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Abstract. We show the existence of an exponential attractor for non-autonomous
dynamical system with bounded delay. We considered the case of strong dis-
sipativity then prove that the result remains for the weak dissipativity. We
conclude then the existence of the global attractor and ensure the bounded-
ness of its fractal dimension.

1. Introduction. The theory of attractors for retarded dynamical systems was
developed in the global sense by Hale [11]. Then, the notion of pullback attractor
was introduced to generalize the autonomous case to the general non autonomous
framework and, recently, the theory of exponential attractors was introduced for
evolution processes considering their robustness under perturbation. However, the
existence of an exponential attractor implies the existence of the global attractor,
which means that one way of proving the existence of the global attractor is to
find an exponential attractor which also means that its fractal dimension is finite.
Technical theorems were established in [5, 4] to prove the existence of attractors for
asymptotically compact evolution processes. The existence of pullback attractors
for differential equation with one variable delay was studied in [2]. Then Caraballo
et al. [1] proved a more general result for the existence of pullback attractors for au-
tonomous and non-autonomous retarded systems with one varying and distributed
delay, where the variable delay was differentiable and its derivative is bounded by 1.
In paper [16] the authors improve that result by showing the existence of exponential
attractors for differential an equation with one varying delay which, in particular,
means the existence of a pullback attractor with bounded fractal dimension. With
the analysis we carry out in our current paper, in particular we extend the previous
results obtained for variable delay to a much wider class of delay differential equa-
tions (which, in particular, includes the cases of variable and distributed delay).
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The main feature for our research is to impose a Lipschitz-like integral condition on
the term containing the delays.
Consider the following delay differential equation{

x′(t) = f(t, xt), xt ∈ C,
xs = u, u ∈ C, (1)

where f : R × C → Rn is continuous and maps bounded sets into bounded sets,
where C = C([−h, 0],Rn) denotes the Banach space of continuous functions with
the sup-norm, which is the usual space when we deal with delay equations, and for
a given continuous function x(·) : R→ Rn and t ∈ R, we denote by xt(·) an element
in C given by

xt(θ) = x(t+ θ), θ ∈ [−h, 0]

When x(·) is a solution of (1), then xt(·) is said to be the solution segment at time
t. It is known that for any (s, u) ∈ R× C, there exists a solution x(t, s, u) for (1)
defined on [s − h, αs,u). We assume that αs,u = +∞ , for all s ∈ R since we are
interested in the long-time behavior of solutions.

Remark 1.1. Uniqueness holds straightforwardly if, for instance f is locally Lips-
chitz with respect to its second variable, see [11] for more details.

If f is such that uniqueness of solution holds, then we define the associated
evolution process by:

U(t, s)u = xt(·, s, u), ∀t ≥ s ∈ R u ∈ C,
where x(·, s, u) denotes the solution of (1).

The article is organized as follows. In Section 2 we recall main definitions and
notations for the theory of non-autonomous dynamical systems that will be needed.
Next, in Section 3, we state two main results for the existence of exponential attrac-
tors when the absorbing set is uniform and when it is time-dependent. Our main
result is proved in Section 4 where we develop an abstract concept for the existence
of an exponential attractor for a class of differential equation with finite delay and,
finally in Section 5, we prove first the existence of an exponential attractor when the
dependence in time is uniform, and then prove that the result remains true when
the dissipativity is time dependent.

2. Preliminaries. We recall some basic notions from the theory of dynamical sys-
tems that will be needed in the subsequent sections.

Definition 2.1. A two-parameter family {U(t, s)| t, s ∈ R, t ≥ s} of continuous
operators from C into itself is called an evolution process in C if it satisfies the
following properties
(i) U(t, s) ◦ U(s, r) = U(t, r), t ≥ s ≥ r,
(ii) U(t, t) = Id, t ∈ R,
(iii) U(t, s) : C → C is a continuous map for all t ≥ s.

As we look for attracting sets, we introduce first the Hausdorff semi-distance
between subsets A and B in a metric space (X, d) as

dist(A,B) = sup
a∈A

inf
b∈B

d(a, b)

Definition 2.2. Let U be a process on a complete metric space X. A family of
compact sets {A(t)}t∈R is said to be the global pullback attractor for U if it satisfies
the following properties:
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(i) It is invariant: U(t, s)A(s) = A(t) for all t ≥ s.
(ii) It is pullback attracting i.e

lim
s→∞

dist(U(t, t− s)D,A(t)) = 0, for all bounded subsetsD of X

.
(iii) It is minimal, that is, for any closed attracting set Y at time t, we have

A(t) ⊂ Y .

We recall now the definition of an absorbing set which is crucial when we deal
with global and exponential attractors.

Definition 2.3. {B(t)}t∈R is said to be absorbing with respect to the process U
if, for all t ∈ R and all D ⊂ X bounded, there exists TD(t) > 0 such that for all
τ ≥ TD(t)

U(t, t− τ)D ⊂ B(t).

Theorem 2.4. Suppose that U(t, s) maps bounded sets into bounded sets and there
exists a family {B(t)}t∈R of bounded absorbing sets for U . Then there exists a
pullback attractor for problem (1).

Proof. See [2].

Definition 2.5. Let U(t, s), t ≥ s, be an evolution process in X. The family of
non-empty compact subsetsM = {M(t)|t ∈ R} is called a pullback exponential
attractor for the evolution process U if

• M is positively invariant, i.e.

U(t, s)M(s) ⊂M(t) ∀t ≥ s,

• the fractal dimension of the sectionsM(t), t ∈ R, is uniformly bounded,

sup
t∈R
{dimf (M(t))} <∞,

• and M exponentially pullback attracts all bounded sets, i.e. there exists a
constant ω > 0 such that for every bounded subset D ⊂ X and every t ∈ R

lim
s→∞

eωsdistH
(
U(t, t− s)D,M(t)

)
= 0.

Where the fractal dimension of a precompact subset A ⊂ X is defined as

dimf (A) = lim
ε→0

ln(NX
ε (A))

ln( 1
ε )

,

such that NX
ε (A) denotes the minimal number of ε-balls in X with centers in A

needed to cover A.

3. General existence Theorems. For the reader convenience, we will include
now some results which are crucial for our analysis and we have already been pub-
lished, e.g., in [16].
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3.1. Strongly bounded evolution processes. We first recall an existence theo-
rem for evolution process that are strongly bounded.

Theorem 3.1. Let U(t, s), t ≥ s, be an evolution process in a Banach space W .
Moreover, we assume that the following properties are satisfied for some t0 ∈ R:
(A0) Let V be another Banach space such that the embedding V ↪→↪→ W is dense

and compact.
(A1) There exists a bounded set B ⊂ W that pullback absorbs all bounded sets at

times t ≤ t0, i.e. for every bounded set D ⊂W there exists TD ≥ 0 such that⋃
t≤t0

U(t, t− s)D ⊂ B ∀s ≥ TD.

(A2) The evolution process U(t, s), t ≥ s, satisfies the smoothing property in B, i.e.
there exist positive constants t̃ > 0 and κ such that

‖U(t, t− t̃)u− U(t, t− t̃)v‖V ≤ κ‖u− v‖W ∀u, v ∈ B, t ≤ t0.

(A3) The evolution process U(t, s), t ≥ s, is Lipschitz continuous in B, i.e. for all
t ≤ t0, t− t̃ ≤ s ≤ t, there exists Lt,s ≥ 0 such that

‖U(t, s)u− U(t, s)v‖W ≤ Lt,s‖u− v‖W ∀u, v ∈ B.

Then, for every ν ∈ (0, 12 ) there exists a pullback exponential attractor Mν in
W , and its fractal dimension is bounded by

dimW
f (Mν(t)) ≤ log 1

2ν

(
NW

ν
κ

(BV1 (0))
)

∀t ∈ R.

Proof. See Theorem 3.4 and Remark 3 in [4].

Corollary 3.2. Let U(t, s), t ≥ s, be an evolution process in a Banach space
W . If the hypotheses (A0), (A1) and (A2) are satisfied, then the evolution pro-
cess U(t, s), t ≥ s, possesses a global pullback attractor, and its fractal dimension is
bounded by

dimW
f (A(t)) ≤ inf

ν∈(0, 12 )

{
log 1

2ν

(
NW

ν
κ

(BV1 (0))
)}

∀t ∈ R.

Proof. See Theorem 3.4 in [4] and the proof of Theorem 3.1 in [5].

3.2. Time-dependent families of pullback absorbing sets. In this section
the fixed bounded pullback absorbing set B is replaced by a time-dependent family
of absorbing sets B = {B(t)}t∈R with certain properties. The following result
generalizes Theorem 3.1.

Theorem 3.3. Let U(t, s), t ≥ s, be an evolution process in a Banach space W and
(A0) be satisfied. Moreover, we assume that the following properties hold for some
t0 ∈ R:
(Ã1) There exists a family of bounded pullback absorbing sets B = {B(t)}t∈R in W ,

i.e. for every bounded set D ⊂W and t ≤ t0, there exists TD,t ≥ 0 such that

U(s, s− r)D ⊂ B(s) ∀r ≥ TD,t, s ≤ t.

Moreover, there exists t̃ > 0 such that

U(t, t− t̃)B(t− t̃) ⊂ B(t) ∀t ≤ t0,
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and the diameter of the family of absorbing sets B = {B(t)}t∈R grows at most
sub-exponentially in the past, i.e.

lim
t→−∞

diam(B(t))eγt = 0 ∀γ > 0.

(Ã2) The evolution process U(t, s), t ≥ s, satisfies the smoothing property in B, i.e.
there exist a positive constant κ such that

‖U(t, t− t̃)u− U(t, t− t̃)v‖V ≤ κ‖u− v‖W ∀u, v ∈ B(t− t̃), t ≤ t0.

(Ã3) The evolution process U(t, s), t ≥ s, is Lipschitz continuous in B, i.e. for all
t ∈ R, t ≤ s ≤ t+ t̃, there exists Ls,t ≥ 0 such that

‖U(s, t)u− U(s, t)v‖W ≤ Ls,t‖u− v‖W ∀u, v ∈ B(t).

Then, for every ν ∈ (0, 12 ) there exists a pullback exponential attractor Mν in W ,
and its fractal dimension is bounded by

dimW
f (Mν(t)) ≤ log 1

2ν

(
NW

ν
κ

(BV1 (0))
)

∀t ∈ R.

Proof. This is a particular case of Theorem 3.4 in [4]

Corollary 3.4. Let U(t, s), t ≥ s, be an evolution process in a Banach space
W . If the hypotheses (A0), (Ã1) and (Ã2) are satisfied, then the evolution pro-
cess U(t, s), t ≥ s, possesses a global pullback attractor, and its fractal dimension is
bounded by

dimW
f (A(t)) ≤ inf

ν∈(0, 12 )

{
log 1

2ν

(
NW

ν
κ

(BV1 (0))
)}

∀t ∈ R.

Proof. See Theorem 3.4 in [4] and the proof of Theorem 3.1 in [5].

4. Strong dissipativity. Consider the delay differential equation in the general
framework

x′(t) = f(t, xt), t > s,

xs = u, u ∈ C,
(2)

Assume that f(·, ·) : R× C → Rn satisfies the following conditions
• i) A Global Lipschitz condition

|f(t, ψ1)− f(t, ψ2)| ≤ Lf‖ψ1 − ψ2‖C , ∀ψ1, ψ2 ∈ C. (3)

• ii) For all u, v ∈ C0([τ − h, t];Rn),

∃Ch > 0 :

∫ t

τ

|f(s, us)− f(s, vs)|ds ≤ Ch
∫ t

τ−h
|u(s)− v(s)|ds, (4)

• iii) A dissipative condition:
The function f : R × C → Rn in (1) is strongly dissipative, i.e., there exists
positive constants α and β such that

〈f(t, φ), φ(0)〉 ≤ −α|φ(0)|2 + β ∀φ ∈ Φ(h)C, (5)

where 〈·, ·〉 denotes the scalar product in Rn and

Φ(h)C = {φ ∈ C|φ = U(s+ h, s)ψ for some s ∈ R, ψ ∈ C}

is the set of functions in C that are realisable as solutions after time h.
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Theorem 4.1. Let U(t, s), t ≥ s, be the evolution process generated by problem (2).
We assume that hypotheses (3), (4) and (5) are satisfied.

Then, there exists a pullback exponential attractor for U(t, s), t ≥ s, in C. More-
over, the global pullback attractor exists, it is contained in the pullback exponential
attractor, and its fractal dimension is finite.

Proof. We verify the hypotheses of Theorem 3.3 for the spaces W = C and V = C1.
Certainly, (A0) is satisfied due to the compact embedding C1 ↪→↪→ C.

(i) Existence of a family of pullback absorbing sets:
We proved in [16] the existence of a family of bounded absorbing set when the delay
was time varying, following the same computation we obtain the same result under
condition (5).

(ii) Smoothing property (Ã2): Let s ∈ R, u, v ∈ B(s) and x(t, u, s) and
y(t, u, s), t ≥ s, denote the corresponding solutions of (2). In order to shorten
notations, in the sequel we write x(t) = x(t, u, s) and y(t) = y(t, v, s), t ≥ s. For
the difference of x and y we obtain

‖U(s+ h, s)u− U(s+ h, s)v‖C1 = ‖x(s+ h+ ·)− y(s+ h+ ·)‖C1
=‖x(s+ h+ ·)− y(s+ h+ ·)‖C + ‖x′(s+ h+ ·)− y′(s+ h+ ·)‖C .

Using (4) we have:

|x(t)− y(t)| ≤‖u− v|+
∫ t

s

|f(τ, xτ )− f(τ, yτ )|dτ

≤ ‖u− v‖C + Ch

∫ t

s−h
|x(τ)− y(τ)|dτ

≤ ‖u− v‖C + Ch

∫ s

s−h
|x(τ)− y(τ)|dτ + Ch

∫ t

s

|x(τ)− y(τ)|dτ

=(1 + hCh)‖u− v‖C .
Hence Gronwall’s Lemma implies

|x(t)− y(t)| ≤(1 + hCh) expCh(t− s)‖u− v‖C . (6)

Let now θ ∈ [−h, 0] and t = s+ h+ θ, then using (6)

|x(s+ h+ θ)− y(s+ h+ θ)| ≤ (1 + hCh) expCh(h+ θ)‖u− v‖C . (7)

After taking the supremum over θ ∈ [−h, 0]

‖x(s+ h+ .)− y(s+ h+ .)‖C ≤ (1 + hCh) expChh‖u− v‖C . (8)

On the other hand, we observe that

|x′(s+ h+ θ)− y′(s+ h+ θ)|
≤ |f(s+ h+ θ, xs+h+θ)− f(s+ h+ θ, ys+h+θ)|
≤ Lf |x(s+ h+ θ)− y(s+ h+ θ)|
≤ Lf‖x(s+ h+ ·)− y(s+ h+ ·)‖C
≤ Lf (1 + hCh) expChh‖u− v‖C ,

where we used (8) in the last estimate. Now taking the supremum over t ∈ [−h, 0],
it follows that

‖x′(s+ h+ ·)− y′(s+ h+ ·)‖C ≤ Lf (1 + hCh) exphCh‖u− v‖C . (9)
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Finally, summing up inequalities (8) and (9) we obtain

‖U(s+ h, s)u− U(s+ h, s)v‖C1
= ‖x(s+ h+ ·)− y(s+ h+ ·)‖C1
≤ (1 + Lf )(1 + hCh) exphCh‖u− v‖C
= κ‖u− v‖C ,

which proves the smoothing property for t̃ = h.

(iii) Lipschitz continuity (Ã3): Using (6)

‖U(t, s)u− U(t, s)v‖C ≤(1 + hCh) expCh(t− s)‖u− v‖C . ∀t ≥ s,

which proves (Ã3).

(iv) Existence of the pullback exponential attractor: The existence of a
family of bounded absorbing sets and the smoothing property was proved in (i).
The Lipschitz continuity (Ã3) was shown in (ii). Consequently, all assumptions
of Theorem 3.3 are fulfilled, which implies the existence of a pullback exponential
attractor.

4.1. Application: (i)Differential Equation With One Variable Delay.
Consider a delay differential equation where

f(t, xt) = F (x(t− ρ(t))), (10)

with F : RN → RN a function such that there exists LF > 0 for which
• F is Globally lipschitz in time

|F (x)− F (y)|RN ≤ LF |x− y|RN ,∀x, y ∈ RN , (11)

and ρ ∈ C1(R, [0, h]) such that supt∈R = ρ? < 1.
• The function F is dissipative in a similar sense to (5), so that there exists

some α0 > 0 and β0 ≥ 0 such that

〈F (x), x〉 ≤ −α2
0|x|2 + β0 (12)

Remark 4.2. In this case we assumed in a more general way that f(t, ψ) =
F (ψ(−ρ(t))) for all ψ ∈ C, t ∈ R. The existence of pullback exponential attrac-
tor was proved in [16] by direct computation.

Here we ensure that, in this case, condition (4) holds true by setting Ch = LF
1−ρ? .

Indeed ∫ t

τ

|f(s, xs)− f(s, ys)|ds ≤
∫ t

τ

|F (x(s− ρ(s)))− F (y(s− ρ(s)))|ds

≤ LF
∫ t

τ

|x(s− ρ(s))− y(s− ρ(s))|ds

≤ LF
1− ρ?

∫ t−ρ(t)

τ−ρ(τ)
|x(u)− y(u)|du

≤ LF
1− ρ?

∫ t

τ−h
|x(u)− y(u)|du.
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Hence all conditions of Theorem 4.1 are fulfilled and the existence of exponential
attractor under these general conditions holds straightforwardly.

Next we prove that Theorem 4.1 can be applied even for equations containing not
only variable delay but also distributed delay like the following integro–differential
equation with finite delay.

(ii)Integro differential equation:

To simplify the computations we will consider only the term containing the dis-
tributed delay, the rest was already done in the previous example. We consider the
integro–differential equation introduced below.

x′(t) = F0(t, x(t)) + F1(t, x(t− ρ(t))) +

∫ 0

−h
b(t, s, x(t+ s))ds (13)

where the functions F0, F1, and b are uniformly Lipschitz, i.e., there exist positive
constants L0, L1 and Lb such that

(H1)

|F0(t, x)− F0(t, y)| ≤ L0|x− y| ∀x, y ∈ Rn, ∀t ∈ R
|F1(t, x)− F1(t, y)| ≤ L1|x− y| ∀x, y ∈ Rn, ∀t ∈ R

|b(t, s, x)− b(t, s, y)| ≤ Lb|x− y| ∀x, y ∈ Rn,∀ (t, s) ∈ R× [−h, 0].

We suppose that F0 is strongly dissipative, i.e. there exists α, β > 0 such that

〈x, F0(x)〉 ≤ −α|x|2 + β. (14)

F1 and b are sublinear

|F1(t, x)|2 ≤ k21 + k22|x|2, (15)

and

|b(t, s, x)| ≤ m0 +m1(s)|x|. (16)

We prove that this case fulfils also condition (4). Indeed∫ t

τ

|f(s, xs)− f(s, ys)|ds ≤
∫ t

τ

∫ 0

−h
|b(u, x(u+ s))− b(u, y(u+ s))|duds

≤ Lb
∫ t

τ

∫ 0

−h
|x(u+ s)− y(u+ s)|duds

≤ Lb
∫ 0

−h

∫ t

τ

|x(u+ s)− y(u+ s)|dsdu

≤ Lb
∫ 0

−h

∫ t+s

τ+s

|x(r)− y(r)|drdu

≤ Lb
∫ 0

−h

∫ t

τ−h
|x(r)− y(r)|drdu

≤ Lbh
∫ t

τ−h
|x(s)− y(s)|ds.
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The previous two examples prove how the assumptions of our main theorem hold
for equations with variable delay and also with distributed delay.

5. Weak dissipativity. The function f : R × C → Rn in (1) is now assumed to
be weakly dissipative, i.e., there exists a positive constant α and two continuous
function m1,m2 : R→ (0,∞) such that

〈f(t, φ), φ(0)〉 ≤ (−α+m1(t))|φ(0)|2 +m2(t) ∀φ ∈ Φ(h)C, t ∈ R. (17)

We consider now a more general case when the Lipschitz condition and the integral
Lipschitz condition are time dependent, i.e there exists two non-negative continuous
functions m1(·) and γ(·),

|f(t, φ)− f(t, ψ)| ≤ m1(t)‖φ− ψ‖C ∀t ∈ R, φ, ψ ∈ C. (18)∫ t

τ

|f(s, xs)− f(s, ys)|ds ≤
∫ t

τ−h
γ(s)|x(s)− y(s)|ds. (19)

where m2(·) is non-decreasing and m1(·),m2(·) satisfy the integrability conditions∫ t

−∞
m1(s)ds <∞,

∫ t

−∞
eεsm2(s)ds <∞ ∀ε > 0, t ∈ R. (20)

Theorem 5.1. Let U(t, s), t ≥ s, be the evolution process generated by problem (1).
We assume that hypotheses (18), (17) and (19) are satisfied.

Then, there exists a pullback exponential attractor for U(t, s), t ≥ s, in C. More-
over, the global pullback attractor exists, it is contained in the pullback exponential
attractor, and its fractal dimension is finite.

Proof. Smoothing Property: Let s ∈ R, u, v ∈ B(s) and x(t;u, s) and y(t;u, s),
t ≥ s, denote the corresponding solutions of (1). In order to shorten notations, in
the sequel we write x(t) = x(t;u, s) and xy(t) = y(t; v, s), t ≥ s. For the difference
of x and y we obtain

‖U(s+ h, s)u− U(s+ h, s)v‖C1 = ‖x(s+ h+ ·)− y(s+ h+ ·)‖C1
=‖x(s+ h+ ·)− y(s+ h+ ·)‖C + ‖x′(s+ h+ ·)− y′(s+ h+ ·)‖C .

First part: Integrating the equation (1) from s to t we obtain

|x(t)− y(t)|

≤‖u− v‖C +

∫ t

s

∣∣f(τ, xτ )− f(τ, xτ )|dτ

≤‖u− v‖C +

∫ t

s−h
γ(τ)|x(τ)− y(τ)|dτ

≤‖u− v‖C +

∫ s

s−h
γ(τ)|x(τ)− y(τ)|dτ +

∫ t

s

γ(τ)|x(τ)− y(τ)|dτ

≤
(
1 +

∫ s

s−h
γ(τ)dτ

)
‖u− v‖C +

∫ t

s

γ(τ)|x(τ)− y(τ)|dτ.

Now Gronwall’s Lemma implies that:

|x(t)− y(t)| ≤ ‖u− v‖C
(
1 +

∫ s

s−h
γ(τ)dτ

)
exp

∫ t

s

γ(τ)dτ. (21)
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Let now θ ∈ [−h, 0] and t = s + h + θ. If we replace t in (21) and take the
supremum over θ ∈ [−h, 0], we obtain:

‖x1(s+ h+ ·)− x2(s+ h+ ·)‖C ≤ ‖u− v‖C(1 + Γ(s)) exp Γ(s), (22)

where

Γ(s) =

∫ s+h

s−h
γ(τ)dτ.

Second part: We observe that:

‖x′(s+ h+ θ)− y′(s+ h+ θ)|
≤ |f(s+ h+ θ, xs+h+θ)− f(s+ h+ θ, ys+h+θ)|
≤ m1(s+ h+ θ)‖x(s+ h+ θ + ·)− y(s+ h+ θ + ·)‖C
≤ m1(s+ h+ θ)‖u− v‖C(1 + Γ(s+ θ)) exp Γ(s+ θ)

≤ m1(s+ h+ θ)‖u− v‖C(1 + Γ(s)) exp Γ(s)

≤ M1(s)‖u− v‖C(1 + Γ(s)) exp Γ(s),

where
M(s) = sup

{
m1(τ) : τ ∈ (−∞, s+ h]

}
.

Taking the supremum over θ ∈ [−h, 0],

‖x′1(s+ h+ ·)− x′2(s+ h+ ·)‖C ≤M1(s)‖u− v‖C(1 + Γ(s)) exp Γ(s). (23)

Summing up the inequalities (22) and (23),

‖U(s+ h, s)u− U(s+ h, s)v‖C1 (24)
= ‖x1(s+ h+ ·)− x2(s+ h+ ·)‖C1 (25)
≤ ‖u− v‖C(1 + Γ(s)) exp Γ(s)(1 +M(s)) (26)
= κ(s)‖u− v‖C . (27)

(ii) Lipschitz continuity: Using (21), the Lipschitz continuity holds obviously.

Existence of Exponential Pullback attractor Let r ∈ R be arbitrary. We
observe that the function in the smoothing property in part (ii) satisfies κ(s) ≤
κ(r) for all s ≤ r. Hence, hypothesis (Ã2) is satisfied with t̃ = h and κ = κ(r).

The Lipschitz continuity (Ã3) was shown in (ii), and the existence of a family of
pullback absorbing sets satisfying (Ã1) was already proved in [16]. Consequently, all
assumptions of Theorem 3.3 are fulfilled, which implies the existence of a pullback
exponential attractor.

5.1. Application: Consider the case where

f(t, φ) = F0(φ(0)) + F1(φ(−ρ(t))).

In other words

f(t, xt) = F0(x(t)) + F1(x(t− ρ(t)) (28)

The delay function ρ is continuously differentiable and satisfies

ρ′(t) ≤ ρ∗ < 1 ∀t ∈ R, (29)

for some constant ρ∗ < 1. We suppose that F0 : Rn → Rn in (28) is uniformly
Lipschitz i.e., there exists L > 0 such that

|F0(x)− F0(y)| ≤ L|x− y| ∀x, y ∈ Rn. (30)
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The function F0 : Rn → Rn in (28) is dissipative, i.e., there exists some positive
constants α > 0 and β ≥ 0 such that

〈F0(x), x〉 ≤ −α|x|2 + β ∀x ∈ Rn. (31)

We suppose that F1 : Rn → Rn is defined by

F1(x) =
m(t)x

1 + |x|2
, (32)

where the function m(·) : R → R+ satisfies
∫ t
−∞ eεsm(s)ds < ∞, for all t ∈ R and

ε ≥ 0.
This example is within our framework and satisfies all the assumptions of Theo-
rem 5.1. Indeed

1. The weak dissipativity is satisfied as follows

〈f(t, φ), φ(0)〉
= 〈F0(φ(0)), φ(0)〉+ 〈F1(φ(−ρ(t))), φ(0)〉

≤ −α|φ(0)|2 + β +
1

2

m(t)

1 + |φ(−ρ(t))|2
〈φ(−ρ(t)), φ(0)〉

≤ −α|φ(0)|2 + β +
1

2
m(t)

( |φ(−ρ(t))|2

1 + |φ(−ρ(t))|2
+ |φ(0)|2

)
≤ (−α+

1

2
m(t))|φ(0)|2 +

1

2
m(t) + β

≤ (−α+m1(t))|φ(0)|2 +m2(t),

2. The Lipschitz condition is also fulfilled thanks to the mean value theorem:

|f(t, φ)− f(t, ψ)|
≤ |F0(φ(0))− F0(ψ(0))|+ |F1(φ(−ρ(t)))− F1(ψ(−ρ(t)))|

≤ L|φ(0)− ψ(0)|+ n · m(t)

(1 + |φ(−ρ(t))|2)(1 + |ψ(−ρ(t))|2)
|φ(−ρ(t))− ψ(−ρ(t))|

≤ L‖φ− ψ‖C + n ·m(t)‖φ− ψ‖C
≤ (L+ n ·m(t))‖φ− ψ‖C .

3. The integral Lipschitz condition is also fulfilled, hence for all x, y ∈ Rn and
τ ≤ t we have

∫ t

τ

|f(s, xs)− f(s, ys)|ds

≤
∫ t

τ

|F0(x(s))− F0(y(s))|ds+

∫ t

τ

|F1(s, x(s− ρ(s)))− F1(s, y(s− ρ(s)))|ds

≤
∫ t

τ

L|x(s)− y(s)|ds+

∫ t

τ

n ·m(s)|x(s− ρ(s))− y(s− ρ(s))|ds

≤ L
∫ t

τ−h
|x(s)− y(s)|

∫ t

τ

n ·m(s)|x(s− ρ(s))− y(s− ρ(s))|ds.
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Now using the change of variable η(s) = s− ρ(s)∫ t

τ

|f(s, xs)− f(s, ys)|ds

≤ L
∫ t

τ−h
|x(s)− y(s)|ds+

∫ t−ρ(t)

τ−ρ(τ)

1

1− ρ∗
n ·m(η−1(s))|x(s)− y(s)|ds

≤
∫ t

τ−h
(L+ n ·m(η−1(s)))|x(s)− y(s)|ds.

Here
γ(s) = L+ n ·m(η−1(s)),∀s ∈ R.

Remark 5.2. We can see that using the same computation of the previous example
we conclude that the previous result remains true in a general case where

f(t, xt) = F0(x(t)) + F1(t, x(t− ρ(t))

such that (30), (31) are satisfied and F1 is locally Lipschitz in time i.e there exists
a positive function m : R→ (0,∞) such that

|F1(t, x)− F1(t, y)| ≤ m(t)|x− y| t ∈ R, x, y ∈ Rn.

REFERENCES

[1] T. Caraballo, P. Marin-Rubio and J. Valero, Autonomous and non-autonomous attractors for
differential equations with delays, J. Differential Equations 208 (2005), 9-41.

[2] T. Caraballo, J. A. Langa and J. C. Robinson, Attractors for differential equations with
variable delays, J. Math. Anal. Appl., 260 (2001), 421-438.

[3] A. N. Carvalho, J. A. Langa and J. C. Robinson, Attractors for infinite-dimensional non-
autonomous dynamical systems, Applied Mathematical Science. 182, Springer, 2012.

[4] A. N. Carvalho and S. Sonner, Pullback exponential attractors for evolution processes in
Banach spaces: theoretical results, Commun. Pure Appl. Anal. 12 (2013), 3047-3071.

[5] A. N. Carvalho and S. Sonner, Pullback exponential attractors for evolution processes in
Banach spaces: properties and applications, Commun. Pure Appl. Anal. 13 (2014), 1141-
1165.

[6] R. Czaja and M. A. Efendiev, Pullback exponential attractors for nonautonomous equations
part I: Semilinear parabolic equations, J. Math. Anal. Appl. 381 (2011), 748–765.

[7] A. Eden, C. Foias, B. Nicolaenko and R. Temam, Exponential Attractors for Dissipative
Evolution Equations, John Wiley and Sons Ltd., Chichester, 1994.

[8] D. E. Edmunds and H. Triebel, Function Spaces, Entropy Numbers and Differential Opera-
tors, Cambridge University Press, New York, 1996.

[9] M. A. Efendiev, A. Miranville and S. Zelik, Exponential attractors for a nonlinear reaction-
diffusion system in R3, C. R. Acad. Sci. Paris Sér. I Math. 330 (2000), no. 8, 713–718.

[10] S. Habibi, Estimates on the dimension of an exponential attractor for a delay differential
equation, Math. Slovaca 64 (2014), no. 5, 1237–1248

[11] J. K. Hale, Asymptotic Behavior of Dissipative Systems, Mathematical Surveys and Mono-
graphs, 25, American Mathematical Society, Providence, RI., 1988.

[12] J. A. Langa, A. Miranville and J. Real, Pullback exponential attractors, Discrete Contin.
Dyn. Syst., 26 (2010), 1329–1357.

[13] D. Praz̆ák, On the dynamics of equations with infinite delay, Cent. Eur. J. Math. 4 (2006),
no. 4, 635–647

[14] H. Smith, An introduction to delay differential equations with applications to the life sciences,
Texts in Applied Mathematics, 57. Springer, New York, 2011.

[15] S. Sonner, Systems of Quasi-Linear PDEs Arising in the Modelling of Biofilms and Related
Dynamical Questions, Ph.D. thesis, Technische Universität München, Germany (2012).

[16] M.A.Hammami, L.Mchiri, S.Netchaoui, S.Sonner, Pullback exponential attractors for differ-
ential equations with variable delays. (to appear in DCDS-B).



PULLBACK EXP. ATTRACTORS FOR DELAY DIFFERENTIAL EQUATIONS 13

E-mail address: caraball@us.es
E-mail address: sananatchaoui@gmail.com
E-mail address: MohamedAli.Hammami@fss.rnu.tn

mailto:caraball@us.es
mailto:sananatchaoui@gmail.com
mailto:MohamedAli.Hammami@fss.rnu.tn

	1. Introduction
	2. Preliminaries
	3. General existence Theorems
	3.1. Strongly bounded evolution processes
	3.2. Time-dependent families of pullback absorbing sets

	4. Strong dissipativity
	4.1. Application:

	5. Weak dissipativity
	5.1. Application:

	REFERENCES

