarity
of presentation and without loss of generality, 𝛼

𝑝
= 𝛼

𝑞
= 0.

In this particular case, R is the identity, and then, the scalar
(

̃

Ω

∙
) and the bivector (̃Ω∧) are now given by

̃

Ω

∙
= ∑

𝑝∈𝑁

𝑈

𝑝
𝐼

𝑝
𝑒

𝑗𝜑𝑝
𝜎

0
, (8)

̃

Ω

∧
= ∑

𝑝<𝑞

𝑝,𝑞∈𝑁

(𝑈

𝑝
𝐼

𝑞
𝑒

𝑗𝜑𝑞
− 𝑈

𝑞
𝐼

𝑝
𝑒

𝑗𝜑𝑝
) 𝜎

𝑝𝑞

+ ∑

𝑝∈𝐿∪𝑁, 𝑞∈𝑀

𝑝∈𝐿, 𝑞∈𝑁

𝑈

𝑝
𝐼

𝑞
𝑒

−𝑗𝛽𝑞
𝜎

𝑝𝑞
.

(9)

It follows from (8) that

Re {̃Ω∙} = ∑

𝑝∈𝑁

𝑈

𝑝
𝐼

𝑝
cos𝜑
𝑝
𝜎

0
, (10)

Im {

̃

Ω

∙
} = ∑

𝑝∈𝑁

𝑈

𝑝
𝐼

𝑝
sin𝜑
𝑝
𝜎

0
, (11)
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Table 1

1-sinusoidal case:
complex power

𝑛-sinusoidal case:
power multivector

𝑆 = 𝑈 ⋅ 𝐼

∗ ̃

𝑆 =

̃

𝑈 ⊙

̃

𝐼

∗
=

̃

𝑈 ⋅

̃

𝐼

∗
⊕

̃

𝑈 ∧

̃

𝐼

∗
=

̃

Ω

∙
⊕

̃

Ω

∧

𝑆 = 𝑈 ⋅ 𝐼

∗

= 𝑃 + 𝑗𝑄

̃

𝑆 =

̃

𝑈 ⊙

̃

𝐼

∗
= (𝑃 + 𝑗𝑄)𝜎

0
⊕

̃

Ω

∧

where ‖Re{̃Ω∙}‖ is the active power 𝑃 and ‖ Im{̃Ω∙}‖ is
associated with Budeanu and Slonim’s reactive power 𝑄.

The imaginary part of the complex scalar Im{̃Ω∙} and the
complex bivector ̃Ω∧ have a non-independent physical nature
and constitute the nonactive power multivector ̃Σ, which is
defined as

̃

Σ = 𝑗𝑄𝜎

0
+ ∑

𝑝<𝑞

𝑝,𝑞∈𝑁

(𝑈

𝑝
𝐼

𝑞
𝑒

𝑗𝜑𝑞
− 𝑈

𝑞
𝐼

𝑝
𝑒

𝑗𝜑𝑝
) 𝜎

𝑝𝑞

+ ∑

𝑝∈𝐿∪𝑁, 𝑞∈𝑀

𝑝∈𝐿, 𝑞∈𝑁

𝑈

𝑝
𝐼

𝑞
𝑒

−𝑗𝛽𝑞
𝜎

𝑝𝑞
.

(12)

The squared value ‖̃𝑆‖2 in (7) may be represented as
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𝐼











2

= 𝑆

2
,

(13)
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2

= ‖𝑃‖

2
+











̃

Σ











2

= 𝑆

2
.

(14)

Equations (13) and (14) are identical to the classic squared
value of the apparent power and are only a secondary result
of this work. In particular, 𝑆2 = ‖

̃

𝑆‖

2 is the sum of the squared
magnitudes of the individual components of ̃𝑆. In this way, in
numerous situations, direction and sense are not required; the
magnitude ‖̃𝑆‖ = 𝑆 was then established to manage a specific
problem. However, there are situations where direction and
sense are necessary, as those that depend on the origin and
nature of distortion. In these cases, the power multivector
̃

𝑆 is an appropriate quantity to solve the problem since it
incorporates all the required information within one single
succinct expression.

The convenience of using one or another quantity is
dictated by the necessities of the situation. Particularly, in
sinusoidal case, (6) can be expressed by

̃

𝑈 =











̃

𝑈

1











𝑒

𝑗𝛼1
𝜎

1
= 𝑈

1
𝜎

1
,

̃

𝐼 =











̃

𝐼

1











𝑒

𝑗𝛽1
𝜎

1
= 𝐼

1
𝜎

1
, (15)

where𝑈
1
and 𝐼
1
are now the Steinmetz classic phasors. Using

(7), the complex power is defined by

̃

𝑆 =

̃

𝑈 ⊙

̃

𝐼

∗
= (𝑃 + 𝑗𝑄) 𝜎

0
, (16)

where 𝑃 = 𝑈

1
𝐼

1
cos 𝜑
1
and 𝑄 = 𝑈

1
𝐼

1
sin𝜑
1
are the active

and reactive powers, respectively. In addition, the power
multivector representation under 𝑛-sinusoidal operation can
be perceived as a generalization of the complex power
representation valid only in 1-sinusoidal operation. Table 1
shows the correspondence between both approaches.

3.2. Control Strategy: Relative Quality Index. From the view-
point of the power factor improvement residential and
commercial loads, the suggested representation (7) can be
particularly useful. Thus, a multivectorial relative quality
index ̃𝛿 is defined by

̃

𝛿 =

̃

𝑆

̃

𝑃

= 1 + 𝑗

̃

𝑄

𝐵

̃

𝑃

+

̃

Ω

∧

̃

𝑃

⇒











̃

𝛿











2

= 1 +











∑

𝑝=𝑞
𝑈

𝑝
𝐼

𝑝
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2
+











∑

𝑝 ̸= 𝑞
̃

Ω

∧

𝑝𝑞











2











̃

𝑃











2
,

(17)

and the power factor (PF) can be written as

PF = 1











̃

𝛿











, (18)

where











̃

𝛿











=
√
1 +











̃

𝑄











2











̃

𝑃











2
+











̃

Ω

∧








2











̃

𝑃











2
.

(19)

From the viewpoint of the disturbing loads control, (17)
shows that on ̃

𝛿 all their terms, with direction and sense,
are accessible to any compensation strategy. This property is
important in order to achieve an appropriated compromise
between any quality index and the power factor. First, ̃𝑆 =

̃

𝑃 ⇒ ‖

̃

𝛿‖ = 1 can be considered as an ideal condition. Thus,
the relative quality index unity is a minimum reference value,
since it corresponds to a case on absence of non-active power.

On the other hand, ‖̃𝑆‖2 − ‖̃𝑃‖2 = ‖

̃

𝑄

𝐹
‖

2 is (‖̃𝑄
𝐹
‖ Fryze’s

reactive power) is the maximum value for the non-active
power. It is obvious that ‖̃𝑄

𝐹
‖ depends on both common

and uncommon harmonics of the voltage and current. Then,
the different ̃𝛿 multivectors and their magnitudes depend
on the supply voltage and load conditions. Each situation is
strictly related to the distortion state of power system and,
therefore, to the harmonic presence and power quality. Thus,
a higher amount of non-active power is associated with a
higher contribution of the harmonics to the ̃𝑄

𝐹
power terms.

In this case, two pieces of information exists.

(i) From ̃

𝛿, it is possible to obtain a very good power
factor through an adequate compensation strategy.
Evidently, ̃𝛿 can register the bidirectional active power
harmonic components and can efficiently handle
situations in which a bidirectional active power flow
occurs.

(ii) If ‖

̃

𝛿‖ is more significant, a higher contribution
of the non-active power harmonics occurs. On the
contrary, if ‖̃𝛿‖ is small, the influence of the harmonic
contribution is reduced.

From these considerations, an evaluation of both ̃

𝛿 and
‖

̃

𝛿‖, calculated in the same point metering and in the same
working conditions, could give two pieces of information on
the concrete problems of the power quality and control of
disturbing loads.
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4. Numerical Example

Let us consider that a building is supplied from a source of
periodical 𝑛-sinusoidal voltage with a geometric phasor given
by

̃

𝑈 = 200𝑒

𝑗0
𝜎

1
+ 200𝑒

−𝑗30
𝜎

3
+ 100𝑒

𝑗30
𝜎

5 (
V) . (20)

The load impedance tensor building is given by

ZLoad

=(

41.57 + 𝑗30.93 0 0

0 59.64 + 𝑗107.23 0

0 0 157.74 + 𝑗238.23

) ,

(21)

and the resulting building current geometric phasor is given
by

̃

𝐼

𝐿
= 3.86𝑒

−𝑗36.65
∘

𝜎

1
+ 1.63𝑒

−𝑗90.92
∘

𝜎

3

+ 0.35𝑒

−𝑗26.49
∘

𝜎

5 (
A) ⇒ 









̃

𝐼

𝐿











= 4.21 (A) .
(22)

4.1. Without Compensation. According to (7), the following
power multivector is obtained:
̃

𝑆

𝐿
= (797.14 + 𝑗774.91) 𝜎

0
+ (−311.21 − 𝑗382.82) 𝜎

13

+ (−320.75 − 𝑗13.48) 𝜎

15
+ (−93.11 − 𝑗6.9) 𝜎

35 (
VA) ,
(23)

where
̃

𝑄

𝐿
= 𝑗774.91𝜎

0 (
VA) ,

̃

Ω

∧

13𝐿
= (−311.21 − 𝑗382.82) 𝜎

13 (
VA) ,

̃

Ω

∧

15𝐿
= (−320.75 − 𝑗13.48) 𝜎

15 (
VA) ,

̃

Ω

∧

35𝐿
= (−93.11 − 𝑗6.9) 𝜎

35 (
VA) .

(24)

It follows that ‖̃𝑆
𝐿
‖ = 1261.4 (VA), 𝑃

𝐿
= 797.14 (W),

‖

̃

Ω

∧

𝐿
‖ = 595.97 (VA), ‖̃𝛿

𝐿
‖ = 1.58, and PF

𝐿
= 0.63.

Figure 4(a) shows the scalar and bivector parts of the
multivector ̃𝑆

𝐿
.

4.2. Passive Partial Compensation. With regard to the power
factor improvement, consider first that an LC-branches shunt
(parallel passive filter, PPF), Figure 3, is connected to the
load terminals to fully compensate the load harmonic suscep-
tances according to [17]. The selected poles are

𝑝1 = 1.2𝜔

0
, 𝑝2 = 4𝜔

0
,

𝑝3 = 6𝜔

0
(𝜔

0
= 100 𝜋 (rad/s)) .

(25)

Simulation results for parameters to the PPF are

𝐿

1
= 733.96mH, 𝐶

1
= 9.59 𝜇F,

𝐿

2
= 227.19mH, 𝐶

2
= 2.79 𝜇F,

𝐿

3
= 124.58mH, 𝐶

3
= 2.26 𝜇F.

(26)

Load

PPF
PAF

Ũ

ĨC

ĨLCĨPAF

ĨB ĨLC B

Figure 3: Architecture of the compensator.

In this way, we obtain the current geometric phasor and
load power multivector in point 𝐵 given by

̃

𝐼

𝐵
= 3.1𝑒

𝑗(0
∘
)
𝜎

1
+ 0.79𝑒

𝑗(−30
∘
)
𝜎

3

+ 0.19𝑒

𝑗(30
∘
)
𝜎

5 (
A) ⇒ 









̃

𝐼

𝐵











= 3.21 (A) ,

̃

𝑆

𝐵
= (797 + 𝑗0) 𝜎

0
+ (−400.1 − 𝑗231) 𝜎

13

+ (−235.56 + 𝑗136) 𝜎

15
+ (−20.5 + 𝑗35.5) 𝜎

35 (
VA) .

(27)

It follows that










̃

𝑆

𝐵











= 961.41 (VA) , 𝑃

𝐵
= 797 (W) ,

𝑄

𝐵
= 0 (VA) , 









̃

Ω

∧

13𝐵











= 462 (VA) ,










̃

Ω

∧

13𝐵











= 272 (VA) , 









̃

𝛿

𝐵











= 1.20, PF
𝐵
= 0.83.

(28)

Figure 4(b) illustrates the scalar and bivector parts of the
multivector ̃𝑆

𝐵
.

4.3. SelectiveHybrid Compensation. In a second step, a select-
ive compensation to the distortion power bivector is possible
in order to obtain an optimal compromise between the rel-
ative quality index (19) and power factor; that is, ‖̃Ω∧

13𝐵
‖ =

0 (VA). Without going into detail, the compensator would
consist of a parallel active filter (PAF) producing a sinusoidal
current. The PAF is controlled to modify the 3rd order
harmonic of the ̃

𝐼

𝐵
current according to condition 𝑈

𝑝
𝐼

𝑞
−

𝑈

𝑞
𝐼

𝑝
= 0. The generated geometric phasor harmonic refer-

ence current and the corresponding power bivector part are
given by ̃

𝐼

3PAF
= 2.303𝑒

𝑗(150
∘
)
𝜎

3
(A) and ̃

Ω

∧

13PAF
= 400.1 +

𝑗231 (VA), respectively. After this selective compensation, the
current geometric phasor and power multivector at point 𝐶
are given by

̃

𝐼

𝐶
= 3.1𝑒

𝑗(0
∘
)
𝜎

1
+ 3.1𝑒

𝑗(−30
∘
)
𝜎

3
+ 0.19𝑒

𝑗(30
∘
)
𝜎

5 (
A) ,

̃

𝑆

𝐶
= (1259 + 𝑗0) 𝜎

0
+ (0 + 𝑗0) 𝜎

13

+ (−235.55 + 𝑗136) 𝜎

15

+ (−136 + 𝑗235.55) 𝜎

35 (
VA) ,

(29)



6 The Scientific World Journal

2000

1500

1000

500

0

−500

−1000

Ω̃
∧
13 Ω̃

∧
15

Ω̃
∧
35

Ω̃
∙

Q

P

(a)

P

Ω̃
∧
13

Ω̃
∧
15 Ω̃

∧
35

Ω̃
∙

1000
800
600
400
200
0

−200

−400

−600

−800

(b)

P

Ω̃
∧
15

Ω̃
∧
35

Ω̃
∙

Ω̃
∧
13 = 0

1400
1200
1000
800
600
400
200
0

−200

−400

(c)

P

Ω̃
∧
13 = 0 Ω̃

∧
15 = 0 Ω̃

∧
35 = 0

Ω̃
∙

1600
1400
1200
1000
800
600
400
200
0

(d)

Figure 4: Apparent power components (◻ real part, ◼ imaginary part): (a) without compensation, (b) PPF compensation, (c) selective PAF-
PPF compensation, and (d) total PAF-PPF compensation.

where ‖̃𝑆
𝐶
‖ = 1316.45 (VA), 𝑃

𝐶
= 1259 (W), 𝑄

𝐶
= 0 (VA),

‖

̃

Ω

∧

13𝐶
‖ = 0 (VA), ‖̃Ω∧

15𝐶
‖ = 272 (VA), and ‖̃Ω∧

35𝐶
‖ = 272 (VA).

Moreover, ‖̃𝛿
𝐶
‖ and PF

𝐶
are very close to unity; that is,

‖

̃

𝛿

𝐶
‖ = 1.04 and PF

𝐶
= 0.96. Scalar and bivector parts of

the multivector ̃𝑆
𝐶
are shown in Figure 4(c).

4.4. Total Hybrid Compensation. With regard to the total
power factor improvement, that is, ‖̃Ω∧

𝐿
‖ = 0 (VA) ⇒

(‖

̃

Ω

∧

13𝐶
‖ = 0, ‖

̃

Ω

∧

15𝐶
‖ = 0, ‖

̃

Ω

∧

35𝐶
‖ = 0), 𝑄

𝐿
= 0 (VA), and PF =

1, the same procedure can be used as for the previous case.
In this way, the PAF is controlled to modify the 3rd and 5th
harmonic of the ̃𝐼

𝐵
current. The generated reference current

geometric phasors and power bivector parts ̃Ω∧
13PAF

,

̃

Ω

∧

15PAF
,

and ̃Ω∧
35PAF

are given by

̃

𝐼

3PAF
= 2.303𝑒

𝑗(150
∘
)
𝜎

3 (
A) , ̃

𝐼

5PAF
= 1.36𝑒

𝑗(−150
∘
)
𝜎

5 (
A) ,

̃

Ω

∧

13PAF
= 400.1 + 𝑗231 (VA) ,

(30)

̃

Ω

∧

15PAF
= 235.55 − 𝑗136 (VA) ,

̃

Ω

∧

35PAF
= 136 − 𝑗235.55 (VA) ,

(31)

respectively.

The current and power multivectors at point 𝐶 are given
by

̃

𝐼

𝐶
= 3.1𝑒

𝑗(0
∘
)
𝜎

1
+ 3.1𝑒

𝑗(−30
∘
)
𝜎

3

+ 1.55𝑒

𝑗(30
∘
)
𝜎

5 (
A) ⇒ 









̃

𝐼

𝐶











= 4.65 (A) ,

̃

𝑆

𝐶
= 1395 𝜎

0 (
VA) , 









̃

𝛿

𝐶











= PF
𝐶
= 1.

(32)

The effect of this total compensation is illustrated in
Figure 4(d).

In cases 𝑐 and 𝑑, selective and total compensation, power
bivectors to the load and compensator are of the same nature
despite their opposite signs in real and imaginary parts. It is
necessary to note the importance of the direction and sense
in the power multivector.

This compensation strategy increases the active power in
the same way as in [17] but has two advantages: the ability
to adjust the reference current into PAF and no resonance
problems.

It is remarkable that the power factor is not the exclusive
index for power quality and different aspects (economics,
compensator architecture, power factor, power quality, etc.)
may be relevant for the partial cancellation of the non-
active powers. In this sense, as can be seen through the
proposed example, an optimal compromise between power
factor and power quality (case 𝑐) could require suitable power
decompositions.

Finally, through this numerical example, a formal pro-
cedure for power factor correction has been realized within
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the mathematical framework {CG
𝑛
} using information

exclusively contained in the power multivector concept. The
suggested apparent powermultivector, (7), can readily handle
these cases, since it carries all information required and
its superiority compared to any power equation is clearly
demonstrated in the proposed example.

5. Conclusions

This paper presents a new power multivector, which is
universally applicable to systems with any kind of voltage
and current waveforms as the residential and commercial
loads. The basis of the theory is the use of the Clifford
spaces, (GA), to define the power multivector as a direct
sum of complex scalar and complex bivector components.
Our multivector plays a similar role to that of the Steinmetz
phasor model in the sinusoidal case. Our approach obeys
the usual conservation laws [14] and is internally consistent
with existing power equations. The application of these new
concepts to power system analysis should make significant
improvements possible in control devices, new optimization
algorithms, and effective power quality indexes in residential
and commercial loads.
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