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Abstract. The Continuum-Discretized Coupled-Channels (CDCC) has been successfully
employed to describe elastic and breakup of nuclear reactions induced by weakly bound
projectiles. In this contribution, we review some other, less widespread applications of the
CDCC wavefunction, some of them in combination with other reaction formalisms, which are
being currently employed in the analysis of reactions involving three or more fragments in the
initial or final state.

1. Introduction: reminder of the CDCC method
The CDCC method was first introduced by G. Rawitscher [1] and later refined and fully
implemented by the Pittsburgh-Kyushu collaboration [2,3] to describe the effect of the breakup
channels on the elastic scattering of deuterons. Denoting the reaction by a+A, with a = b+ x
(referred hereafter as the core and valence particles, respectively), the method assumes that the
many-body reaction can be reduced to an effective three-body problem described by the effective
Hamiltonian

H = Hproj + T̂~R + UbA(~rbA) + UxA(~rxA), (1)

with Hproj = T̂~r+Vbx the projectile internal Hamiltonian, T̂~r and T̂~R are kinetic energy operators,
Vbx the inter-cluster interaction and UbA and UxA are the core-target and valence-target optical
potentials (complex in general) describing the elastic scattering of the corresponding b+A and
x + A sub-systems, at the same energy per nucleon of the projectile. In the CDCC method,
the three-body wave function of the system is expanded in terms of the eigenstates of the
Hamiltonian Hproj including both bound and unbound states. Since the latter form a continuum,
a procedure of discretization is applied, consisting in approximating this continuum by a finite
and discrete set of square-integrable functions. In actual calculations, this continuum must be
truncated in excitation energy and limited to a finite number of partial waves ` associated to the
relative co-ordinate ~r. Normalizable states representing the continuum should be obtained for
each `, j values. Two main types of discretization methods are commonly used. One is the the
pseudo-state method, in which the b+x Hamiltonian is diagonalized in a basis of square-integrable
functions, such as Gaussians [4] or transformed harmonic oscillator functions [5]. Negative
eigenvalues correspond to the bound states of the systems, whereas positive eigenvalues are
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regarded as a finite representation of the continuum. The other is the binning method, in which
normalizable states are obtained by constructing wave packets (bins) by linear superposition of
the actual continuum states over a certain energy interval [3].

Assuming a single-bound state for simplicity of the notation, the three-body CDCC
wavefunction is then written as:

ΨCDCC(~r, ~R) = φ0(~r)χ0( ~K0, ~R) +
N∑
n

φn(kn, ~r)χn( ~Kn, ~R) (2)

where n is a discrete index for the discretized continuum states, K the wavenumber associated
to the projectile-target relative motion and k the nominal wavenumber of the bound continuum
bins. The unknown functions {χn(K0, ~R)} (n = 0, . . . , N) are obtained by inserting ΨCDCC into
the Schrödinger equation, giving rise to a system of coupled equations which must be solved
subject to the boundary asymptotic condition

χ(+)
n ( ~K, ~R)

R�−−→ ei
~K·~Rδn,0 + fn,0(θ)

eiKR

R
(3)

where fn,0(θ) is the scattering amplitude corresponding to the transition to the state n. The
differential cross section for the population of this state is(

dσ(θ)

dΩ

)
0→n

=
Kn

K0
|fn,0(θ)|2 . (4)

2. Recent extensions and applications of the CDCC method
In its original formulation, the CDCC method was restricted to two-body projectiles and ignored
any possible excitations of the target and of the constituent fragments of the projectile. Although
these excitations are in principle taken into account, in an effective way, by the imaginary part
of the fragment-target optical potentials, there are situations in which they may need to be
explicitly taken into account. Furthermore, the two-body picture may be inadequate for some
nuclei such as, for example, for Borromean systems (e.g. 6He, 9Be, 11Li). Suitable extensions of
the CDCC formalism aimed at overcoming these limitations have been developed since the early
days of the method. For example, collective excitations of the target nucleus can be incorporated
using an augmented modelspace which includes some excited states of this nucleus and replacing
the fragment-target interactions UbA(~rbA) and UxA(~rxA) [c.f. Eq. (1)] by deformed potentials.
This was first done by Yahiro et al. [2] for the case of deuteron breakup, although the calculations
were restricted to p-n s-waves. The problem has been also revisited recently [6] and extended to
other weakly bound projectiles and higher partial waves. In the case of deuteron reactions, the
computed elastic scattering and inelastic scattering (i.e. target excitation) cross sections were
found to reproduce very well those found with Faddeev/AGS calculations [6].

To account for possible excitations of the projectile fragments, an extended version of the
CDCC method (coined XCDCC) has been also formulated in recent years [7,8]. In the XCDCC
method, the effective Hamiltonian (1) is modified by using deformed fragment-target potentials
and by including the effect of the deformation of one of the fragments (b or x) in the projectile
Hamiltonian Hproj using, for instance, a particle-rotor model. The method has been applied
to reactions induced by 11Be [8–14] and 19C [15]. The main conclusion of these calculations is
that, in the case of light targets (such as protons or 12C), the dynamical excitation mechanism
of the core nucleus plays a very important in the reaction, producing a sizable increase of the
breakup cross sections [8, 10, 15]. For heavier targets, such as 64Zn [14] or 197Au [11], this
dynamical excitation mechanism is very small, which is attributed to the fact that the breakup
is dominated by the long-range dipole Coulomb couplings tending to dissociate x from b, which
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overwhelms the effect of the quadrupole and octupole collective couplings exciting collective
modes of the core (b). Yet, the inclusion of the core deformation may still affect significantly
the B(Eλ) strength between bound states of the projectile and this translates into important
differences in the inelastic scattering cross sections for the population of these states [11].

3. Applications of the CDCC wavefunction to other formalisms
In principle, the CDCC wavefunction provides only elastic and elastic breakup cross sections
since these are the only components present in the asymptotic form (3), from which the scattering
observables are computed. Yet, the full CDCC wavefunction (2) contains additional information
on the reaction. It can be regarded as an accurate representation of the three-body wavefunction
of the system, at least for b-x separations spanned by the discrete basis {φn(~r)}. As such, it can
be combined with other reaction frameworks which require some approximation of the three-
body wavefunction within that region of the configuration space. Some recent examples are
given in the following subsections.

3.1. Transfer reactions induced by weakly bound nuclei on deformed targets
Theories of (d, p) and (p, d) reactions frequently rely on formalisms based on a transition
amplitude that is dominated by the components of the total three-body scattering wave function
where the spatial separation between the incoming neutron and proton is confined by the range
of the n-p interaction. This is where the CDCC wavefunction for the d + A system in terms
of p-n states is at its best, so it be used for that purpose. The idea has been used by several
authors (see e.g. [16] and [17]) to assess the validity of other, more approximate methods, such
as the adiabatic approximation [18,19].

Additional dynamical effects can be studied with the extended versions of the CDCC
wavefunction discussed in Sec. 2. For example, the extended CDCC wavefunction with target
excitations can be used to investigate the effect of target excitation in transfer reactions. This
idea has been recently applied to the 10Be(d, p)11Be reaction at difference incident energies [20].
For that, one may use the post-form of the transition matrix for the process A(d, p)B, i.e.,

Tdp = 〈χ(−)
p ΦB|Vpn + UpA − UpB|Ψ(+)

d 〉, (5)

where Vpn, UpA are the proton-neutron and proton-target interactions, UpB is an auxiliary (and,
in principle, arbitrary) potential for the p-B system, ΦB is the internal wave function of the

residual nucleus B and Ψ
(+)
d is the exact total wave function corresponding to an incident

deuteron beam of kinetic energy Ed and binding energy εd. This function can be suitably
approximated by the extended CDCC wavefunction.

Ψ
(+)
d (~r, ~R, ξ) = φd(~r)Φ

(0)
A (ξ)χ

(+)
d,0 (~R) + φd(~r)Φ

(0)
A (ξ)χ

(+)
d,2 (~R)

+
N∑
i=1

φipn(~r)Φ
(2)
A (ξ)χ

(+)
i,0 (~R) +

N∑
i=1

φipn(~r)Φ
(2)
A (ξ)χ

(+)
i,2 (~R), (6)

where {φd, φipn} denote the deuteron ground state and discretized p-n continuum states, Φ
(I)
A (ξ)

the target wavefunction in the ground (I = 0) or excited (I = 2) state and {χ(+)
i,I (~R)} the

functions describing the projectile-target relative motion with the target in the state I and the
p-n system in the state i. Thus, the first two terms of Eq. (6) describe, respectively, elastic and
inelastic scattering with the deuteron remaining in its ground state. The third and fourth terms
describe deuteron breakup with respect to the target in its ground state or first excited state,
respectively. When inserted into Eq. (5) this gives rise also to four terms,

Tdp = T el
dp + T inel

dp + T elbu
dp + T inbu

dp , (7)
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which may be interpreted as (I) elastic transfer, i.e., direct transfer from the deuteron ground
state leaving the target in its ground state, (II) inelastic transfer, i.e., target excitation followed
by one-neutron transfer, (III) elastic breakup transfer, i.e., deuteron breakup followed by transfer,
leaving the target in the ground state and (IV) inelastic breakup transfer, i.e., deuteron breakup,
accompanied by target excitation, and followed by neutron transfer.

Likewise, the wave function ΦB for a total angular momentum J and projection M will
contain contributions from different A states. Using the usual parentage decomposition, and
ignoring antisymmetrization for simplicity, one may write

ΦJM
B (~rnA, ξ) =

∑
I,l,j

[ΦI
A(ξ)⊗ φlj(~rnA)]JM , (8)

where l and j the orbital and total (~j = ~l + s) angular momentum of the valence particle and
φlj(~rnA) is a function describing the neutron-core relative motion.

A recent application of this formalism [20] is shown in Fig. 1. On the left-hand-side we depict
the coupling scheme, with the different paths contributing to the 10Be(d, p)11Be(g.s.) reaction.
Path I is the direct, one-step transfer in which the neutron is directly transferred from the
deuteron g.s. to the 11Be ground-state. This corresponds to the usual DWBA calculation. The
other paths (II-IV) involve multistep processes proceeding via the p-n and/or the target excited
state. On the right-hand side, we show the separate contribution of each of these paths to the
transfer differential cross section, for two different deuteron incident energies. It is seen that
both, deuteron breakup and target excitation, gain importance for the higher energy. Also, it is
to be noted that the full calculation is the coherent sum of the different paths [c.f. Eq. (7)] so
interference effects appear.
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Figure 1. Application of the CDCC method to the transfer reaction 10Be(d,p)11Be, including
simultaneously the effects of deuteron breakup and target excitation. LHS: Coupling scheme
showing the different paths. RHS: Contributions of the different paths to the transfer angular
distribution, for two incident energies of the deuteron.

3.2. Application to proton-induced knockout reactions
Knockout reactions of the form A(p, pN)B, in which an energetic proton collides with a
target nucleus A, removing a nucleon N and leaving a residual nucleus B, have been used
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as spectroscopic tools to study nucleon-hole states. The technique has recently experienced a
revival thanks to the possibility of extending these studies to exotic nuclei, using reactions in
inverse kinematics with a hydrogen target.

Although the analysis of these reactions has been traditionally done with the DWIA method
(see [21] for a recent review), some recent works have exploited alternative methods, such as the
Faddeev/AGS equations [22, 23] or the so-called transfer-to-the-continuum (TC) approach [24].
The latter is based on the prior-form of the transition amplitude for a process of the form
A(p, pN)B, which can be written as

Tif =
〈
φB(ξB)Ψ

(−)
f (~rp, ~rN )

∣∣∣VpN + UpB − UpA

∣∣∣ΦA(ξA)χ
(+)
pA (~R)

〉
, (9)

where ΦA(ξA) is the ground-state wave function of the projectile, φB(ξB) is the wavefunction of

the residual nucleus B, Ψ
(−)
f is the wavefunction describing the relative motion of the p+N +B

system and χ
(+)
pA is a distorted wave for p+A scattering, obtained with some auxiliary potential

UpA. As in the case of (d, p) reactions, the transition amplitude will be dominated by small p-n

separations, and hence the Ψ
(−)
f can be approximated by a CDCC expansion in terms of p-n

states. Note that, in this approach, final-state interactions of the outgoing p-n pair, including
the deuteron bound state, are explicitly taken into account. Although the latter contribution
is expected to be small at sufficiently high energies, it can be important at lower energies
(below 100 MeV/u), as demonstrated in Fig. 2 for the 18C(p, pn)17C reaction, where the left
and right panels correspond to the population of two excited states of 17C. In particular, for the
population of the excited state at Ex = 0.33 MeV, the contribution of the (p, d) is significant,
and will therefore affect the extracted spectroscopic factor, since the latter is determined from
the ratio of the experimental and theoretical crosss sections.
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Figure 2. Transverse px momentum distributions for the 18C(p, pn)17C∗ reaction. Experimental
data are from [25]. The left and right panels correspond to the population of the 17C states
at Ex = 0.21 MeV and Ex = 0.33 MeV. The blue solid line corresponds to the full calculation
rescaled to give the experimental total cross section. The blue dashed line corresponds to
the calculation removing the contribution from the (p, d) transfer reaction, rescaled by the
same factor as the full calculation. All theoretical calculations have been convoluted with the
experimental resolution.
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3.3. Transfer reactions populating unbound states
Transfer reactions studies with nuclei close to the driplines can be used to populate unbound
systems and hence to investigate the evolution of nuclear structure properties, such as the
shell ordering, beyond the limits of stability. An example is the 10Li system, which has been
investigated with the 9Li(d,p)10Li reaction at ISOLDE [26] and TRIUMF [27] facilities. The
transition amplitude for such process can be written, using the prior form representation, as

Tif = 〈Ψ3b
n-10Li|Vn-9Li + Up-9Li − Ud-9Li|φd(~r)χ

(+)
d−9Li(

~R)〉, (10)

where the exact three-body wavefunction Ψ3b
n-10Li can be approximated by a CDCC expansion

in n+9Li states. Note that in this case no bound states are present in the expansion since the
10Li is unbound with respect to particle emission. In Fig. 3 we compare the results [28] of the
application of Eq. (10) to the 9Li(d,p)10Li reaction at 2.4 MeV/u and 11.1 MeV/u with the
aforementioned data from ISOLDE and TRIUMF. Note that these differential cross sections
are integrated over the angular range in which the outgoing particles were detected. The same
structure model (i.e. n+9Li interaction) was employed at the two incident energies [29]. In this
model, the low-lying 10Li continuum is characterized by a s-wave doublet (1−, 2−), with a large
effective scattering length, and a p-wave resonant doublet (1+, 2+). Interestingly, these waves
manifest themselves very differently in the two reactions. In particular, for the higher incident
energy, the contribution of the s-wave virtual state very small and, in fact, it is not apparent in
the data. As discussed in [28], this seemingly different behaviour is mostly due to the different
angular ranges considered in the two experiments.
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Figure 3. Differential cross section for 9Li(d, p)10Li, as a function of the 10Li excitation energy
at an incident energy of 2.4 MeV/u (left) and 11.1 MeV/u (right). The data from Refs. [26]
and [27] are compared with TC calculations based on the same 10Li model. The separate
contribution of s-waves (1−, 2−) and p-waves (1+, 2+) are shown. Adapted from Ref. [28].

4. Application to non-elastic breakup and incomplete fusion
The CDCC wavefunction is a projected few-body wavefunction defined in a modelspace in
which the internal degrees of freedom of the considered bodies are not taken into account.
Because of that, it describes explicitly only the so-called elastic breakup (EBU), that is, the
projectile dissociation leaving the target in its ground state. The aforementioned extended
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versions of CDCC are able to include some inelastic breakup components, in which the projectile
dissociation is accompanied by the excitation of the target or of the projectile fragments. In
an inclusive experiment of the form A(a, b)X, in which only one of the outgoing fragments (b)
is detected, there are however many other non-elastic breakup (NEB) components in which the
unobserved particle (x) may interact in any possible way with the target nucleus. Although the
CDCC wavefunction does not account explicitly for these NEB channels, their effect is actually
embedded in the absorptive part of the fragment-target potentials. In the 1980s, Ichimura,
Austern and Vincent (IAV) derived a closed-form formula for the evaluation of these NEB cross
sections [30]. Originally, the model relied on the post-form DWBA formalism but, later on,
Austern et al. [3] proposed a three-body version in which the a+A distorted wave was replaced
by a CDCC wavefunction. The IAV expression for the NEB differential cross section, as a
function of the angle and energy of the detected fragment b is given by:

dσNEB

dΩbdEb
= − 2

h̄va
ρb(Eb)〈ϕ(~kb)

x |WxA|ϕ(~kb)
x 〉 (11)

where va is the projectile velocity, ρb(Eb) the density of states of particle b, WxAthe imaginary

part of the x − A optical potential, ϕ(~kb)(~rx) describes x − A relative motion when b scatters

with momentum ~kb. This function is calculated by solving the inhomogeneous equation

[Kx + UxA − Ex]ϕ(~kb)
x (~rx) = −〈~rxχ(−)

b (~kb)|Vbx|Ψ
(+)
3b 〉, (12)

which contains the, in principle exact, three-body scattering wave function Ψ
(+)
3b . Austern et

al. [3] suggested approximating this function by the CDCC one (referred hereafter as IAV-CDCC
formalism).

The DWBA version of the IAV model has received renewed attention in recent years [31–33].
Application of the IAV-CDCC model has been hampered due to its numerical complexity but,
very recently, the first implementation of this model has been achieved and applied to some
reactions [34]. An example is shown in Fig. 4, which corresponds to the reaction 209Bi(6Li,α)X
at an incident energy of 36 MeV. The inclusive breakup data are from Ref. [35]. Elastic and non-
elastic breakup contributions computed, respectively, with CDCC and IAV-CDCC, are shown as
well as their sum. An interesting finding is that most of the measured inclusive cross section is
due to NEB processes, whereas EBU represents a relatively small fraction and is only dominant at
small angles. The full, EBU+NEB calculation, reproduces rather well the shape and magnitude
of the data, although some overestimation of the cross section at the maximum is visible.
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