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1 Introduction

In this article, we investigate the following non-autonomous weakly dissipative

Klein-Gordon-Schödinger (KGS for short) equations

utt + νut −∆u+ µu− β|z|2 = g(x, t), x ∈ Ω, t > τ, (1.1)

izt + ∆z + iαz + zu = f(x, t), x ∈ Ω, t > τ, (1.2)

with initial and boundary conditions

(u(x, t), ut(x, t), z(x, t))
∣∣
t=τ

= (uτ , u0τ , zτ ), x ∈ Ω, (1.3)

u(x, t)
∣∣
∂Ω

= z(x, t)
∣∣
∂Ω

= 0, (1.4)

where Ω is a bounded domain in R3 with smooth boundary ∂Ω.

Equations (1.1)-(1.2) describe the interaction of scalar nucleons with neutral mesons

through Yukawa coupling (see [3]), where u = u(x, t) and z = z(x, t) denote a real

meson field and a complex scalar nucleon field, respectively, the parameters α > 0,

ν > 0 denote the dissipative mechanism of the system, µ > 0, β > 0 are constants

representing the damping coefficients, and the real-valued function g(x, t) and complex-

valued function f(x, t) are the time-dependent external forces.

The autonomous KGS equations (1.1)-(1.2) and its related versions were extensively

studied, one can see [1, 3, 17, 21, 23] and the references therein. For example, when

Ω ⊂ R3 is a bounded smooth domain, Biler in [3] established the existence of global

attractor in the weak topologies of

E = H1
0 (Ω)× L2(Ω)×H1

0 (Ω) (1.5)

and

E1 = (H2(Ω) ∩H1
0 (Ω))×H1

0 (Ω)× (H2(Ω) ∩H1
0 (Ω)). (1.6)

Later, these results were improved by [29]. Also, Lange and Wang in [19] proved the

regularity of the global attractor when Ω ⊂ R is a bounded interval. The Cauchy

problem associated to equations (1.1)-(1.2) were investigated in [21, 23]. For instance,

Li and Guo in [21] used a Strichartz type inequality and some suitable decomposition

to prove the asymptotic smoothing effect for the solutions. However, to the best of

our knowledge, there are only some references concerning the asymptotic behavior of

solutions for the non-autonomous KGS equations (1.1)-(1.2).

The motivation of the current article is to investigate the statistical solutions for

the non-autonomous KGS equations (1.1)-(1.2). We are interested in the probabili-

ty distribution of solutions within the phase space E. In turbulent flow regimes, the

physical properties are universally recognized as randomly varying and characterized

by some suitable probability distribution functions. In the theory of fluid mechanics,
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the invariant measures and statistical solutions have proven to be very useful in the

understanding of turbulence (see Foias et al. [11]). The main reason is that the mea-

surements of several important aspects (such as mass and velocity) of turbulent flows

are actually measurements of time-average quantities. Statistical solutions have been

introduced as a rigorous mathematical notion to formalize the object of ensemble aver-

age in the conventional statistical theory of turbulence. Nowadays, invariant measures

and statistical solutions are widely used to describe certain characteristics of the fluids

in the real world.

There are two prevalent notions of statistical solutions. The one is the so-called

Foias-Prodi statistical solutions introduced by Foias and Prodi in [10] and the other

is the so-called Vishik-Fursikov statistical solutions given by Vishik and Fursikov in

[28]. The Foias-Prodi statistical solutions are a family of Borel measures parametrized

by the time variable and defined on the phase space of the Navier-Stokes equations,

representing the probability distribution of the velocity field of the flow at each time.

The Vishik-Fursikov statistical solutions are a single Borel measure on the space of

trajectories, representing the probability distribution of the space-time velocity field.

The invariant measures for well-posed dissipative systems were studied in a series of

references (see [9,22,24–27,30]). For instance,  Lukaszewicz, Real and Robinson [25] used

the notion of Generalized Banach limit to construct the invariant measures for general

continuous dynamical systems on metric spaces. Later, Chekroun and Glatt-Holtz [9]

improved the results of [25] to construct invariant measures for a broad class of dissi-

pative autonomous dynamical systems. Recently,  Lukaszewicz and Robinson [26] ex-

tended the result of [9] to construct invariant measures for dissipative non-autonomous

dynamical systems. The result of [26] was used to investigate the invariant measure

for the three-dimensional (3D for short) globally modified Navier-Stokes equations and

regularized MHD equations in [31,37].

There also are some references investigating the statistical solutions and trajectory

statistical solutions for some model evolution equations that possess global weak solu-

tions but without a known result of global uniqueness. For instance, Foias, Rosa and

Temam studied systematically the statistical solutions for the 3D Navier-Stokes equa-

tions in [12–16]. Bronzi, Mondaini and Rosa in [4, 6] proved an abstract framework

for the theory of statistical solutions and trajectory statistical solutions for general

evolution equations, including those with properties similar to the 3D Navier-Stokes

equations. Bronzi and Rosa studied the convergence of statistical solutions of the 3D

Navier-Stokes-α model as α vanishes in [5]. Caraballo, Kloeden and Real investigated

the invariant measure and statistical solution for the 3D globally modified Navier-Stokes

equations in [7]. Kloeden, Rubio and Real studied the equivalence of invariant measure

and stationary statistical solutions for the autonomous globally modified Navier-Stokes

equations in [18]. Zhao and Caraballo in [32] constructed the trajectory statistical solu-

tions for the 3D globally modified Navier-Stokes equations. Zhao, Song and Caraballo
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in [34] constructed the strong trajectory statistical solutions for the 2D dissipative Eu-

ler equations. Zhao, Li and Caraballo in [33] proved sufficient conditions ensuring the

existence of trajectory statistical solutions for autonomous evolution equations. In ad-

dition, Zhao, Li and Song in [35] constructed the trajectory statistical solutions for the

3D Navier-Stokes equations via the trajectory attractor approach. Also, Zhao, Jiang

and Caraballo constructed in [36] the trajectory statistical solutions for the nonlinear

wave equations with polynomial growth

The main result of the current article is to prove the existence of the statistical

solution for the non-autonomous KGS equations (1.1)-(1.2). This statistical solution

describes the probability distribution of the meson field and nucleon field in the phase

space. We will first use the abstract theory for dissipative non-autonomous system

in [26, Theorem 3.1] to obtain the existence of a family of invariant Borel probability

measures {mt}t∈R. Then we establish that {mt}t∈R satisfies a Liouville type theorem

and is indeed a statistical solution for equations (1.1)-(1.2). Finally, we reveal that the

invariant property of the statistical solution is a particular situation of the Liouville

type theorem.

To apply the abstract theory of [26, Theorem 3.1] to obtain the existence of a family

of invariant Borel probability measures, we shall prove that the solution operators

associated to problem (1.1)-(1.4) generate a continuous process {U(t, τ)}t>τ in the

phase space E and

(1) the process {U(t, τ)}t>τ is pullback strongly bounded in E;

(2) the process {U(t, τ)}t>τ is pullback asymptotically compact in E;

(3) for each given t ∈ R and given ψ∗ ∈ E, the E-valued function τ 7→ U(t, τ)ψ∗ is

continuous and bounded on (−∞, t].

By definition, a continuous process {U(t, τ)}t>τ in the phase space E means {U(t, τ)}t>τ
is a two-parameter family of mappings in E satisfying:

(a) U(t, s)U(s, τ) = U(t, τ), ∀ t > s > τ, τ ∈ R;

(b) U(τ, τ) = Id (identity operator), τ ∈ R;

(c) For given t and τ with t > τ , the mapping U(t, τ) is continuous from E to E.

It is not a standard fact to prove above assertions (1)-(3) for the process {U(t, τ)}t>τ .

Firstly, on the one hand, it is not a direct generalization of the dynamics from

autonomous system to non-autonomous system. On the other hand, in [3], the authors

established the existence of global attractor with the conditions f, g ∈ Cb(R+;L2(Ω))

or f, g ∈ L2(Ω), which implies that f and g are uniformly bounded in L2(Ω) with

respect to time t. In this article, the conditions imposed on f and g are weaker than

those in [3]. In fact, we allow that the external forces are unbounded and actually
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even exponentially growing time-dependent functions. At the same time, the nonlinear

terms |z|2 and zu produce some difficulties when we estimate the solutions and prove

the pullback strongly boundedness of {U(t, τ)}t>τ in E.

Secondly, it is not easy to prove directly the pullback asymptotically compactness

of {U(t, τ)}t>τ in E because of the special coupling of a hyperbolic equation with

a parabolic one. Here we will employ some delicate decomposition of the process

{U(t, τ)}t>τ . Precisely, we decompose the addressed system into two equations, and

simultaneously split the nonlinear term |z|2 into Re(zz1) and Re(zz2) (here z = z1+z2).

By this way we can prove that the solutions of the first decomposed equations pullback

decay exponentially, whereas the solutions of the second decomposed equations are

pullback bounded in E1. Note that the embedding E ↪→ E1 is compact. We then

obtain the pullback asymptotically compactness of {U(t, τ)}t>τ in E by the abstract

theory of [8, Theorem 3.2].

Thirdly, to prove assertion (3) the key step is to establish the continuous dependence

of the solutions on the initial data in E. This continuous dependence has been proved

by Wang and Lange in [29, Theorem 3.4] via the method of energy equation. Here

we will present a simple and direct proof to this continuous dependence. The main

technique we used is to construct a suitable space Eµ which is equivalent to the usual

phase space E. Then we establish that the abstract operator corresponding to the

linear part of equations (1.1)-(1.2) is coercive on Eµ. This coerciveness allows us to

prove directly the continuous dependence of the solutions on the initial data in the

norm of Eµ, which is equivalent to the continuous dependence of the solutions on the

initial data in the norm of E.

To establish that {mt}t∈R is a statistical solution of the KGS equations, the impor-

tant step is to prove that {mt}t∈R satisfies a Liouville type theorem similar to that from

Statistical Mechanics. Fortunately, the form of the construction of the Borel probabil-

ity measures {mt}t∈R plays essential role in our proof. We also want to point out an

interesting relation between the invariant property and the Liouville type theorem for

the statistical solution. We all know that Liouville theorem from Statistical Mechanics

indicates that the distribution of a set in the phase space could change with the evo-

lution of time, but its Liouville measures is conserved. We will discover in this article

that the invariant property of the statistical solution describes exactly that the shape

of the pullback attractor ADδ(τ) could change with the evolution of time from τ to t,

but the measure of ADδ(τ) and ADδ(t) coincides with each other.

The rest of the article is arranged as follows. In the next section, we estimate the

solutions and then show the global well-posedness of problem (1.1)-(1.4). In Section 3,

we establish the existence of the pullback attractor for the process {U(t, τ)}t>τ associ-

ated to problem (1.1)-(1.4). In Section 4, we first construct a family of invariant Borel

probability measures for the process {U(t, τ)}t>τ . Then we establish that this family

of probability measures satisfies a Liouville type theorem and is indeed a statistical
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solution for the KGS equations. Further, we reveal that the invariant property of the

statistical solution is a particular situation of the Liouville type theorem.

2 Estimates and global well-posedness of solutions

We first introduce some notations. Let Lp(Ω), H1
0 (Ω) and Wm,p(Ω) denote the

usual Lebesgue and Sobolev spaces with norms ‖ · ‖Lp(Ω), ‖ · ‖H1
0 (Ω) and ‖ · ‖Wm,p(Ω),

respectively. Especially, Hm(Ω) = Wm,2(Ω) and ‖ · ‖L2(Ω) = ‖ · ‖. Throughout this

article, we will use the function spaces E (see (1.5)) and E1 (see (1.6)) and the norms

are defined respectively as

‖ψ‖E = (‖∇u‖2 + ‖v‖2 + ‖∇z‖2)1/2, for ψ = (u, v, z)T ∈ E, (2.1)

‖ψ‖E1 = (‖∆u‖2 + ‖∇v‖2 + ‖∆z‖2)1/2, for ψ = (u, v, z)T ∈ E1. (2.2)

In addition, we will employ the notation a . b (also a & b ) to mean that a 6 cb (also

a > cb) for a universal constant c > 0 that only depends on the parameters coming

from the problem.

Put

v = v(t) = ut + δu, (2.3)

where δ > 0 is some constant that will be specified later. Then problem (1.1)-(1.4) is

equivalent to the following problem

ut + δu− v = 0, t > τ, (2.4)

vt −∆u− δ(ν − δ)u+ µu+ (ν − δ)v = β|z|2 + g(x, t), t > τ, (2.5)

zt − i∆z + αz = izu− if(x, t), t > τ, (2.6)

(u(x, t), v(x, t), z(x, t))
∣∣
t=τ

= (uτ , vτ , zτ ), x ∈ Ω, (2.7)

(u(x, t), v(x, t), z(x, t))
∣∣
∂Ω

= (0, 0, 0), (2.8)

hereinafter vτ = u0τ + δuτ and δ is the constant from (2.3). Denote

ψ = ψ(x, t) = (u(x, t), v(x, t), z(x, t))T

and

Θ =

 δI −I 0
−∆− δ(ν − δ)I + µI (ν − δ)I 0

0 0 −i∆ + αI

 , (2.9)

F (ψ, t) = (0, β|z|2 + g(x, t), izu− if(x, t))T , (2.10)

where I in the matrix Θ is the identity operator. Then problem (2.4)-(2.8) can be

written as

dψ

dt
+ Θψ = F (ψ, t), t > τ, (2.11)

ψ(τ) = ψτ = (uτ , vτ , zτ )T . (2.12)
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We next estimate the solutions of problem (2.11)-(2.12).

Lemma 2.1. Let f(x, t), ft(x, t), g(x, t) belong to L2
loc(R;L2(Ω)). Then for any ψτ =

(uτ , vτ , zτ )T ∈ E, every solution ψ(x, t) = (u(x, t), v(x, t), z(x, t))T of problem (2.11)-

(2.12) corresponding to ψτ satisfies

‖z(t)‖2 .‖zτ‖2e−α(t−τ) + e−αt
∫ t

τ
eαs‖f(s)‖2ds, ∀ t > τ, (2.13)

‖ψ(t)‖2E .Υ(τ)e−δ(t−τ) + e−δt
∫ t

τ
eδs‖G(s)‖2ds

+ e−δt
∫ t

τ
eδs‖z(s)‖6ds+ ‖z(t)‖6 + ‖f(t)‖2, ∀ t > τ, (2.14)

where

Υ(τ) = ‖∇zτ‖2 +
1

2
‖∇uτ‖2 +

1

2
‖vτ‖2 + 2Re

∫
Ω
zτf(τ)dx−

∫
Ω
|zτ |2uτdx+

µ

2
‖uτ‖2,

(2.15)

‖G(s)‖2 = ‖f(s)‖2 + ‖∂f(x, s)

∂t
‖2 + ‖g(s)‖2. (2.16)

Proof. Let the assumption of this lemma hold. Then the existence and uniqueness of

the solution ψ(x, t) corresponding to the initial data ψτ = (uτ , vτ , zτ )T ∈ E can be

proved in a standard way, using the Galerkin approximations as in [3]. The estimate

(2.13) is easily obtained by taking the scalar product of (2.6) with z(t) and the real

part of the resulting equality. These details are omitted and here we prove (2.14).

In fact, in [3, (2.10)], it is proved that

dΥ(t)

dt
+ δΥ(t) + (2α− 3δ)‖∇z(t)‖2 + (ν − 3δ

2
)‖v(t)‖2 +

δ

2
‖∇u(t)‖2 +

δµ

2
‖u(t)‖2

=2α

∫
Ω
|z(t)|2u(t)dx− 2(α− δ)Re

∫
Ω
z(t)f(x, t)dx+ δ(ν − δ)

∫
Ω
u(t)v(t)dx

+

∫
Ω
v(t)g(x, t)dx+ 2Re

∫
Ω
z(t)

∂f(x, t)

∂t
dx, ∀ t > τ, (2.17)

where

Υ(t) = ‖∇z(t)‖2+
1

2
‖∇u(t)‖2+

1

2
‖v(t)‖2+2Re

∫
Ω
z(t)f(x, t)dx−

∫
Ω
|z(t)|2u(t)dx+

µ

2
‖u(t)‖2.

We next estimate the terms on the right-hand side of (2.17). By Hölder’s inequality,

Gagliardo-Nirenberg’s inequality and the embedding H1
0 (Ω) ↪→ L6(Ω), we obtain∣∣ ∫

Ω
|z(t)|2u(t)dx

∣∣ . ‖z(t)‖2
L12/5(Ω)

‖u(t)‖L6(Ω) . ‖z(t)‖3/2‖∇z(t)‖1/2‖∇u(t)‖,

and thus

2α

∫
Ω
|z(t)|2u(t)dx .

α

2
‖∇z(t)‖2 +

δ

4
‖∇u(t)‖2 + ‖z(t)‖6. (2.18)
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The other terms on the right-hand side of (2.17) are simpler to deal with:

2(α− δ)
∣∣Re

∫
Ω
z(t)f(x, t)dx

∣∣ 6 (α− δ)‖∇z(t)‖2 +
4(α− δ)

λ2
1

‖f(t)‖2,

2
∣∣Re

∫
Ω
z(t)

∂f(x, t)

∂t
dx
∣∣ 6 α

2
‖∇z(t)‖2 +

2

αλ2
1

‖∂f(x, t)

∂t
‖2,∣∣ ∫

Ω
v(t)g(x, t)dx

∣∣ 6 ν

4
‖v(t)‖2 +

1

ν
‖g(t)‖2,

δ(ν − δ)
∣∣ ∫

Ω
u(t)v(t)dx

∣∣ 6 ν − δ
2
‖v(t)‖2 +

δ2(ν − δ)
2

‖u(t)‖2,

(2.19)

where we have used the following Poincaré inequality

‖u‖2 6 λ−1
1 ‖∇u‖

2, ∀u ∈ H1
0 (Ω).

Inserting (2.18)-(2.19) into (2.17) yields

dΥ(t)

dt
+ δΥ(t) + (

α

2
− 2δ)‖∇z(t)‖2 + (

ν

4
− δ)‖v(t)‖2 +

δ

4
‖∇u(t)‖2 +

δ

2
(µ− δ(ν − δ))‖u(t)‖2

. ‖z(t)‖6 + ‖G(t)‖2, ∀ t > τ, (2.20)

where G(·) is defined by (2.16). We now choose δ such that

0 < δ < min{α
4
,
ν

4
,
µ

ν
}.

Then (2.20) implies

dΥ(t)

dt
+ δΥ(t) . ‖z(t)‖6 + ‖G(t)‖2, ∀ t > τ,

and applying Gronwall’s inequality we deduce

Υ(t) . Υ(τ)e−δ(t−τ) + e−δt
∫ t

τ
eδs‖G(s)‖2ds+ e−δt

∫ t

τ
eδs‖z(s)‖6ds, ∀ t > τ. (2.21)

Combining (2.21), the estimates similar to (2.18) and the first inequality in (2.19), we

obtain (2.14). The proof of Lemma 2.1 is completed.

According to the estimates in Lemma 2.1, we next analyze under what assumptions

on the data there exists a pullback absorbing set for the process associated to problem

(2.11)-(2.12).

From (2.15) we see that

Υ(τ) . ‖ψτ‖2E + ‖zτ‖6 + ‖f(τ)‖2. (2.22)

From (2.14) and (2.22) it follows that the following assumptions

lim
τ→−∞

‖ψτ‖2Ee
δτ
3 = 0, (2.23)

lim
τ→−∞

‖f(τ)‖2eδτ = 0, (2.24)∫ t

−∞
eδs‖G(s)‖2ds < +∞, for each t ∈ R, (2.25)
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are needed. We next analyze the third term on the right-hand side of (2.14). In fact,

it follows from (2.13) that

e−δt
∫ t

τ
eδs‖z(s)‖6ds . ρ1(t, τ) + ρ2(t, τ) + ρ3(t, τ) + ρ4(t, τ),

where 

ρ1(t, τ) = e−δt
∫ t

τ
eδs‖zτ‖6e−3α(s−τ)ds,

ρ2(t, τ) = e−δt
∫ t

τ
eδs‖zτ‖4e−2α(s−τ)e−αs

∫ s

τ
eαθ‖f(θ)‖2dθds,

ρ3(t, τ) = e−δt
∫ t

τ
eδs‖zτ‖2e−α(s−τ)

(
e−αs

∫ s

τ
eαθ‖f(θ)‖2dθ

)2
ds,

ρ4(t, τ) = e−δt
∫ t

τ
eδs
(
e−αs

∫ s

τ
eαθ‖f(θ)‖2dθ

)3
ds.

By (2.23),

lim
τ→−∞

‖zτ‖6eδτ . lim
τ→−∞

(‖ψτ‖2e
δτ
3 )3 = 0,

and thus when τ → −∞,

ρ1(t, τ) = (‖zτ‖2e
δτ
3 )3e−δt

∫ t

τ
eδse−3α(s−τ)e−δτds . (‖zτ‖2e

δτ
3 )3e−δt −→ 0. (2.26)

We write ρ2(t, τ) in the form

(‖zτ‖2e
δτ
3 )2e−

2δτ
3 e−δt

∫ t

τ
eδse−2α(s−τ)e−αs

∫ s

τ
eαθ‖f(θ)‖2dθds. (2.27)

Thus, ρ2(t, τ) −→ 0 as τ → −∞ if the integral in (2.27) stays bounded as τ → −∞.

For this purpose, we assume

e( 2δ
3
−2α)s

∫ s

−∞
eαθ‖f(θ)‖2dθ 6 K(s), (2.28)

where K(s) is a continuous function on the real line which is bounded on every interval

of the form (−∞, t). If (2.28) holds, then

ρ2(t, τ) .(‖zτ‖2e
δτ
3 )2e(2α− 2δ

3
)τe−δt

∫ t

τ
e−(3α−δ)se(2α− 2δ

3
)sK(s)ds

.(‖zτ‖2e
δτ
3 )2e(α− δ

3
)τ K̃(t) −→ 0, τ → −∞, (2.29)

where K̃(t) is a bounded quantity depending only on t and the function K(·).
Also, if (2.28) holds, then for K1(s) = K(s)e(α− δ

3
)s we have

e( 2δ
3
−2α)s

( ∫ s

−∞
eαθ‖f(θ)‖2dθ

)2
. K2

1 (s),

and thus

e( δ
3
−α)s

∫ s

−∞
eαθ‖f(θ)‖2dθ . K1(s).
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Obviously, K1(s) possesses the same property of the function K(s) in (2.28). Hence

ρ3(t, τ) .‖zτ‖2e
δτ
3 e(α− δ

3
)τe−δt

∫ t

τ
e−(3α−δ)se(2α− 2δ

3
)sK2

1 (s)ds

.‖zτ‖2e
δτ
3 e−δtK̃1(t) −→ 0, τ → −∞, (2.30)

where K̃1(t) is a bounded quantity depending only on t and the function K1(·).
At the same time, if (2.28) holds then

e( δ
3
−α−(α− δ

3
))s

∫ s

−∞
eαθ‖f(θ)‖2dθ 6 K(s),

and so we can choose some γ > 0 such that α− δ
3 >

δ
3 > γ and

e( δ
3
−α−γ)s

∫ s

−∞
eαθ‖f(θ)‖2dθ 6 K2(s) = K(s)e(α− δ

3
−γ)s.

Clearly, the function K2(s) also possesses the property of the function K(s). Thus

ρ4(t, τ) .e−δt
∫ t

τ
e−(3α−δ)se(δ−3α−3γ)s

( ∫ t

τ
eαθ‖f(θ)‖2dθ

)3
e(3α+3γ−δ)sds

.e−δt
∫ t

τ
e−(3α−δ)s(e( δ

3
−α−γ)s

∫ t

τ
eαθ‖f(θ)‖2dθ

)3
e(3α+3γ−δ)sds

.e−δt
∫ t

τ
K3

2 (s)e3γsds . e−(δ−3γ)tK̃2(t), ∀ τ < t, (2.31)

where K̃2(t) is a bounded quantity depending only on t and the function K2(·).
We now summarize our assumptions on the external forces f(x, t) and g(x, t) leading

to the existence of a bounded pullback absorbing set.

(H) Assume f(x, t),
∂f(x, t)

∂t
, g(x, t) ∈ L2

loc(R;L2(Ω)) and let∫ t

−∞
eδs‖G(s)‖2ds < +∞, for each t ∈ R, (2.32)

lim
τ→−∞

‖f(τ)‖2eδτ = 0. (2.33)

Moreover, let there exist some continuous function K(·) on the real line, bounded on

intervals of the form (−∞, t), such that∫ t

−∞
eδs(‖f(s)‖2 + ‖∂f(x, s)

∂t
‖2)ds 6 K(t)e(α+ δ

3
)t, for each t ∈ R. (2.34)

Remark 2.1. (1) From (2.34) we see that for each t ∈ R,∫ t

−∞
eαs‖f(s)‖2ds =

∫ t

−∞
e(α−δ)seδs‖f(s)‖2ds 6 e(α−δ)tK(t)e(α+ δ

3
)t,

so that (3.28) holds. The condition

∫ t

−∞
eδs‖∂f(x, s)

∂t
‖2ds 6 K(t)e(α+ δ

3
)t will be

used when deriving the pullback asymptotic compactness of the process in E.
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(2) Let ‖f(s)‖2 + ‖∂f(x, s)

∂t
‖2 6 Meκs for all s ∈ R, where M > 0 and κ > α − 2δ

3
.

Then ∫ t

−∞
eδs(‖f(s)‖2 + ‖∂f(x, s)

∂t
‖2)ds 6 K(t)e(α+ δ

3
)t

with

K(t) =
M

δ + κ
e( 2δ

3
−α+κ)t.

This example shows that we allow the external forces to be unbounded and actually

even exponentially growing time-dependent functions.

From now on, by P(E) we denote the family of all nonempty subsets of E. According

to (2.23), we denote by Dδ the class of family of nonempty subsets D̂ = {D(s)|s ∈ R} ⊂
P(E) satisfying

lim
s→−∞

(
e
δs
3 sup
ψ∈D(s)

‖ψ‖2E
)

= 0. (2.35)

The class Dδ will be called a universe in P(E). Clearly, all fixed bounded subsets of E

lie in Dδ.
By above analyses and the Galerkin approximations as in [3], we can prove in a

standard way the following result (cf. [3]).

Lemma 2.2. Let assumption (H) hold. Then for any D̂ = {D(s)|s ∈ R} ∈ Dδ and

ψτ = (uτ , vτ , zτ )T ∈ D(τ), problem (2.11)-(2.12) possesses a unique global solution

ψ(x, t) = (u(x, t), v(x, t), z(x, t))T ∈ C([τ,+∞);E). (2.36)

Moreover, ψ(x, t) satisfies (2.13) and (2.14).

The continuous dependence of the solution ψ(x, t) on the initial data ψτ will be

proved in Section 4. From this continuous dependence and Lemma 2.2 we see that the

maps

U(t, τ) : ψτ = (uτ , vτ , zτ )T ∈ E 7−→ ψ(x, t) = (u(x, t), v(x, t), z(x, t))T ∈ E, ∀ t > τ,

generate a continuous process {U(t, τ)}t>τ in E.

3 Existence of the pullback-Dδ attractor

The aim of this section is to prove the existence of the pullback-Dδ attractor for

the process {U(t, τ)}t>τ in the phase space E. To this end, we will first show that

{U(t, τ)}t>τ possesses a bounded pullback-Dδ absorbing set and is pullback-Dδ asymp-

totically compact in E.
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Definition 3.1. (1) It is said that a family of subsets D̂0 = {D0(s)|s ∈ R} ⊂ P(E)

is bounded pullback-Dδ absorbing for the process {U(t, τ)}t>τ in E if for each

t ∈ R and any D̂ = {D(s)|s ∈ R} ∈ Dδ, with D(s) ⊂ E bounded for every s ∈ R,

there exists a τ0(t, D̂) 6 t such that U(t, τ)D(τ) ⊂ D0(t) for all τ 6 τ0(t, D̂).

(2) The process {U(t, τ)}t>τ is said to be pullback-Dδ asymptotically compact in E if,

for each given t ∈ R, each D̂ = {D(s)|s ∈ R} ∈ Dδ and any sequence {τn}n>1 in

(−∞, t] such that τn → −∞ as n → ∞, the sequence {U(t, τn)ψ(τn)} with any

ψ(τn) ∈ D(τn) possesses a convergent subsequence.

Lemma 3.1. Let assumption (H) hold. Then the process {U(t, τ)}t>τ possesses a

bounded pullback-Dδ absorbing set B̂0 = {B0(s)|s ∈ R} ⊂ P(E), where B0(s) =

B0(0; rδ(s)) is the ball of radius rδ(s) and centered at zero in E.

Proof. Let rδ(t) = R
1
2
δ (t), where

Rδ(t) .1 + e−δt
∫ t

−∞
eδs‖G(s)‖2ds+ e−δt

∫ t

−∞
eδs
(
e−αs

∫ s

−∞
eαθ‖f(θ)‖2dθ

)3
ds

+ (1 + e−αt
∫ t

−∞
eαs‖f(s)‖2ds)3 + ‖f(t)‖2, t ∈ R. (3.1)

Then from (2.13)-(2.14), (2.22)-(2.26), (2.29)-(2.31) and the analyses in previous sec-

tion, we conclude that B̂0 = {B0(s)|s ∈ R} constitutes the desired bounded pullback-Dδ
absorbing set for {U(t, τ)}t>τ in E.

We next use the decomposition of equations (2.4)-(2.8) to prove that {U(t, τ)}t>τ
is pullback-Dδ asymptotically compact in E. Let ψ(x, t) = (u(x, t), v(x, t), z(x, t))T be

a solution of problem (2.4)-(2.8) with initial data (uτ , vτ , zτ ). We decompose problem

(2.4)-(2.8) into two problems as

u1t + δu1 − v1 = 0, t > τ, (3.2)

v1t −∆u1 − δ(ν − δ)u1 + µu1 + (ν − δ)v1 = βRe(zz1), t > τ, (3.3)

iz1t + ∆z1 + iαz1 + z1u = 0, t > τ, (3.4)(
u1(x, t), v1(x, t), z1(x, t)

)∣∣
t=τ

= (uτ , vτ , zτ ), x ∈ Ω, (3.5)(
u1(x, t), v1(x, t), z1(x, t)

)∣∣
∂Ω

= (0, 0, 0), (3.6)

and

u2t + δu2 − v2 = 0, t > τ, (3.7)

v2t −∆u2 − δ(ν − δ)u2 + µu2 + (ν − δ)v2 = βRe(zz2) + g(x, t), t > τ, (3.8)

iz2t + ∆z2 + iαz2 + z2u = f(x, t), t > τ, (3.9)(
u2(x, t), v2(x, t), z2(x, t)

)∣∣
t=τ

= (0, 0, 0), x ∈ Ω, (3.10)(
u2(x, t), v2(x, t), z2(x, t)

)∣∣
∂Ω

= (0, 0, 0). (3.11)
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Obviously, if ψ1(x, t) = (u1(x, t), v1(x, t), z1(x, t))T is a solution of problem (3.2)-(3.6),

then

ψ2(x, t) =(u2(x, t), v2(x, t), z2(x, t))T

=(u(x, t)− u1(x, t), v(x, t)− v1(x, t), z(x, t)− z1(x, t))T (3.12)

is a solution of problem (3.7)-(3.11).

Lemma 3.2. Let assumption (H) hold. Then for any given D̂ = {D(s)|s ∈ R} ∈
Dδ and ψτ = (uτ , vτ , zτ )T ∈ D(τ), problem (3.2)-(3.6) possesses a unique solution

ψ1(x, t) = (u1(x, t), v1(x, t), z1(x, t))T corresponding to ψτ . Moreover, for each given

t ∈ R there exists a time τ0 = τ0(t, D̂) such that

‖ψ1(x, t)‖2E . ‖ψτ‖2E(1 + ‖ψτ‖
3
4
E)e−δ(t−τ), ∀ τ 6 τ0. (3.13)

Proof. We first estimate ‖∇z1(t)‖2. Taking the imaginary part of the inner product of

(3.4) with z1(t) in L2(Ω) gives

d

dt
‖z1(t)‖2 + 2α‖z1(t)‖2 = 0.

By Gronwall’s inequality,

‖z1(t)‖2 6 ‖zτ‖2e−2α(t−τ), ∀ τ 6 t. (3.14)

At the same time, multiplying (3.4) by (−z1t−αz1), integrating over Ω and then taking

the real part of the resulting equality yield

dH1(t)

dt
+ αH1(t) = J1(t), (3.15)

where

H1(t) = ‖∇z1(t)‖2 −
∫

Ω
u(t)|z1(t)|2dx,

J1(t) = −α‖∇z1(t)‖2 + α

∫
Ω
u(t)|z1(t)|2dx−

∫
Ω
ut(t)|z1(t)|2dx.

By Hölder’s inequality, Gagliardo-Nirenberg’s inequality and Lemma 3.1, we have∣∣α ∫
Ω
u(t)|z1(t)|2dx

∣∣ .‖u(t)‖L6(Ω)‖z1(t)‖2
L

12
5 (Ω)

. ‖∇u(t)‖‖z1(t)‖
3
2 ‖∇z1(t)‖

1
2

.
α

2
‖∇z1(t)‖2 + ‖∇u(t)‖

4
3 ‖z1(t)‖2

.
α

2
‖∇z1(t)‖2 + ‖z1(t)‖2, ∀ τ 6 τ0, (3.16)

where in the last inequality of (3.16) we have used the inequality ‖∇u(t)‖ . ‖ψ(t)‖E ,

and the pullback-Dδ absorbing property ‖ψ(t)‖E . 1 for any τ 6 τ0 since t ∈ R is given

and rδ(t) is a positive constant. Similarly,∣∣α ∫
Ω
ut(t)|z1(t)|2dx

∣∣ .‖ut(t)‖‖z1(t)‖2L4(Ω) . ‖ut(t)‖‖z1(t)‖
1
2 ‖∇z1(t)‖

3
2

.
α

4
‖∇z1(t)‖2 + ‖z1(t)‖2, ∀ τ 6 τ0, (3.17)
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It follows from (2.13) and (3.16)-(3.17) that

J1(t) . ‖zτ‖2e−2α(t−τ) . ‖ψτ‖2Ee−2α(t−τ), ∀ τ 6 τ0. (3.18)

Note that

H1(τ) = ‖∇zτ‖2 −
∫

Ω
uτ |zτ |2dx . ‖∇zτ‖2 + ‖∇uτ‖

4
3 ‖zτ‖2 . ‖ψτ‖2E(1 + ‖ψτ‖

4
3
E).

(3.19)

Applying Gronwall’s inequality to (3.15) and using (3.18)-(3.19) yield

H1(t) .H1(τ)e−α(t−τ) +

∫ t

τ
J1(s)e−α(s−τ)ds

.‖ψτ‖2E(1 + ‖ψτ‖
4
3
E)e−α(t−τ) + ‖ψτ‖2E

∫ t

τ
e−2α(s−τ)e−α(t−s)ds

.‖ψτ‖2E(1 + ‖ψτ‖
4
3
E)e−α(t−τ), ∀ τ 6 τ0. (3.20)

Similar with (3.16), we have∣∣ ∫
Ω
u(t)|z1(t)|2dx

∣∣ .1

2
‖∇z1(t)‖2 + ‖z1(t)‖2, ∀ τ 6 τ0.

From above estimation and the expression of H1(t) we get

‖∇z1(t)‖2 .H1(t) +
∣∣ ∫

Ω
u(t)|z1(t)|2dx

∣∣ . H1(t) +
1

2
‖∇z1(t)‖2 + ‖z1(t)‖2, ∀ τ 6 τ0,

which, together with (3.14) and (3.20) gives

‖∇z1(t)‖2 . H1(t) + ‖z1(t)‖2 .‖ψτ‖2E(1 + ‖ψτ‖
4
3
E)e−α(t−τ), ∀ τ 6 τ0. (3.21)

Secondly, we estimate ‖∇u1(t)‖2 + ‖v1(t)‖2. Using v1(t) to take inner product with

(3.3) in L2(Ω) yields

1

2

d

dt
‖v1(t)‖2 + (ν − δ)‖v1(t)‖2 − δ(ν − δ)

(
u1(t), v1(t)

)
+ µ

(
u1(t), v1(t)

)
−
(
∆u1(t), v1(t)

)
=

∫
Ω
v1(t)Re(z(t)z1(t))dx. (3.22)

Direct computations give
δ(ν − δ)

(
u1(t), v1(t)

)
=
δ(ν − δ)

2

d

dt
‖u1(t)‖2 + δ2(ν − δ)‖u1(t)‖2,

µ
(
u1(t), v1(t)

)
=
µ

2

d

dt
‖u1(t)‖2 + µδ‖u1(t)‖2,

−
(
∆u1(t), v1(t)

)
=

1

2

d

dt
‖∇u1(t)‖2 + δ‖∇u1(t)‖2.

(3.23)

Put

H2(t) = ‖∇u1(t)‖2 + µ‖u1(t)‖2 + ‖v1(t)‖2 − δ(ν − δ)‖u1(t)‖2,

J2(t) = −2(ν − 2δ)‖v1(t)‖2 + 2β

∫
Ω
v1(t)Re

(
z(t)z1(t)

)
dx.
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It then follows from (3.22) and (3.23) that

dH2(t)

dt
+ 2δH2(t) = J2(t).

By Gronwall’s inequality,

H2(t) . H2(τ)e−2δ(t−τ) +

∫ t

τ
e−2δ(t−s)J2(s)ds, ∀ τ 6 t. (3.24)

Obviously,

H2(τ) = ‖∇uτ‖2 + µ‖uτ‖2 + ‖vτ‖2 − δ(ν − δ)‖uτ‖2 . ‖ψτ‖2E . (3.25)

Also, using Hölder’s inequality and Cauchy’s inequality,

J2(t) .− (ν − 2δ)‖v1(t)‖2 + ‖v1(t)‖‖z(t)‖L6(Ω)‖z1(t)‖L3(Ω)

.(ν − 2δ)‖v1(t)‖2 + ‖z(t)‖2L6(Ω)‖z1(t)‖2L3(Ω) − (ν − 2δ)‖v1(t)‖2

.‖∇z(t)‖2‖∇z1(t)‖2 . ‖ψ(t)‖2E‖∇z1(t)‖2 . ‖∇z1(t)‖2

.‖ψτ‖2E(1 + ‖ψτ‖
4
3
E)e−α(t−τ), ∀ τ 6 τ0. (3.26)

Inserting (3.25)-(3.26) into (3.24) yields

H2(t) .‖ψτ‖2e−2δ(t−τ) + ‖ψτ‖2E(1 + ‖ψτ‖
4
3
E)

∫ t

τ
e−2δ(t−s)e−2α(s−τ)ds

.‖ψτ‖2E(1 + ‖ψτ‖
4
3
E)e−2δ(t−τ), ∀ τ 6 τ0. (3.27)

Now we choose δ > 0 satisfying

δ(ν − δ) < νδ < µ.

Notice that α > 2δ. Then (3.21) and (3.27) give

‖ψ1(t)‖2E . H2(t) + ‖∇z1(t)‖2 . ‖ψτ‖2E(1 + ‖ψτ‖
4
3
E)e−2δ(t−τ), ∀ τ 6 τ0.

The proof of Lemma 3.2 is completed.

Form (3.12), Lemma 3.1 and Lemma 3.2, we have

Lemma 3.3. Let assumption (H) hold. Then for any given D̂ = {D(s)|s ∈ R} ∈
Dδ and ψτ = (uτ , vτ , zτ )T ∈ D(τ), problem (3.7)-(3.11) possesses a unique solution

ψ2(x, t) = (u2(x, t), v2(x, t), z2(x, t))T corresponding to ψτ . Moreover, for each given

t ∈ R there exists a time τ0 = τ0(t, D̂) such that

‖ψ2(x, t)‖2E . 1, ∀ τ 6 τ0. (3.28)

We next prove that the solution of problem (3.7)-(3.11) is bounded in E1.
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Lemma 3.4. Let assumption (H) hold. Then for any given D̂ = {D(s)|s ∈ R} ∈
Dδ and ψτ = (uτ , vτ , zτ )T ∈ D(τ), there exists a time τ2 = τ2(t, D̂) such that the

solution ψ2(x, t) =
(
u2(x, t), v2(x, t), z2(x, t)

)T
of problem (3.7)-(3.11) corresponding to

ψτ satisfies

‖∆u2(x, t)‖2 + ‖∇v2(x, t)‖2 + ‖∆z2(x, t)‖2

.1 + ‖f(t)‖2 + ‖g(t)‖2 +

∫ t

−∞
e−δ(t−s)

(
‖f(s)‖2 + ‖∂f(s)

∂t
‖2 + +‖∂g(s)

∂t
‖2
)
ds

+

∫ t

−∞
e−δ(t−s)

(∫ s

−∞
e−α(s−θ)(‖f(θ)‖2 + ‖∂f(θ)

∂t
‖2
)
dθ
)

ds, ∀ τ 6 τ2. (3.29)

Proof. Let D̂ = {D(s)|s ∈ R} ∈ Dδ and ψτ = (uτ , vτ , zτ )T ∈ D(τ) be given.

We first estimate ‖∆z2(t)‖2. Lemma 3.3 shows that the solution

ψ2(x, t) = (u2(x, t), v2(x, t), z2(x, t))T

of problem (3.7)-(3.11) corresponding to ψτ satisfies

‖ψ2(x, t)‖2E = ‖∇u2(x, t)‖2 + ‖v2(x, t)‖2 + ‖∇z2(x, t)‖2 . 1, ∀ τ 6 τ0. (3.30)

Note that z2(x, τ) = 0 for x ∈ Ω due to (3.10). Thus ∆z2(x, τ) = 0. We now differenti-

ate equation (3.9) with respect to time t and find that z2t is a solution of the following

problem

iz2tt + ∆z2t + iαz2t + z2tu+ utz2 =
∂f(x, t)

∂t
, t > τ, (3.31)

z2t(x, τ) = −if(x, τ). (3.32)

Multiplying (3.31) by 2z2t, integrating over Ω and then taking the imaginary part of

the resulting equality, we obtain

d

dt
‖z2t‖2 + 2α‖z2t‖2 =− 2Im

∫
Ω
utz2z2tdx+ 2Im

∫
Ω

∂f(x, t)

∂t
z2tdx

.‖ut‖‖z2‖L∞(Ω)‖z2t‖+
α

3
‖z2t‖2 + ‖∂f(x, t)

∂t
‖2. (3.33)

From (3.9) we see

‖∆z2‖ . ‖z2t‖+ ‖z2‖+ ‖u‖L4(Ω)‖z2‖L4(Ω) + ‖f(t)‖. (3.34)

Using Gagliardo-Nirenberg’s inequality, (3.30) and (3.34), we have

‖z2‖L∞(Ω) .‖z2‖
1
4 ‖∆z2‖

3
4 .

(
‖z2t‖+ 1 + ‖f(t)‖

) 3
4

.‖z2t‖
3
4 + (1 + ‖f(t)‖)

3
4 , ∀ τ 6 τ0. (3.35)
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It then follows from (3.33) and (3.35) that

d

dt
‖z2t‖2 + 2α‖z2t‖2 .‖z2t‖

7
4 + (1 + ‖f(t)‖)

3
4 ‖z2t‖+

α

3
‖z2t‖2 + ‖∂f(x, t)

∂t
‖2

.α‖z2t‖2 + (1 + ‖f(t)‖)
3
2 + ‖∂f(x, t)

∂t
‖2.

Thus

d

dt
‖z2t(t)‖2 + α‖z2t‖2 . 1 + ‖f(t)‖2 + ‖∂f(x, t)

∂t
‖2, ∀ τ 6 τ0. (3.36)

Using again Gronwall’s inequality to (3.36) and then using (3.32) yield

‖z2t(t)‖2 .‖z2t(τ)‖2e−α(t−τ) +

∫ t

τ
e−α(t−s)(1 + ‖f(s)‖2 + ‖∂f(x, s)

∂t
‖2
)
ds

.1 + ‖f(τ)‖2e−α(t−τ) +

∫ t

τ
e−α(t−s)(‖f(s)‖2 + ‖∂f(x, s)

∂t
‖2
)
ds, ∀ τ 6 τ0.

Combining above estimate and (3.34) we see that there is a τ1 = τ1(t, D̂) such that

‖∆z2(t)‖2 . 1 + ‖f(t)‖2 +

∫ t

τ
e−α(t−s)(‖f(s)‖2 + ‖∂f(x, s)

∂t
‖2
)
ds, ∀ τ 6 τ1, (3.37)

since, by (2.33), lim
τ→−∞

‖f(τ)‖2eδτ = 0.

Secondly, we estimate ‖∆u2(t)‖2 + ‖∇v2(t)‖2. Multiplying (3.8) with −∆v2 and

then integrating the resulting equality over Ω yield

1

2

d

dt
‖∇v2‖2 + (ν − δ)‖∇v2‖2 + δ(ν − δ)(u2,∆v2)− µ(u2,∆v2)

+ (∆u2,∆v2) =

∫
Ω
−∆v2Re(zz2)dx− (g,∆v2). (3.38)

Direct computations give
(u2,∆v2) = −1

2

d

dt
‖∇u2‖2 − δ‖∇u2‖2,

(∆u2,∆v2) =
1

2

d

dt
‖∆u2‖2 + δ‖∆u2‖2,

(g,−∆v2) = −δ
∫

Ω
∆u2gdx− d

dt

∫
Ω

∆u2gdx+

∫
Ω

∂g(x, t)

∂t
∆u2dx.

(3.39)

Inserting (3.39) into (3.38) yields

1

2

d

dt

(
‖∇v2‖2 + ‖∆u2‖2 + (µ− δ(ν − δ)))‖∇u2‖2 + 2

∫
Ω

∆u2gdx
)

+ (ν − δ)‖∇v2‖2 + δ‖∆u2‖2 + δ(µ− δ(ν − δ))‖∇u2‖2 + δ

∫
Ω

∆u2gdx

=

∫
Ω
∇v2∇

(
Re(zz2)

)
dx+

∫
Ω

∂g(x, t)

∂t
∆u2dx. (3.40)
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Set

H3(t) =‖∇v2‖2 + (µ− δ(ν − δ))‖∇u2‖2 + ‖∆u2‖2 +

∫
Ω

∆u2gdx,

J3(t) =2

∫
Ω
∇v2∇

(
Re(zz2)

)
dx+ 2

∫
Ω

∂g(x, t)

∂t
∆u2dx

− (2ν − 3δ)‖∇v2‖2 − δ‖∆u2‖2 − δ(µ− δ(ν − δ))‖∇u2‖2.

Then from (3.40) it follows that

dH3(t)

dt
+ δH3(t) = J3(t). (3.41)

By Hölder’s inequality, Sobolev’s embedding theorem and (3.28),∣∣∣2 ∫
Ω
∇v2∇(Re(zz2))dx

∣∣∣ .‖∇v2‖
(
‖∇z‖‖z2‖L∞(Ω) + ‖z‖L6(Ω)‖∇z2‖L3(Ω)

)
.‖∇v2‖‖∆z2‖ . (2ν − 3δ)‖∇v2‖2 + ‖∆z2‖2, ∀ τ 6 τ0.

Thus by (3.30), (3.37) and Cauchy’s inequality,

J3(t) .(2ν − 3δ)‖∇v2‖2 + ‖∆z2‖2 + 2

∫
Ω

∂g(x, t)

∂t
∆u2dx

− (2ν − 3δ)‖∇v2‖2 − δ‖∆u2‖2 −
(
µ− δ(ν − δ)

)
‖∇u2‖2

.1 + ‖∂g(x, t)

∂t
‖2 + ‖∆z2‖2

.1 + ‖f(t)‖2 + ‖∂g(x, t)

∂t
‖2

+

∫ t

τ
e−α(t−s)(‖f(s)‖2 + ‖∂f(x, s)

∂t
‖2
)
ds, ∀ τ 6 τ2, (3.42)

where τ2 = min{τ0(t, D̂), τ1(t, D̂)}. Note that for x ∈ Ω we have (u2(x, τ), v2(x, τ)) ≡
(0, 0) due to (3.10). Thus ∆u2(x, τ) = 0 and ‖∇u2(x, τ)‖ = ‖∆u2(x, τ)‖ = ‖∇v2(x, τ)‖ =

0. These gives the fact that

H3(τ) =‖∇v2(x, τ)‖2 + (µ− δ(ν − δ))‖∇u2(x, τ)‖2 + ‖∆u2(x, τ)‖2 +

∫
Ω

∆u2(x, τ)g(x, τ)dx

=0.

Applying Gronwall’s inequality to (3.41), then using (3.42) and the fact that H3(τ) = 0,
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we obtain

H3(t) .H3(τ)e−δ(t−τ) +

∫ t

τ
e−δ(t−s)J3(s)ds

.1 +

∫ t

τ
e−δ(t−s)

(
‖f(s)‖2 + ‖∂g(s)

∂t
‖2
)
ds

+

∫ t

τ
e−δ(t−s)

(∫ s

τ
e−α(s−θ)(‖f(θ)‖2 + ‖∂f(θ)

∂t
‖2)dθ

)
ds

.1 +

∫ t

−∞
e−δ(t−s)

(
‖f(s)‖2 + ‖∂g(s)

∂t
‖2
)
ds

+

∫ t

−∞
e−δ(t−s)

(∫ s

−∞
e−α(s−θ)(‖f(θ)‖2 + ‖∂f(θ)

∂t
‖2)dθ

)
ds, ∀ τ 6 τ2. (3.43)

From assumption (H) we see that the right-hand side of inequality (3.43) is a bounded

quantity which is independent of τ . Hence

‖∆u2‖2 + ‖∇v2‖2 . H3(t) + ‖∇u2(t)‖2 +
∣∣ ∫

Ω
∆u2gdx

∣∣ . H3(t) + 1 +
1

2
‖∆u2‖2 + ‖g‖2,

that is

‖∆u2‖2 + ‖∇v2‖2 . H3(t) + 1 + ‖g(t)‖2, ∀ τ 6 τ2. (3.44)

We obtain (3.29) from (3.37) and (3.43)-(3.44). The proof of Lemma 3.4 is completed.

From Lemma 3.2 and Lemma 3.4 we see that the solutions operators of prob-

lem (3.2)-(3.6) and problem (3.7)-(3.11) generate in the space E continuous processes,

{S(t, τ)}t>τ and {T (t, τ)}t>τ , respectively, that is the process {U(t, τ)}t>τ can be de-

composed as

U(t, τ) = S(t, τ) + T (t, τ).

Moreover, Lemma 3.2 shows that {S(t, τ)}t>τ pullback decays exponentially in the

manner

‖S(t, τ)ψτ‖2E . ‖ψτ‖2E(1 + ‖ψτ‖
3
4
E)e−δ(t−τ), ∀ τ 6 τ0.

Lemma 3.4 indicates that {T (t, τ)}t>τ is pullback strongly bounded in E1. Notice that

the embedding E1 ↪→ E is compact. Thus {T (t, τ)}t>τ is pullback-Dδ compact in E in

the sense that for each given t ∈ R, each D̂ = {D(s)|s ∈ R} ∈ Dδ and any sequence

{τn}n>1 in (−∞, t] such that τn → −∞ as n → ∞, the sequence {T (t, τn)ψ(τn)} with

any ψ(τn) ∈ D(τn) possesses a convergent subsequence in E. Combining these analyses

and [8, Theorem 3.2], we obtain the following result.

Lemma 3.5. Let assumption (H) hold. Then the process {U(t, τ)}t>τ is pullback-Dδ
asymptotically compact in E.
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At this stage, we use the results of Lemma 2.2, Lemma 3.1, Lemma 3.5 and [8,

Theorem 3.1] to obtain the main results of this section.

Theorem 3.1. Let assumption (H) hold. Then the process {U(t, τ)}t>τ possesses a

pullback-Dδ attractor ÂDδ = {ADδ(t)|t ∈ R} in E satisfying

(a) Compactness: for every t ∈ R, ADδ(t) is a nonempty compact subset of E;

(b) Invariance: U(t, τ)ADδ(τ) = ADδ(t), ∀ τ 6 t;

(c) Pullback attraction: ADδ(t) is pullback-Dδ attracting in the following sense,

lim
τ→−∞

DistE
(
U(t, τ)D(τ),ADδ(t)

)
= 0, ∀ D̂ = {D(s)|s ∈ R} ∈ Dδ, t ∈ R.

4 Invariant measure, Liouville type theorem and statisti-
cal solution

The goal of this section is to construct the statistical solution for the KGS equations.

To this end, we will first prove the existence of the family of invariant Borel probability

measures for the process {U(t, τ)}t>τ . Then we establish that this family of probability

measures satisfies a Liouville type theorem and is indeed a statistical solution for the

KGS equations.

We first prove that the solutions of problem (2.11)-(2.12) depend continuously on

the initial data. For any u, v ∈ H1
0 (Ω), define

(u, v)µ = µ(u, v) + (∇u,∇v),

where µ is the positive constant from equation (1.1) and (·, ·) is the inner product of

L2(Ω). Obviously, we have

‖∇u‖2 6 ‖u‖2µ . (1 + µ)‖∇u‖2, ∀u ∈ H1
0 (Ω),

which means that (·, ·)µ is an inner product in H1
0 (Ω) and Hµ = (H1

0 (Ω), (·, ·)µ) is a

Hilbert space equivalent to H1
0 (Ω) with the usual inner product. Set

Eµ = Hµ × L2(Ω)×H1
0 (Ω)

and equip it with the inner product and norm as

(φ, ϕ)Eµ = (φ1, ϕ1)µ + (φ2, ϕ2) + (∇φ3,∇ϕ3), φ = (φ1, φ2, φ3)T , ϕ = (ϕ1, ϕ2, ϕ3)T ∈ Eµ,

‖φ‖2Eµ = (φ, φ)Eµ , φ = (φ1, φ2, φ3)T ∈ Eµ.

Obviously, (Eµ, (·, ·)Eµ) is a Hilbert space equivalent to E with the usual inner product.
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Lemma 4.1. For any ψ = (u, v, z)T ∈ Eµ, there holds

Re(Θψ,ψ)Eµ > ϑ(‖u‖2µ + ‖v‖2) +
ν

2
‖v‖2 + α‖∇z‖2, (4.1)

where Θ is the operator defined by (2.9) and

0 < ϑ =
µν√

ν2 + 4µ(
√
ν2 + 4µ+ ν)

∈ (0,
ν

4
). (4.2)

Proof. Direct computations imply

Re(Θψ,ψ)Eµ = µδ‖u‖2 + δ‖∇u‖2 + δ(δ − ν)(u, v) + α‖∇z‖2 + (ν − δ)‖v‖2.

We now choose ϑ as in (4.2) and

0 < δ =
µν

ν2 + 4µ
<
ν

4
. (4.3)

Then δ > ϑ and

Re(Θψ,ψ)Eµ − ϑ(‖u‖2µ + ‖v‖2)− ν

2
‖v‖2 − α‖∇z‖2

=(δ − ϑ)‖u‖2µ + (
ν

2
− δ − ϑ)‖v‖2 + δ(δ − ν)(u, v)

>(δ − ϑ)‖u‖2µ + (
ν

2
− δ − ϑ)‖v‖2 − δν

√
µ
‖u‖µ‖v‖ > 0,

since

4(δ − ϑ)(
ν

2
− δ − ϑ) =

δ2ν2

µ
.

This ends the proof.

With the above coercivity of the operator Θ in Eµ, we can prove directly the

continuous dependence of the solutions of problem (2.11)-(2.12) on the initial data.

Lemma 4.2. Let ψ(1)(t) = ψ(1)(x, t) and ψ(2)(t) = ψ(2)(x, t) be two solutions of problem

(2.11)-(2.12) corresponding to the initial data ψ
(1)
τ and ψ

(2)
τ , respectively. Then

‖ψ(1)(t)− ψ(2)(t)‖2Eµ . ‖ψ(1)
τ − ψ(2)

τ ‖2Eµ exp
{∫ t

τ

(
‖ψ(1)(s)‖E + ‖ψ(2)(s)‖E

)
ds
}
.

(4.4)

Proof. Let

ψ(k)(t) = ψ(k)(x, t; τ, ψ(k)
τ ) =

(
u(k)(x, t), v(k)(x, t), z(k)(x, t)

)T
, k = 1, 2,

be two solutions of problem (2.11)-(2.12) corresponding to the initial data ψ
(1)
τ and

ψ
(2)
τ , respectively. Put

ũ(t) = ũ(x, t) = u(1)(x, t)− u(2)(x, t),

ṽ(t) = ṽ(x, t) = v(1)(x, t)− v(2)(x, t),

z̃(t) = z̃(x, t) = z(1)(x, t)− z(2)(x, t),

ψ̃(t) = ψ(1)(t)− ψ(2)(t).
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Then ψ̃(t) satisfies

d

dt
ψ̃(t) + Θψ̃(t) = F (ψ(1)(t), t)− F (ψ(2)(t), t), t > τ, (4.5)

ψ̃(τ) = ψ̃τ = ψ(1)
τ − ψ(2)

τ . (4.6)

By Lemma 4.1,

Re(Θψ̃, ψ̃)Eµ > ϑ(‖ũ‖2µ + ‖ṽ‖2) +
ν

2
‖ṽ‖2 + α‖∇z̃‖2, ∀ t > τ. (4.7)

At the same time, direct computations imply

‖F (ψ(1)(t), t)− F (ψ(2)(t), t)‖2Eµ
=β2

∥∥|z(1)|2 − |z(2)|2
∥∥2

+ ‖|∇(z(1)u(1) − z(2)u(2))‖2

.‖z(1) − z(2)‖2
∥∥|z(1)|+ |z(2)|

∥∥2
+ ‖∇z(1)‖2‖u(1) − u(2)‖2 + ‖∇u(2)‖2‖z(1) − z(2)‖2

+ ‖z(1)‖2‖∇u(1) −∇u(2)‖2 + ‖u(2)‖2‖∇z(1) −∇z(2)‖2

.‖ψ(1) − ψ(2)‖2Eµ(‖ψ(1)(t)‖2E + ‖ψ(2)(t)‖2E), ∀ t > τ. (4.8)

Taking the real part of the inner product (·, ·)Eµ of equation (4.5) with ψ̃(t) first and

then using (4.7)-(4.8), we obtain

d

ds
‖ψ̃(s)‖2Eµ + σ‖ψ̃(s)‖2Eµ . ‖ψ̃(s)‖2Eµ(‖ψ(1)(s)‖E + ‖ψ(2)(s)‖E), ∀ s > τ, (4.9)

where σ = min{2ϑ, 2α} > 0. Integrating (4.9) over [τ, t] yields

‖ψ̃(t)‖2Eµ . ‖ψ̃(τ)‖2Eµ +

∫ t

τ
‖ψ̃(s)‖2Eµ

(
‖ψ(1)(s)‖E + ‖ψ(2)(s)‖E

)
ds, ∀ t > τ. (4.10)

Applying Gronwall’s inequality to (4.10) gives (4.4). The proof of Lemma 4.2 is com-

pleted.

Lemma 4.3. Let assumption (H) hold. Then for every ψ∗ ∈ E and every t ∈ R, the

E-valued function τ 7−→ U(t, τ)ψ∗ is continuous and bounded on (−∞, t].

Proof. Let ψ∗ = (u∗, v∗, z∗)
T ∈ E and t ∈ R be given. For any s∗ ∈ (−∞, t] we next

prove that U(t, τ)ψ∗ is continuous at τ = s∗. To this end, we shall establish that for

any ε > 0 there exists some η = η(ε) > 0, such that if r < t with |r − s∗| < η then

‖U(t, r)ψ∗ − U(t, s∗)ψ∗‖E < ε. (4.11)

We assume r < s∗ without loss of generality. Notice that the norm ‖ · ‖Eµ is equivalent

to ‖ · ‖E . Employing (4.4) and the continuity property of the process, we have

‖U(t, r)ψ∗ − U(t, s∗)ψ∗‖2E
=‖U(t, s∗)U(s∗, r)ψ∗ − U(t, s∗)U(r, r)ψ∗‖2E

.‖U(s∗, r)ψ∗ − U(r, r)ψ∗‖2E exp
{∫ t

s∗

(
‖U(θ, r)ψ∗‖E + ‖U(θ, s∗)ψ∗‖E

)
dθ
}
. (4.12)
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Remember that (2.36) shows that U(·, r)ψ∗ and U(·, s∗)ψ∗ belong to C([s∗, t], E). Hence∫ t

s∗

(
‖U(θ, r)ψ∗‖E + ‖U(θ, s∗)ψ∗‖E

)
dθ < +∞. (4.13)

So from (2.36) and (4.13) we conclude that the right hand side of (4.12) is as small as

needed if |r − s∗| is small enough, that is (4.11) holds true. Therefore, the E-valued

function τ 7−→ U(t, τ)ψ∗ is continuous on (−∞, t].
We next prove that the Eµ-valued function τ 7−→ U(t, τ)ψ∗ is bounded on (−∞, t].

In fact, for above ψ∗ ∈ E and t ∈ R, we see from Lemma 2.1 that

lim
τ→−∞

‖U(t, τ)ψ∗‖2E

.e−δt
∫ t

−∞
eδs‖G(s)‖2ds+ e−δt

∫ t

−∞
eδs
(
e−αs

∫ s

−∞
eαθ‖f(θ)‖2dθ

)3
ds

+
(
e−αt

∫ t

−∞
eαs‖f(s)‖2ds

)3
+ ‖f(t)‖2, t ∈ R. (4.14)

The right-hand side of (4.14) is a bounded quantity which is independent of τ . From

this fact and the continuity of τ 7−→ U(t, τ)ψ∗ on (−∞, t] we obtain the desired result.

The proof of Lemma 4.3 is completed.

We next recall the definition of generalized Banach limit and a useful property.

Definition 4.1. ( [11, 26]) A generalized Banach limit is any linear functional, which

we denote by LIMt→+∞, defined on the space of all bounded real-valued functions on

[0,+∞) that satisfies

(1) LIMt→+∞h(t) > 0 for nonnegative functions h(·) on [0,+∞);

(2) LIMt→+∞h(t) = lim
t→+∞

h(t) if the usual limit lim
t→+∞

h(t) exists.

Let B+ be the collection of all bounded real-valued functions on [0,+∞). For any

generalized Banach limit LIMt→+∞, the following useful property

|LIMt→+∞h(t)| 6 lim sup
t→+∞

|h(t)|, ∀h(·) ∈ B+, (4.15)

is presented in [11, (1.38)] and in [9, (2.3)].

Remark 4.1. Notice that we consider the “pullback” asymptotic behavior and we re-

quire generalized limits as τ → −∞. For a given real-valued function ϕ defined on

(−∞, 0] and a given Banach limit LIMT→+∞, we define

LIMt→−∞ϕ(t) = LIMt→+∞ϕ(−t). (4.16)

Combining Lemma 2.2, Theorem 3.1, Lemma 4.3 and [26, Theorem 3.1], we obtain

the following result.
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Theorem 4.1. Let assumption (H) hold. Let {U(t, τ)}t>τ be the process associated to

problem (2.11)-(2.12) and ÂDδ = {ADδ(t)|t ∈ R} the pullback-Dδ attractor obtained in

Theorem 3.1. Then for a given generalized Banach limit LIMt→+∞ and a continuous

map ξ : R 7−→ E with ξ(·) ∈ Dδ, there exists a unique family of Borel probability

measures {mt}t∈R in E such that the support of the measure mt is contained in ADδ(t)
and

LIMτ→−∞
1

t− τ

∫ t

τ
Ψ(U(t, s)ξ(s))ds

=

∫
ADδ (t)

Ψ(ψ)dmt(ψ) =

∫
E

Ψ(ψ)dmt(ψ) (4.17)

=LIMτ→−∞
1

t− τ

∫ t

τ

∫
E

Ψ(U(t, s)ξ(s))dms(ψ)ds, (4.18)

for any real-valued continuous functional Ψ on E. Moreover, mt is invariant in the

sense that ∫
ADδ (t)

Ψ(ψ)dmt(ψ) =

∫
ADδ (τ)

Ψ(U(t, τ)ψ)dmτ (ψ), t > τ. (4.19)

We next introduce the class T of test function associated to the definition of sta-

tistical solutions for equation (2.11). We write (2.11) as

dψ

dt
= F(ψ, t), (4.20)

where F(ψ, t) = −Θψ + F (ψ, t). Then F(ψ, t) : E × R 7−→ E∗, here E∗ is the dual

space of E. We expect that the function Φ ∈ T satisfies

d

dt
Φ(ψ(t)) = 〈Φ′(ψ(t)),F(ψ(t), t)〉, (4.21)

for every global solution ψ(t) of equation (2.11), where 〈·, ·〉 is the dual pairing between

E and E∗.

Definition 4.2. (cf. [11, page 178, Definition 1.2]) We define the class T of test func-

tions to be the set of real-valued functionals Φ = Φ(ψ) on E that are bounded on bounded

subset of E and satisfy

(a) for any ψ ∈ E, the Frechét derivative Φ′(ψ) exists: for each ψ ∈ E there exists

an element Φ′(ψ) such that

|Φ(ψ + ϕ)− Φ(ψ)− 〈Φ′(ψ), ϕ〉|
‖ϕ‖E

−→ 0 as ‖ϕ‖E → 0, ϕ ∈ E;

(b) Φ′(ψ) ∈ E for all ψ ∈ E, and the mapping ψ 7−→ Φ′(ψ) is continuous and bounded

as a function from E to E;
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(c) for every global solution ψ(t) of equation (2.11), (4.21) holds true.

For example, we can consider the cylindrical test function defined on E. Let ϕ1, ϕ2

and ϕ3 belong to E and γ be a continuously differentiable real-valued function on R3

with compact support. For each ψ ∈ E, define Φ(ψ) via

Φ(ψ) = γ(〈ψ,ϕ1〉, 〈ψ,ϕ2〉, 〈ψ,ϕ3〉),

where 〈ψ,ϕj〉 is the dual pairing between ψ ∈ E ⊂ E∗ and ϕj ∈ E. Then the func-

tion Φ(·) is obviously continuous from E to R and in fact is differentiable in E, with

differential Φ′(·) at ψ ∈ E given by

Φ′(ψ) =
3∑
j=1

∂jγ(〈ψ,ϕ1〉, 〈ψ,ϕ2〉, 〈ψ,ϕ3〉)ϕj . (4.22)

where ∂jγ denotes the derivative of γ with respect to its j-th coordinate. (4.22) shows

that Φ′(·) ∈ E. Above analyses show that the cylindrical test functions of above form

satisfy Definition 4.2.

We now introduce the definition of statistical solution for equation (4.20) and prove

its existence.

Definition 4.3. A family {ρt}t∈R of Borel probability measures in E is said to be a

statistical solution in the phase space E (or simply a statistical solution) of equation

(4.20) if the following conditions are satisfied:

(a) the function t 7→
∫
E

Γ(ψ)dρt(ψ) is continuous for every Γ ∈ C(E) (the collection

of continuous and bounded functions on E);

(b) for almost t ∈ R, the function ψ 7→ 〈F(ψ(t), t), φ〉 is ρt-integrable for every φ ∈ E.

Moreover, the map

t 7→
∫
E
〈F(ψ(t), t), φ〉dρt(ψ)

belongs to L1
loc(R) for every φ ∈ E;

(c) for any cylindrical test function Φ ∈ T , it follows that∫
E

Φ(ψ)dρt(ψ)−
∫
E

Φ(ψ)dρτ (ψ) =

∫ t

τ

∫
E
〈F(ψ(s), s),Φ′(ψ)〉dρs(ψ)ds,

for all t, τ ∈ R.

Theorem 4.2. Let assumption (H) hold. Then the family of Borel probability measures

{mt}t∈R obtained in Theorem 4.1 is a statistical solution of equation (4.20).
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Proof. We prove that the family of Borel probability measures {mt}t∈R satisfies condi-

tions (a), (b) and (c) of Definition 4.3 item by item.

Firstly, for any given t∗ ∈ R, we establish that for every Γ ∈ C(E) there holds

lim
t→t∗

∫
E

Γ(ψ)dmt(ψ) =

∫
E

Γ(ψ)dmt∗(ψ). (4.23)

In fact, from (4.17) and (4.19) we see for t > t∗ that∫
E

Γ(ψ)dmt(ψ)−
∫
E

Γ(ψ)dmt∗(ψ) =

∫
ADδ (t∗)

(
Γ(U(t, t∗)ψ)− Γ(ψ)

)
dmt∗(ψ). (4.24)

Since U(t, t∗)ψ −→ ψ strongly in E as t→ t+∗ , Γ ∈ C(E) and ADδ(t∗) is compact in E,

(4.24) implies

lim
t→t+∗

∫
E

Γ(ψ)dmt(ψ) =

∫
E

Γ(ψ)dmt∗(ψ).

Similarly,

lim
t→t−∗

∫
E

Γ(ψ)dmt(ψ) =

∫
E

Γ(ψ)dmt∗(ψ).

Thus (4.23) is proved.

Secondly, for every t ∈ R we have proved that mt is carried by ADδ (t) ⊂ E. Now

for every φ = (φ1, φ2, φ3)T ∈ E we define for ψ = (u, v, z)T ∈ E that

Ψ(ψ) = 〈F(ψ, s), φ〉. (4.25)

Then Ψ(·) : E 7−→ R. We next establish Ψ(·) ∈ C(E). Let ψ∗ = (u∗, v∗, z∗)
T ∈ E be

fixed and consider ψ = (u, v, z)T ∈ E with ‖ψ∗ − ψ‖E 6 1. Then

|Ψ(ψ∗)−Ψ(ψ)| = |〈F(ψ∗, s)−F(ψ, s), φ〉| 6 |〈Θ(ψ∗−ψ), φ〉|+ |〈F (ψ∗, s)−F (ψ, s), φ〉|.

The term |〈Θ(ψ∗ − ψ), φ〉| can be bounded as

|〈Θ(ψ∗ − ψ), φ〉| 6
∣∣(δ(u∗ − u)− (v∗ − v), φ1

)∣∣+
∣∣((−i∆ + α)(z∗ − z), φ3

)∣∣
+
∣∣((−∆− δ(ν − δ) + µ)(u∗ − u) + (ν − δ)(v∗ − v), φ2

)∣∣
.(‖u∗ − u‖+ ‖v∗ − v‖)(‖φ1‖+ ‖φ2‖) + ‖z∗ − z‖‖φ3‖

+ ‖∇(z∗ − z)‖‖∇φ3‖+ ‖∇(u∗ − u)‖‖∇φ2‖

.‖ψ∗ − ψ‖E‖φ‖E .

At the same time, note that E ↪→ E∗ and the norm between Eµ and E is equivalent.

Hence, by (4.8) the term |〈F (ψ∗, s)− F (ψ, s), φ〉| can be bounded as

|〈F (ψ∗, s)− F (ψ, s), φ〉| .‖F (ψ∗, s)− F (ψ, s)‖E∗‖φ‖E . ‖F (ψ∗, s)− F (ψ, s)‖E‖φ‖E
.‖F (ψ∗, s)− F (ψ, s)‖Eµ‖φ‖E . ‖ψ∗ − ψ‖Eµ(2‖ψ∗‖E + 1)‖φ‖E
.‖ψ∗ − ψ‖E(‖ψ∗‖E + 1)‖φ‖E .
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Therefore, we have

|Ψ(ψ∗)−Ψ(ψ)| . ‖ψ∗ − ψ‖E(‖ψ∗‖E + 1)‖φ‖E . (4.26)

Inequality (4.26) implies that the real-valued function Ψ(·) defined by (4.25) is continu-

ous on E. From (4.17) and (4.25) we conclude that the function ψ 7→ 〈F(ψ(t), t), φ〉 =

Ψ(ψ) is mt-integrable for every φ ∈ E. At the same time, we have proved in the

previous step that the function

t 7→
∫
E
〈F(ψ(t), t), φ〉dmt(ψ) =

∫
E

Ψ(ψ)dmt(ψ)

is continuous on R. Hence it belongs to L1
loc(R) for every φ ∈ E.

Thirdly, for any Φ ∈ T , we have (4.21). Hence,

Φ(ψ(t))− Φ(ψ(τ)) =

∫ t

τ
〈F(ψ(θ), θ),Φ′(ψ(θ))〉dθ. (4.27)

Now for any s < τ , let ψ∗ ∈ E and ψ(θ) = U(θ, s)ψ∗ for θ > s. We use (4.27) to deduce

Φ(U(t, s)ψ∗)− Φ(U(τ, s)ψ∗) =

∫ t

τ
〈F(U(θ, s)ψ∗, θ),Φ

′(U(θ, s)ψ∗)〉dθ. (4.28)

By (4.21) and (4.28), we obtain after some calculations,∫
E

Φ(ψ)dmt(ψ)−
∫
E

Φ(ψ)dmτ (ψ)

=

∫
ADδ (t)

Φ(ψ)dmt(ψ)−
∫
ADδ (τ)

Φ(ψ)dmτ (ψ)

=LIMM→−∞
1

τ −M

∫ τ

M

∫
E

(
Φ(U(t, s)ψ∗)− Φ(U(τ, s)ψ∗)

)
dms(ψ∗)ds

=LIMM→−∞
1

τ −M

∫ τ

M

∫
E

∫ t

τ
〈F(U(θ, s)ψ∗, θ),Φ

′(U(θ, s)ψ∗)〉dθdms(ψ∗)ds

=LIMM→−∞
1

τ −M

∫ τ

M

∫ t

τ

∫
E
〈F(U(θ, s)ψ∗, θ),Φ

′(U(θ, s)ψ∗)〉dms(ψ∗)dθds, (4.29)

where we have used Fubini’s Theorem to swap the order of integration. Now by the

property of the process U(θ, s) = U(θ, τ)U(τ, s) and (4.19),∫
E
〈F(U(θ, s)ψ∗, θ),Φ

′(U(θ, s)ψ∗)〉dms(ψ∗)

=

∫
E
〈F(U(θ, τ)U(τ, s)ψ∗, θ),Φ

′(U(θ, τ)U(τ, s)ψ∗)〉dms(ψ∗)

=

∫
E
〈F(U(θ, τ)ψ∗, θ),Φ

′(U(θ, τ)ψ∗)〉dmτ (ψ∗),
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the right-hand side of which is independent to s. Therefore,∫
ADδ (t)

Φ(ψ)dmt(ψ)−
∫
ADδ (τ)

Φ(ψ)dmτ (ψ)

=

∫ t

τ

∫
E
〈F(U(θ, τ)ψ∗, θ),Φ

′(U(θ, τ)ψ∗)〉dmτ (ψ∗)dθ

=

∫ t

τ

∫
E
〈F(ψ(s), s),Φ′(ψ)〉dms(ψ)ds. (4.30)

The proof of Theorem 4.2 is completed.

We point out that, if statistical equilibrium has been reached by the KGS system,

then the statistical informations do not change with time, that is Φ′(ψ(t)) = 0. In this

situation, (4.30) implies∫
ADδ (t)

Φ(ψ)dmt(ψ) =

∫
ADδ (τ)

Φ(ψ)dmτ (ψ), t > τ, (4.31)

and (4.31) is exactly (4.19), which describes the invariant property of the statistical

solution under the action of the process {U(t, τ)}t>τ . The invariant property of the

statistical solution indicates that the shape of the pullback attractor ADδ(τ) could

change with the evolution of time from τ to t, but the measures of ADδ(τ) and ADδ(t)
coincide with each other. This is the result of Liouville Theorem from Statistical

Mechanics. Thus we say the statistical solution {mt}t∈R of the KGS equations satisfies

a Liouville type theorem.

Corollary 4.1. The invariant property of the statistical solution {mt}t∈R of the KGS

equations is a particular situation of the Liouville type theorem.
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