
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/266465659

Enhancing the simulation of P systems for the SAT problem on GPUs

Article · July 2010

CITATIONS

0
READS

13

6 authors, including:

Some of the authors of this publication are also working on these related projects:

Code modernization for highly parallel architectures View project

Special Issue for Submission: Modeling, Simulation and Design of Membrane Computing System View project

José M Cecilia

Universitat Politècnica de València

93 PUBLICATIONS 880 CITATIONS

SEE PROFILE

Jose M. Garcia

University of Murcia

228 PUBLICATIONS 1,843 CITATIONS

SEE PROFILE

Ginés D Guerrero

University of Murcia

26 PUBLICATIONS 398 CITATIONS

SEE PROFILE

Mario J. Pérez-Jiménez

Universidad de Sevilla

386 PUBLICATIONS 6,977 CITATIONS

SEE PROFILE

All content following this page was uploaded by Jose M. Garcia on 22 January 2015.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/266465659_Enhancing_the_simulation_of_P_systems_for_the_SAT_problem_on_GPUs?enrichId=rgreq-ea034cf578b0dc7ee300f89e5328cdcb-XXX&enrichSource=Y292ZXJQYWdlOzI2NjQ2NTY1OTtBUzoxODgzNjMzNTMxMDg0ODBAMTQyMTkyMDczMTg4OQ%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/266465659_Enhancing_the_simulation_of_P_systems_for_the_SAT_problem_on_GPUs?enrichId=rgreq-ea034cf578b0dc7ee300f89e5328cdcb-XXX&enrichSource=Y292ZXJQYWdlOzI2NjQ2NTY1OTtBUzoxODgzNjMzNTMxMDg0ODBAMTQyMTkyMDczMTg4OQ%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Code-modernization-for-highly-parallel-architectures?enrichId=rgreq-ea034cf578b0dc7ee300f89e5328cdcb-XXX&enrichSource=Y292ZXJQYWdlOzI2NjQ2NTY1OTtBUzoxODgzNjMzNTMxMDg0ODBAMTQyMTkyMDczMTg4OQ%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/Special-Issue-for-Submission-Modeling-Simulation-and-Design-of-Membrane-Computing-System-2?enrichId=rgreq-ea034cf578b0dc7ee300f89e5328cdcb-XXX&enrichSource=Y292ZXJQYWdlOzI2NjQ2NTY1OTtBUzoxODgzNjMzNTMxMDg0ODBAMTQyMTkyMDczMTg4OQ%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-ea034cf578b0dc7ee300f89e5328cdcb-XXX&enrichSource=Y292ZXJQYWdlOzI2NjQ2NTY1OTtBUzoxODgzNjMzNTMxMDg0ODBAMTQyMTkyMDczMTg4OQ%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Jose_Cecilia?enrichId=rgreq-ea034cf578b0dc7ee300f89e5328cdcb-XXX&enrichSource=Y292ZXJQYWdlOzI2NjQ2NTY1OTtBUzoxODgzNjMzNTMxMDg0ODBAMTQyMTkyMDczMTg4OQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Jose_Cecilia?enrichId=rgreq-ea034cf578b0dc7ee300f89e5328cdcb-XXX&enrichSource=Y292ZXJQYWdlOzI2NjQ2NTY1OTtBUzoxODgzNjMzNTMxMDg0ODBAMTQyMTkyMDczMTg4OQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Universitat-Politecnica-de-Valencia?enrichId=rgreq-ea034cf578b0dc7ee300f89e5328cdcb-XXX&enrichSource=Y292ZXJQYWdlOzI2NjQ2NTY1OTtBUzoxODgzNjMzNTMxMDg0ODBAMTQyMTkyMDczMTg4OQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Jose_Cecilia?enrichId=rgreq-ea034cf578b0dc7ee300f89e5328cdcb-XXX&enrichSource=Y292ZXJQYWdlOzI2NjQ2NTY1OTtBUzoxODgzNjMzNTMxMDg0ODBAMTQyMTkyMDczMTg4OQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Jose_Garcia141?enrichId=rgreq-ea034cf578b0dc7ee300f89e5328cdcb-XXX&enrichSource=Y292ZXJQYWdlOzI2NjQ2NTY1OTtBUzoxODgzNjMzNTMxMDg0ODBAMTQyMTkyMDczMTg4OQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Jose_Garcia141?enrichId=rgreq-ea034cf578b0dc7ee300f89e5328cdcb-XXX&enrichSource=Y292ZXJQYWdlOzI2NjQ2NTY1OTtBUzoxODgzNjMzNTMxMDg0ODBAMTQyMTkyMDczMTg4OQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University-of-Murcia?enrichId=rgreq-ea034cf578b0dc7ee300f89e5328cdcb-XXX&enrichSource=Y292ZXJQYWdlOzI2NjQ2NTY1OTtBUzoxODgzNjMzNTMxMDg0ODBAMTQyMTkyMDczMTg4OQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Jose_Garcia141?enrichId=rgreq-ea034cf578b0dc7ee300f89e5328cdcb-XXX&enrichSource=Y292ZXJQYWdlOzI2NjQ2NTY1OTtBUzoxODgzNjMzNTMxMDg0ODBAMTQyMTkyMDczMTg4OQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Gines-Guerrero?enrichId=rgreq-ea034cf578b0dc7ee300f89e5328cdcb-XXX&enrichSource=Y292ZXJQYWdlOzI2NjQ2NTY1OTtBUzoxODgzNjMzNTMxMDg0ODBAMTQyMTkyMDczMTg4OQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Gines-Guerrero?enrichId=rgreq-ea034cf578b0dc7ee300f89e5328cdcb-XXX&enrichSource=Y292ZXJQYWdlOzI2NjQ2NTY1OTtBUzoxODgzNjMzNTMxMDg0ODBAMTQyMTkyMDczMTg4OQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University-of-Murcia?enrichId=rgreq-ea034cf578b0dc7ee300f89e5328cdcb-XXX&enrichSource=Y292ZXJQYWdlOzI2NjQ2NTY1OTtBUzoxODgzNjMzNTMxMDg0ODBAMTQyMTkyMDczMTg4OQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Gines-Guerrero?enrichId=rgreq-ea034cf578b0dc7ee300f89e5328cdcb-XXX&enrichSource=Y292ZXJQYWdlOzI2NjQ2NTY1OTtBUzoxODgzNjMzNTMxMDg0ODBAMTQyMTkyMDczMTg4OQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Mario_Perez-Jimenez?enrichId=rgreq-ea034cf578b0dc7ee300f89e5328cdcb-XXX&enrichSource=Y292ZXJQYWdlOzI2NjQ2NTY1OTtBUzoxODgzNjMzNTMxMDg0ODBAMTQyMTkyMDczMTg4OQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Mario_Perez-Jimenez?enrichId=rgreq-ea034cf578b0dc7ee300f89e5328cdcb-XXX&enrichSource=Y292ZXJQYWdlOzI2NjQ2NTY1OTtBUzoxODgzNjMzNTMxMDg0ODBAMTQyMTkyMDczMTg4OQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Universidad-de-Sevilla?enrichId=rgreq-ea034cf578b0dc7ee300f89e5328cdcb-XXX&enrichSource=Y292ZXJQYWdlOzI2NjQ2NTY1OTtBUzoxODgzNjMzNTMxMDg0ODBAMTQyMTkyMDczMTg4OQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Mario_Perez-Jimenez?enrichId=rgreq-ea034cf578b0dc7ee300f89e5328cdcb-XXX&enrichSource=Y292ZXJQYWdlOzI2NjQ2NTY1OTtBUzoxODgzNjMzNTMxMDg0ODBAMTQyMTkyMDczMTg4OQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Jose_Garcia141?enrichId=rgreq-ea034cf578b0dc7ee300f89e5328cdcb-XXX&enrichSource=Y292ZXJQYWdlOzI2NjQ2NTY1OTtBUzoxODgzNjMzNTMxMDg0ODBAMTQyMTkyMDczMTg4OQ%3D%3D&el=1_x_10&_esc=publicationCoverPdf

Enhancing the simulation of P systems for the SAT
problem on GPUs

J.M. Cecilia, J.M. Garcı́a, G.D. Guerrero
Computer Engineering and Technology Dept.

University of Murcia, Spain

M.A. Martı́nez-Amor, M.J. Pérez-Jiménez
Computer Science and Artif. Intel. Dept.

University of Seville, Spain

M. Ujaldón
Computer Architecture Dept.
University of Malaga, Spain

Abstract—GPUs constitute nowadays a solid alternative for
high performance computing, and the advent of CUDA/OpenCL
allow programmers a friendly model to accelerate a broad range
of applications. The way GPUs exploit parallelism differ from
multi-core CPUs, which raises new challenges to take advantage
of its tremendous computing power. In this respect, P systems or
Membrane Systems provide a high-level computational modeling
framework that combines the structure and dynamic aspects
of biological systems while being inherently parallel and non-
deterministic. In this work, we implement on GPUs the simula-
tion for a solution provided by Membrane Computing to solve the
Satisfiability (SAT) problem. The overall speed up reaches 100x
versus a sequential CPU, with an additional 16x due to CUDA
optimizations. A promising scalability is also proven on more
sophisticated GPU clusters and/or demanding problem sizes.

I. INTRODUCTION

Membrane Computing is a paradigm introduced by Gh.
Paun [6] and inspired on living cells where biochemical
processes are executed. Devices of this model are called P sys-
tems. Figure 1 outlines their main components, which consist
of two syntactic elements: a membrane structure, composed
of a hierarchical arrangement of membranes embedded in
a skin membrane, and delimiting regions or compartments
holding multisets of objects, and sets of evolution rules which
are associated with the membranes. From a computational
perspective, P systems are mainly characterized by inherent
parallelism and non-determinism.

Solutions to NP-complete problems in Membrane Comput-
ing at polynomial (often linear) time are achieved by trading
time for space. This is inspired by the capability of cells
to produce an exponential number of new membranes by
methods like mitosis (cell division) or autopoiesis (membrane
creation). Based on them, different models of P systems have
emerged, and some of them were proven to be computationally
universal.

A milestone for researchers within this area is to find
a feasible biological implementation, either in vivo or in
vitro. In the meantime, studies on P systems are driven by
simulators [2], [3] programmed using Java, C or Prolog to end
up running on sequential architectures which undermine its
potential parallelism. In this work, we introduce the simulation
of a class of recognizer P systems with active membranes on
GPUs solving the Satisfiability (SAT) problem in linear time.
We summarize the behavior of the solution provided in [1]
through a simulator and propose different parallel alternatives:

���������	
�	�����

��������

������

�����

�����	�����

�

�

�

�

���

�

�

	

�

�

����
	

����

�

�

�

�

�

Fig. 1. Internal structure of a recognizer P system.

1) Baseline. Our first solution simulates a complete theoret-
ical computation of this particular P system, overcoming
previous generalities. Through a hybrid implementation
on CPUs and GPUs, we drastically reduce the memory
usage to take a step forward in the overall simulation
performance for a 93x speed-up factor versus the CPU
alternative.

2) Enhanced: We use some heuristics to adapt the compu-
tation of the P system to the GPU architecture, enhanc-
ing parallelism while reducing the synchronization and
communication bottlenecks.

3) MultiGPU: The GPU memory size is identified as
a major constraint due to the exponential workspace
created along the computation, which can be overcome
with a data partition on a cluster of GPUs.

II. RECOGNIZER P SYSTEMS WITH ACTIVE MEMBRANES

Recognizer P system with active membranes [5] is a tuple of
the form Π = (O, H, µ, ω1, . . . , ωm, R), where m ≥ 1 is the
initial degree of the system; O is the alphabet of objects, H is
a finite set of labels for membranes; µ is a membrane structure
(a rooted tree), consisting of m membranes injectively labelled
with elements of H , ω1, . . . , ωm are strings over O, describing
the multisets of objects placed in the m regions of µ; and R
is a finite set of rules in one of the following forms:

(a) [a → v]αh where h ∈ H , α ∈ {+,−, 0} (electrical
charges), a ∈ O and v is a string over O describing
a multiset of objects associated with membranes
and depending on the label and the charge of the
membranes (evolution rules).

(b) a []αh → [b]βh where h ∈ H , α, β ∈ {+,−, 0},
a, b ∈ O (send-in communication rules). An object is
introduced in the membrane, possibly modified, and
the initial charge α is changed to β.

(c) [a]αh → []βhb where h ∈ H , α, β ∈ {+,−, 0},
a, b ∈ O (send-out communication rules). An object
is sent out of the membrane, possibly modified, and
the initial charge α is changed to β.

(d) [a]αh → b where h ∈ H , α ∈ {+,−, 0}, a, b ∈
O (dissolution rules). A membrane with a specific
charge is dissolved in reaction with an object.

(e) [a]αh → [b]βh [c]γh where h ∈ H ,α, β, γ ∈ {+,−, 0},
a, b, c ∈ O (division rules). A membrane is divided
into two membranes. The objects inside the mem-
brane are replicated, except for a, which may be
modified in each membrane.

Rules are applied according to the following principles:
• All the elements which are not involved in any of the

operations to be applied remain unchanged.
• Rules associated with label h are used for all membranes

with this label.
• Rules from (a) to (e) are used in a maximal parallel way.
• Rules (b) to (e) cannot be applied simultaneously in a

membrane in one computation step.
• If a membrane is dissolved, its content (multiset and

interior membranes) becomes part of the immediately
external one. The skin is never dissolved neither divided.

Data representing an instance of the problem is provided
to the P system to compute the required answer. This is
done by codifying each instance as a multiset placed in an
inputmembrane. The output of the computation, yes or no,
is sent to the environment in the last step of the computation.

III. SOLVING THE SAT PROBLEM IN LINEAR TIME

The propositional Satisfiability problem (SAT) was the
first known NP-complete problem. Given a formula of the
propositional calculus, φ, the goal is to find if there is an
assignment of truth values to its variables for which such
formula evaluates to true. Assuming φ in Conjunctive Normal
Form (CNF) with n variables and m clauses, the time to
solve the problem using all known deterministic brute force
algorithms grows exponentially with n and m.

In [4], it is described a family of recognizer P systems
with active membranes solving SAT in linear time, but at the
expense of creating an exponential workspace.

IV.TUNING P SYSTEMS FOR SOLVING SAT ON GPUS

The model of recognizer P systems with active membranes
is defined to solve decision problems. Likewise, for each of
these problems, the theoretical design of the P system can vary
by using a small subset of the computational tools provided
by the model. The simulation of a given P system can thus be
accelerated by removing general constraints and by adapting
it to the architecture to be simulated. Our work here applies
this methodology to the particular case of the SAT problem
and the GPU architecture.

Our departure point is a generic simulator of a recognizer
P system with active membranes previously developed in [1].
The tool is designed to simulate a wide range of recognizer
P systems with active membranes, though this generality
sometimes penalizes performance. Our baseline simulator was
enhanced with a removal of general conditions and a reduction
of memory requirements to pursue higher performance.

To increase the memory available for the simulation while
improving performance, we have developed a third implemen-
tation aimed to multiple GPU systems. Figure 2 shows the data
partition for the case of four GPUs.

� �

� � � � � � � �

� � � � � � � � 	 �
 �� �� �� �� �� ��

�

�

�

�

���

���

���

���

�

�

�

�

�

�

�

�

���

���

���

���

	

�

��

��

�

�

�

�

��

��

��

��

���������	
�����������

� �� �

������

������

������

������

���������	
�����������

������

������

Fig. 2. Data partition on a four GPU system.

V. EXPERIMENTAL RESULTS

Our hardware platform is a four-socket 2.40 GHz quad-core
Intel Xeon E5530 CPU and four Nvidia Tesla C1060 GPUs.
We use the gcc v. 4.32 C++ compiler with the -O4 flag on
the CPU, and the CUDA 2.3 SDK on the GPU side.

We analyze the performance of our simulators when increas-
ing: (1) the number of threads per thread block, and (2) the
number of thread blocks per grid. Benchmarks are generated
through the WinSAT program, which generates random SAT
problems in DIMACS CNF format file from a given number
of variables (n), clauses (m) and literals per clause (k).

P systems exhibit two levels of parallelism suitable for
GPUs: Among objects, which can be mapped to GPU threads,
and among membranes, which may define CUDA blocks.
Figure 3 shows the GPU execution times (in msecs., log scale)
for the baseline simulator described in Section IV, where a
thread per object (or set of objects) is defined in the alphabet
O for each block. This generality causes a performance penalty
which may lead the code to run even slower on GPUs than
the counterpart C++ version we have implemented on CPUs.
In addition, up to 17 CNF formula variables may be used in
this version for not to exceed memory capacity.

Figure 3(a) illustrates the behavior of our simulator along
objects, where performance goes up with a higher degree
of thread level parallelism. We raise the number of variable
instances (k = α) per clause in the SAT formula to increase
the number objects, and so the threads per block in the CUDA
codes, and keep constant (n = 11) the number of membranes
in the P system to maintain the number of CUDA thread blocks
as numberMembranes = 2n. The highest speed up (70%) is

� � � �� �� �� ��� ��� ���
�	�

�

��

���

����

�����

�������������

����������������������

��� ����������

!�"#��� �������

$������

%����������&��"��
�'� ��(���

!
)
�
�

��
�
�
��
��
�
��
�
��
�
�
�
��
��
��
��
�
*
��
�
�
��
�

(a) Varying the number of instances (objects) for 11 variables in the CNF.

�� �� �� �� �� �� �� �� ��
�	�

�

��

���

����

�����

������

�������

�������������

�����������������
�����

��� ����������

!�"#��� �������

$������

%&'�(����)���

!
*
�
�

��
�
�
��
��
�
��
�
��
�
�
�
��
��
��
��
�
+
��
�
�
��
�

(b) Varying the number of variables (membranes) in the CNF.

Fig. 3. Exec. times (msecs., log scale) for our simulator on CPUs and GPUs.

�� �� �� �� �� �� ��
�

�	�

�

�	�

�

�	�

�

�	�

�
����������
���������������
��������

����������
����������
!��"��������
���� �

#$%�&����'(�)

�
�(
�)

�

�
�
�
)

Fig. 4. Sync. time for our initial and enhanced GPU versions of the simulator.

obtained for a configuration of 256 instances per clause, which
represents 256 threads per CUDA block. This guarantees a full
occupancy of GPU resources.

Similarly, Figure 3(b) analyzes coarse-grained parallelism.
Now, we vary the number of variables in the SAT formula
while keeping constant the number of 256 instances per clause.
In this case, a higher speed-up factor of up to 93x is attained.

The enhanced version of our simulator reaches a 15-16x
speed up factor versus our reference implementation. Figure
4 shows the synchronization times spent by these two codes,
which varies depending on the problem size, but the reduction
in the number of kernels used for the second version saves 50%
of the synchronization time on average. We may also point out
that times in Figure 5 include the CUDA runtime overhead.
The impact of the data movement through PCI-Express bus is
completely hidden by the computation, but at the same time,
the CUDA runtime API initialization results expensive.

Finally, Figure 3 shows an outstanding scalability when
using more demanding problem sizes and/or migrating the
code towards a GPU cluster, reaching almost an optimal 4x
speed up factor when running on four GPUs, despite of the
start-up overhead, partition the data, creating the CPU threads
to transfer data to GPUs, and so on.

The largest SAT problem which we have successfully simu-

�� �� �� �� �� ��
�

���

����

����

����

����

����

�	
��������

�����
��������������������

��������	

������ ��!�
�

"
��

��

�
�
�
�
�

��
#
��
�
��

�

Fig. 5. Cumulative impact of various GPU runtimes for the initial version
of our simulator.

lated on our single GPU simulators involves 22 variables with
47 clauses and 235 variable instances. This set up reaches the
limit of 4 GB of device memory available on the Tesla C1060.
For our multi GPU simulator (16 GB overall), we may use up
to 24 variables, 20 clauses and 200 variable instances.

VI. CONCLUSIONS

We develop a GPU implementation for a recognizer P
systems with active membranes. The Satisfiability problem
(SAT) was taken as benchmark, and a generic simulator [1]
as a departure point to adapt it to the GPU architecture.

Our implementation reaches up to 93x of speed up com-
pared to the sequential version of the simulator, and defeats by
a wide margin the generic simulator. Our experimental results
also demonstrate that P system simulation can be accelerated
on GPUs as much as 15-16x as long as their design is adapted
to the particular idiosyncrasies of GPUs.

Downsides come from the nature of P systems with active
membranes, where an exponential workspace can be con-
structed to achieve polynomial time solutions for NP-complete
problems, limiting the size of the NP-complete problem in-
stances whose solutions can be successfully simulated due to
memory constraints. In order to partially overcome this issue
while improving performance, we implement the P system
simulation on a cluster of GPUs where NP-problems of larger
sizes can now be simulated without sacrifying performance.

Overall, Membrane Computing is an emerging bio-inspired
computational field where the exponential workspace created
by the P system simulation poses challenges in memory space,
but where GPUs may offer a high performance solution with
an extraordinary scalability.

REFERENCES

[1] J. M. Cecilia, J. M. Garcı́a, G. D. Guerrero, M. A. M. del Amor, I. Pérez-
Hurtado, and M. J. Pérez-Jiménez. Simulation of p systems with active
membranes on cuda. Briefings in Bioinformatics, Parallel and Ubiquitous
methods and tools in Systems Biology, 2010.

[2] M. Garcı́a-Quismondo, R. Gutiérrez-Escudero, I. Pérez-Hurtado, M. J.
Pérez-Jiménez, and A. Riscos-Núñez. An overview of P-lingua 2.0.
Membrane Computing: 10th Intl. Workshop, LNCS, 5957:264–288, 2010.

[3] M. A. Gutiérrez-Naranjo, M. J. Pérez-Jiménez, and A. Riscos-Núñez.
Available membrane computing software. In Applications of Membrane
Computing, pages 411–436. 2006.

[4] M. J. P. Jiménez, álvaro Romero Jiménez, and F. S. Caparrini. Complexity
classes in models of cellular computing with membranes. Natural
Computing: an international journal, 2(3):265–285, 2003.

[5] G. Paun. Membrane computing. an introduction. pages XI+419, 2002.
[6] G. Păun. Computing with membranes. Journal of Computer and System

Sciences, 61 (1):108–143, 2000.

View publication statsView publication stats

https://www.researchgate.net/publication/266465659

