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1. Introduction

When dealing with the modeling of real world phenomena, perturbations are likely to occur.

Truncated measurements in data collection, simplifications in the model, and even the use

of well known empirical laws, are bound to introduce particularities in the modeled problem

that do not appear in the real one. These small divergences are expected to occur, but if left

untreated they may invalidate the obtained results when we want to translate them to the real

problem. How can we be sure that the obtained properties may be transported to the limiting

problem without any loss of information? Or if there is some kind of loss, can we foresee how

small or how large will it be?

This problem can be treated in several different ways and in a few distinct levels of complexity.

The first level is the upper semicontinuity, which roughly speaking means that we can assure

that the solutions of the perturbed problems are close to the solutions of the limiting problem,

as long as the perturbation is small and well behaved. Formally speaking, a family tAλuλPΛ of

nonempty subsets of a metric space pX, dq, indexed in a topological space Λ, is said to be upper

semicontinuous at λ0 if

(1.1) lim
λÑλ0

dHpAλ, Aλ0q � 0,

where dHpA,Bq � sup
aPA

inf
bPB

dpa, bq is the Hausdorff semidistance between A and B. This semidis-

tance measures how far A is from being inside the closure of B. Hence, in such a way, the upper

semicontinuity at λ0 means that Aλ is not far from being inside Aλ0 , for λ sufficiently close to

λ0.

This matter, as well as the more complicated problem of lower semicontinuity, is well estab-

lished for the case of continuous dynamical systems both in the autonomous and nonautonomous

framework (see, for instance, [2, 7, 11, 16]). The parallel in the impulsive case has seen its first

steps very recently in [4] for the autonomous case. For nonautonomous impulsive dynamical

systems we are not aware of results in this line and we intend to present some results in this

work.

The next level in the study of continuity is the already mentioned lower semicontinuity, and

it is related to the non-implosion of solutions of the perturbed problems, for small and well

behaved perturbations. The family tAλuλPΛ is said to be lower semicontinuous at λ0 if

(1.2) lim
λÑλ0

dHpAλ0 , Aλq � 0,

which can be translated to the property that, for λ close to λ0, the sets Aλ are as complex as

Aλ0 . Although it is just a change of position in the computation of the Hausdorff semidistance,

the lower semicontinuity if a far more difficult subject than the upper semicontinuity, and to

be tackled, it requires a knowledge of the internal structures of Aλ0 .
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Nevertheless, the lower semicontinuity has also been studied in the past decades and is still

being developed nowdays. Both theoretical abstract results and their applications to attractors

of continuous differential equations can be seen in [8, 11, 16, 17]. Again, the parallel in the

impulsive autonomous case was developed in [4], where the authors presented abstract results to

obtain lower semicontinuity. There are also higher levels of continuity, namely the topological

stability and the geometrical stability, which will not be discussed here, but in forthcoming

works.

In what follows, Section 2 is an overview of the already known results concerning the existence

of impulsive cocycle attractors for impulsive dynamical systems. For a more detailed approach,

the reader may see [3, 5]. In this section, we will also set the main definitions and notations

that will be used throughout the paper. In Section 3, we present the so called collective tube

conditions for impulsive nonautonomous dynamical systems (see Definitions 3.1 and 3.2). Such

conditions play a crucial role when dealing with perturbations of impulsive systems, and the

definitions presented here follow the ideas contained in [4] for the autonomous case, which

are briefly described in Subsection 2.1. We also present two new results (see Lemma 3.10

and Theorem 3.12) that will be used to prove the upper semicontinuity of impulsive cocycle

attractors in Section 4.

Section 4 is the main section of this work and contains a result presenting sufficient conditions

to ensure the upper semicontinuity for a family of impulsive cocycle attractors for impulsive

nonautonomous dynamical systems (see Theorem 4.4). Furthermore, we present an example

of an impulsive nonautonomous dynamical system in the real line to illustrate our main result

(see Section 5).

In Section 6, we present a theoretical approach to the results regarding lower semicontinuity

and we end our paper with a final section containing the summary of our results and some open

problems of this theory.

2. Impulsive nonautonomous dynamical systems

The theory of continuous nonautonomous dynamical systems is very well established and

here, to make our presentation as much self-contained as possible, we will present the main

concepts concerning impulsive nonautonomous dynamical systems. For more details on the

continuous theory, the reader may consult [1, 6, 9, 10, 12, 13, 18].

Let R� � r0,�8q and N � t1, 2, 3, . . .u be the set of all natural numbers. We denote N0 by

NY t0u. We will denote, in any space, sequences indexed in N by taku or takuk, and the latter

will be used if it is necessary to avoid confusion with the index.

Let Σ be a complete metric space and tθt : t ¥ 0u be a semigroup in Σ, that is, it is a family

of continuous maps from Σ into itself, satisfying the following conditions: θ0σ � σ for all σ P Σ,

θt�s � θtθs for all t, s P R� and the map R� � Σ Q pt, σq ÞÑ θtσ P Σ is continuous.
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Also, let us consider another complete metric space pX, dq and for each pair pt, σq P R� �Σ,

let ϕpt, σq : X Ñ X be a map satisfying the following properties:

(i) ϕp0, σqx � x for all x P X and σ P Σ;

(ii) ϕpt� s, σq � ϕpt, θsσqϕps, σq for all t, s P R� and σ P Σ;

(iii) the map R� � Σ�X Q pt, σ, xq ÞÑ ϕpt, σqx P X is continuous.

Definition 2.1. With the previous definitions and relations, pϕ, θqpX,Σq is said to be a nonau-

tonomous dynamical system, or simply a NDS.

The semigroup tθt : t ¥ 0u in this context is called driving semigroup, the map ϕ is called

cocycle and the property (ii) above is commonly known as the cocycle property.

A nonautonomous set is a family D̂ � tDpσquσPΣ of subsets of X indexed in Σ. We

say that D̂ is an open pclosed, compactq nonautonomous set if each fiber Dpσq is an open

pclosed, compactq subset of X. A nonautonomous set D̂ is called ϕ�invariant if

ϕpt, σqDpσq � Dpθtσq for all t ¥ 0 and each σ P Σ.

A universe D is a collection of nonautonomous sets which is closed with respect to inclusion,

that is, if D̂1 P D and D2pσq � D1pσq for all σ P Σ, then D̂2 P D.

In the sequel, we present the concept of impulsive nonautonomous dynamical systems.

Let pϕ, θqpX,Σq be a NDS and for each D � X, J � R� and σ P Σ, we define

FϕpD, J, σq � tx P X : ϕpt, σqx P D for some t P Ju.

A point x P X is said to be an initial point if Fϕpx, τ, σq � ∅ for all τ ¡ 0 and for all σ P Σ.

Definition 2.2. An impulsive nonautonomous dynamical system, or simply an INDS,

denoted by rpϕ, θqpX,Σq,M, Is, consists of a NDS pϕ, θqpX,Σq, a nonempty closed subset M � X

such that for each x PM and each σ P Σ there exists εx,σ ¡ 0 such that

(2.1)
¤

tPp0,εx,σq

pFϕpx, t, θ�tσq
£

Mq � ∅ and tϕps, σqx : s P p0, εx,σqu
£

M � ∅,

and a continuous function I : M Ñ X whose action will be specified later. The set M is

called the impulsive set and the function I is called the impulse function. We also define

M�
ϕ px, σq � tϕpτ, σqx : τ ¡ 0u

�
M for each px, σq P X � Σ.

One important property which may be observed is that if M�
ϕ px, σq � ∅, then there exists

t ¡ 0 such that ϕpt, σqx P M and ϕpτ, σqx R M for 0   τ   t, and as a consequence, for each

σ P Σ, we are able to define the function φp�, σq : X Ñ p0,�8s by

(2.2) φpx, σq �

$&
%s, if ϕps, σqx PM and ϕpt, σqx RM for 0   t   s,

�8, if ϕpt, σqx RM for all t ¡ 0.
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In the first case, the value φpx, σq represents the smallest positive time such that the positive

semitrajectory of x in the fiber σ meets M and we say that the point ϕpφpx, σq, σqx is the

impulsive point of x in the fiber σ.

Definition 2.3. Given σ P Σ, the impulsive positive semitrajectory of x P X starting

at σ by the INDS rpϕ, θqpX,Σq,M, Is is a map ϕ̃p�, σqx defined in an interval Jpx,σq � R�,

0 P Jpx,σq, with values in X given inductively by the following rule: if M�
ϕ px, σq � ∅, then

ϕ̃pt, σqx � ϕpt, σqx for all t P r0,�8q and in this case φpx, σq � �8. However, if M�
ϕ px, σq � ∅

then we denote x � x�0 and we define ϕ̃p�, σqx on r0, φpx�0 , σqs by

ϕ̃pt, σqx �

$&
%ϕpt, σqx

�
0 , if 0 ¤ t   φpx�0 , σq,

Ipϕpφpx�0 , σq, σqx
�
0 q, if t � φpx�0 , σq.

Now, let s0 � φpx�0 , σq, x1 � ϕps0, σqx
�
0 and x�1 � Ipϕps0, σqx

�
0 q. In this case, s0   �8

and the process can go on, but now starting at x�1 . If M�
ϕ px

�
1 , θs0σq � ∅ then we define

ϕ̃pt, σqx � ϕpt � s0, θs0σqx
�
1 for s0 ¤ t   �8 and in this case φpx�1 , θs0σq � �8. However, if

M�
ϕ px

�
1 , θs0σq � ∅, then we define ϕ̃p�, σqx on rs0, s0 � φpx�1 , θs0σqs by

ϕ̃pt, σqx �

$&
%ϕpt� s0, θs0σqx

�
1 , if s0 ¤ t   s0 � φpx�1 , θs0σq,

Ipϕpφpx�1 , θs0σq, θs0σqx
�
1 q, if t � s0 � φpx�1 , θs0σq.

Now let s1 � φpx�1 , θs0σq, x2 � ϕps1, θs0σqx
�
1 and x�2 � Ipϕps1, θs0σqx

�
1 q, and so on.

This process ends after a finite number of steps if M�
ϕ px

�
n , θtnσq � ∅ for some n ¥ 0 pwith

t0 � 0 and tn � s0�. . .�sn�1 for n ¥ 1q, or it may proceed indefinitely, if M�
ϕ px

�
n , θtnσq � ∅ for

all n ¥ 0, and in this case ϕ̃p�, σqx is defined on the interval r0, T px, σqq, where T px, σq �
�8°
i�0

si.

As presented in [3], we may assume hereon the following assumption:

(G) T px, σq � �8 for all x P X and σ P Σ.

This assumption holds, for instance, when there exists ξ ¡ 0 such that φpx, σq ¥ ξ for all

x P IpMq and σ P Σ.

Definition 2.4. Given x P X and σ P Σ, a time t ¥ 0 is called an impulsive time for

ϕ̃p�, σqx if there is n ¥ 0 such that t �
n°
i�0

si, where s0 � φpx, σq and si � φpx�i , θtiσq with

ti � s0 � . . .� si�1, i � 1, 2, . . . n.

Remark 2.5. The construction of the function φ and the impulsive positive semitrajectory

ϕ̃ allows us to state the following important relationship, whose proof may be found in [3]. Let
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pϕ, θqpX,Σq be a NDS and tΠptq : t ¥ 0u be its associated skew-product semiflow in X � X �Σ.

Define Π̃� by

Π̃�ptqpx, σq � pϕ̃pt, σqx, θtσq for all px, σq P X and t ¥ 0,

and also let tΠ̃ptq : t ¥ 0u be the impulsive dynamical system pX,Π,M, Iq, where M � M � Σ

and I : M Ñ X is given by Ipx, σq � pIpxq, σq, for x PM and σ P Σ. Then

Π̃�ptq � Π̃ptq for all t ¥ 0.

Moreover, if φ is the function defined in (2.2), then it coincides with the function used to define

the impulsive positive semitrajectory tΠ̃ptq : t ¥ 0u. Also, for each σ P Σ and t, s P R�, we have

ϕ̃pt� s, σq � ϕ̃pt, θsσqϕ̃ps, σq,

that is, ϕ̃ satisfies the cocycle property.

2.1. Tube conditions. The tube conditions are very important for the theory of impulsive

dynamical systems. Here, we briefly present the results of [3] (which uses the results of [15])

for tube conditions of impulsive nonautonomous dynamical systems. Recall that X � X � Σ

and M �M � Σ. For D � X and J � R� we define

FpD, Jq � tpx, σq P X : Πptqpx, σq P D for some t P Ju.

Definition 2.6. A closed set S containing px, σq P X is called a section through px, σq if

there exist λ ¡ 0 and a closed subset L of X such that:

(a) FpL, λq � S;

(b) FpL, r0, 2λsq contains a neighborhood of px, σq;

(c) FpL, νq
�

FpL, ζq � ∅, if 0 ¤ ν   ζ ¤ 2λ.

We say that the set FpL, r0, 2λsq is a λ�tube por simply tubeq and the set L is a bar.

The Definition 2.6 is the same definition of tube for general impulsive systems pX, π,M, Iq,

see [14].

Definition 2.7. A point px, σq P M satisfies the strong tube condition pSTCq, if there

exists a section S through px, σq such that S � FpL, r0, 2λsq
�

M. Also, we say that a point

px, σq P M satisfies the special strong tube condition pSSTCq if it satisfies STC and the

λ�tube FpL, r0, 2λsq is such that FpL, r0, λsq
�

IpMq � ∅.

Now, we introduce the concepts of STC and SSTC in the context of INDS.

Definition 2.8. Let rpϕ, θqpX,Σq,M, Is be an INDS. We say that a point x PM satisfies the

ϕ�strong tube condition pϕ�STCq, if for each σ P Σ, the pair px, σq satisfies STC with

respect to the impulsive skew-product pX,Π,M, Iq. Also, we say that a point x P M satisfies

the ϕ�special strong tube condition pϕ�SSTCq, if for each σ P Σ, the pair px, σq satisfies

SSTC with respect to the impulsive skew-product pX,Π,M, Iq.
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Next, we exhibit two auxiliary results.

Theorem 2.9. [3, Theorem 3.5] Let rpϕ, θqpX,Σq,M, Is be an INDS such that each point of M

satisfies ϕ�STC. Then φ is upper semicontinuous in X�Σ, and it is continuous in pXzMq�Σ.

Moreover, if there are no initial points in M and φ is continuous at px, σq for some σ P Σ, then

x RM .

Proposition 2.10. [3, Propositon 3.7] Let rpϕ, θqpX,Σq,M, Is be an INDS such that IpMq
�
M �

∅ and let y P M satisfy ϕ-SSTC. Then, for each σ P Σ, the point py, σq satisfies SSTC with

λ-tube FpL, r0, 2λsq such that Π̃ptqX
�

FpL, r0, λsq � ∅ for all t ¡ λ.

This part of the paper demands a small explanation. There is a question on why we do not

define the tube conditions (and then the collective tube conditions in Section 3) using directly

the nonautonomous dynamical system rpϕ, θqpX,Σq,M, Is instead of the associated impulsive

skew-product pX,Π,M, Iq. One short answer to this problem is that “because it works when

we use the impulsive skew-product”, but of course this is not a mathematic response. The

main problem there is that in the nonautonomous context, we are constantly changing the

fibers when using ϕpt, σq - we go from σ to θtσ - and therefore the continuity required to

prove Theorem 2.9, does not work properly without the second coordinate of the skew-product

semiflow. Hence, it is not possible to ensure the continuity of φ (even only for the first variable),

which is paramount, using only properties of the impulsive nonautonomous dynamical system

instead the ones of the impulsive skew-product.

2.2. Existence of impulsive cocycle attractors. In [3], the definition of impulsive nonau-

tonomous dynamical systems is introduced and also sufficient conditions to ensure the existence

of an impulsive cocycle attractor are proved. In this subsection, we present their main results.

The definition of ϕ̃�invariance is analogous to the notion of ϕ�invariance simply replacing

ϕ by ϕ̃.

Definition 2.11. Given an INDS rpϕ, θqpX,Σq,M, Is, a nonautonomous set B̂ is said to be

pullback pϕ̃,Dq�attracting, if for each σ P Σ and D̂ P D we have

lim
tÑ�8

dHpϕ̃pt, θ�tσqDpθ�tσq, Bpσqq � 0,

where dHp�, �q denotes the Hausdorff semidistance, that is, dHpC,Dq � sup
xPC

inf
yPD

dpx, yq for any

nonempty sets C,D � X.

A nonautonomous set B̂ is said to be pullback D�absorbing for the INDS rpϕ, θqpX,Σq,M, Is,

if for each σ P Σ and D̂ P D, there exists t0 � t0pσ, D̂q ¥ 0 such that

ϕ̃pt, θ�tσqDpθ�tσq � Bpσq for all t ¥ t0.

Definition 2.12. Given a universe D and an INDS rpϕ, θqpX,Σq,M, Is, a compact nonau-

tonomous set Â is called the pϕ̃,Dq-impulsive cocycle attractor if:
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(i) ÂzM � tApσqzMuσPΣ is ϕ̃�invariant;

(ii) Â is pullback pϕ̃,Dq�attracting;

(iii) Â is minimal among the closed nonautonomous sets satisfying (ii).

We may observe that if Â1 and Â2 are two pϕ̃,Dq�impulsive cocycle attractors then

A1pσqzM � A2pσqzM for all σ P Σ.

As studied in [5], to find sufficient conditions to ensure the existence of an impulsive cocycle

attractor for an INDS, we present at first the concept of the impulsive pullback ω-limit set.

Definition 2.13. Given a universe D, a nonautonomous set B̂ P D and σ P Σ, we define the

impulsive pullback ω-limit of B̂ at σ as the set

ω̃pB̂, σq �
£
s¥0

¤
t¥s

¤
εPr0,s�1q

ϕ̃pt� ε, θ�tσqBpθ�tσq

and the impulsive pullback ω-limit of B̂ as the nonautonomous set ω̃pB̂q � tω̃pB̂, σquσPΣ.

The impulsive pullback ω-limit set also may be characterized as presented in the next result.

Lemma 2.14. [3, Lemma 4.2] For B̂ P D and σ P Σ, we have

ω̃pB̂, σq � tx P X : there exist sequences ttnun¥1, tεnun¥1 � R� and txnun¥1 � Bpθ�tnσq

with tn
nÑ8
ÝÑ 8, εn

nÑ8
ÝÑ 0 such that ϕ̃ptn � εn, θ�tnσqxn

nÑ8
ÝÑ xu

and ω̃pB̂, σq is closed in X.

Next, we present the concept of pullback D�asymptotically compactness for INDS.

Definition 2.15. An INDS rpϕ, θqpX,Σq,M, Is is said to be pullback D�asymptotically

compact, if for any σ P Σ, D̂ P D and sequences ttnun¥1 � R�, txnun¥1 � X with tn
nÑ�8
ÝÑ �8

and xn P Dpθ�tnσq for n ¥ 1, then the sequence tϕ̃ptn, θ�tnσqxnun¥1 possesses a convergent

subsequence.

The existence of the pϕ̃,Dq�impulsive cocycle attractor is presented in Theorem 2.16.

Theorem 2.16. [5, Theorem 3.16] Let rpϕ, θqpX,Σq,M, Is be an INDS pullback D�asymptotically

compact such that IpMq
�
M � ∅ and every point from M satisfies ϕ�SSTC. Assume that

there exists a pullback pϕ̃,Dq�attracting nonautonomous set K̂ P D. Then, the nonautonomous

set Â, given by Apσq � ω̃pK̂, σq, is the pϕ̃,Dq�impulsive cocycle attractor.

Definition 2.17. Given an INDS rpϕ, θqpX,Σq,M, Is, we say that ψ : R Ñ X is a global

solution of ϕ̃ at σ P Σ if

ϕ̃pt� s, θsσqψpsq � ψptq for all t ¥ s and s P R.

If ψp0q � x then ψ is called a global solution of ϕ̃ through x at σ. If ψpRq is a bounded subset

of X, we say that ψ is a bounded global solution of ϕ̃.
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Corollary 2.18. [3, Proposition 5.5] If the INDS rpϕ, θqpX,Σq,M, Is has an impulsive co-

cycle attractor Â P D with universe D consisting of all the nonautonomous sets B̂ such that�
σPΣBpσq is bounded in X and IpMq

�
M � ∅, then

ApσqzM � tx P X : there exists a bounded global solution of ϕ̃ at σ through xu.

3. Collective tube conditions for INDS

The tube conditions are essential to assure that a continuous flow and its associated impulsive

flow have controled behavior in their evolutions near the impulsive set. In [4], the authors

present the definition of collective tube conditions in order to establish an upper semicontinuity

result for global attractors of impulsive autonomous systems. Using their ideas, we introduce

the notion of collective tube conditions for a family of impulsive nonautonomous dynamical

systems.

Throughout this section, we shall consider for each η P r0, 1s, an INDS rpϕη, θqpX,Σq,Mη, Iηs

with a pϕ̃η,Dq-impulsive cocycle attractor Âη satisfying the following conditions:

(H1) ϕηpt, σqx
ηÑ0�
ÝÑ ϕ0pt, σqx uniformly in bounded subsets of R� � Σ�X.

(H2) dHpMη,M0q � dHpM0,Mηq
ηÑ0�
ÝÑ 0.

(H3) Given ε ¡ 0 and w0 PM0 there exists δ ¡ 0 such that if η P r0, δq, w PMη and dpw,w0q   δ

then dpIηpwq, I0pw0qq   ε.

(H4) IηpMηq
�
Mη � ∅ for all η P r0, 1s.

According to Remark 2.5, we may consider for each η P r0, 1s, the impulsive skew-product

semiflow associated with rpϕη, θqpX,Σq,Mη, Iηs, given by tpX,Πη,Mη, IηquηPr0,1s. Inspired by [4,

Definition 3.3], we present the following.

Definition 3.1. We say that a point pw0, σ0q P M0 satisfies the collective strong tube

condition (C-STC) if given:

 tηku � r0, 1s such that ηk
kÑ8
ÝÑ 0;

 wηk PMηk , k ¥ 1, with wηk
kÑ8
ÝÑ w0;

 tσηku � Σ with σηk
kÑ8
ÝÑ σ0,

there exists λ0 ¡ 0 such that for each 0   λ ¤ λ0 one can find δ � δpλq ¡ 0 such that

for each j P t0u
�
tηku we have a λ-tube FjpLj, r0, 2λsq through pwj, σjq with section Sj �

FjpLj, r0, 2λsq
�

Mj and Bppwj, σjq, δq � FjpLj, r0, 2λsq.

Moreover, if FjpLj, r0, λsq
�

IjpMjq � ∅ for all j then we say that pw0, σ0q satisfies the

collective special strong tube condition (C-SSTC).
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The reader may consult [4] for examples and more details of collective tube conditions on

autonomous impulsive systems. In the case of impulsive nonautonomous systems, we present

the following definition for the tube conditions.

Definition 3.2. Let trpϕη, θqpX,Σq,Mη, IηsuηPr0,1s be a family of INDS’s. We say that a

point w0 P M0 satisfies the ϕ�collective strong tube condition pϕ�C-STCq if for each

σ P Σ, the pair pw0, σq satisfies C-STC with respect to the family of impulsive skew-product

tpX,Πη,Mη, IηquηPr0,1s. Also, w0 P M0 satisfies the ϕ�collective special strong tube con-

dition pϕ�C-SSTCq if for each σ P Σ, the pair pw0, σq satisfies C-SSTC with respect to the

family of impulsive skew-product tpX,Πη,Mη, IηquηPr0,1s.

Example 3.3 (Collective tube conditions). Let CbpRq be the Banach space of continuous

and bounded functions from R to R with the supremum norm, and f P CbpRq be a function

such that for each α ¡ 0 there exists cα ¡ 0 satisfying

(3.1) cα ¤

» α�x
x

fpuqdu for all x P R.

Consider for each τ P R the translation fτ p�q � fpτ � �q, and assume that f is such that

Σ � tfτ : τ P Ru is compact in CbpRq (we could consider f globally Lipschitz or almost periodic,

for instance, and use Proposition 2.1 from [13]). For each t P R, consider the group θt : Σ Ñ Σ

given by θtg � gt. Now, for each η P r0, 1s, consider the INDS rpϕη, θqpR,Σq,Mη, Iηs given by

(3.2) ϕηpt, gqx0 � x0 exp
�
�

» t
0

rgpuq � ηsdu
	

for all pt, g, x0q P R� � Σ� R,

Mη � t�1 � η, 1 � ηu, Iηp�1 � ηq � �2 � η and Iηp1 � ηq � 2 � η. Note that condition (3.1)

ensures (2.1) of Definition 2.2.

This INDS is generated by the family of initial value ordinary differential equations given by#
9x � rfptq � ηsx, t ¥ 0,

xp0q � x0 P R,

for each η P r0, 1s.

Note that conditions (H1)-(H4) are satisfied, and we claim that both points in M0 satisfies

ϕ�C-SSTC. We will prove it for w0 � 1, and the other is analogous.

In fact, let ηk
kÑ8
ÝÑ 0� with ηk  

1
2

for all k ¥ 1, wk � 1�ηk and consider tpX,Πη,Mη, IηquηPr0,1s
the family of impulsive skew-product semiflow associated with the family of INDS trpϕη, θqpR,Σq,

Mη, IηsuηPr0,1s.

Since f is bounded, if M � sup
uPR

fpuq then
³α�x
x

fpuqdu ¤ Mα for all x P R and α ¡ 0.

Therefore, we can choose λ0 ¡ 0 such that epM�1qλ   4
3

for all 0   λ ¤ λ0. Now, let 0   λ ¤ λ0
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and consider the set Lk �
¤
gPΣ

Πηkpλqpwk, gq for each k ¥ 0, where η0 � 0, and note that

px, hq P FηkpLk, r0, 2λsq iff x � wk exp
�» s

0

rhpuq � ηksdu
	
, for some s P r�λ, λs.

With cλ ¡ 0 given in (3.1), choose δ � δpλq such that

0   δ   mint1� e�cλ , ecλ � 1u.

Consider x P R such that x P pwk � δ, wk � δq and h P Σ. Define the function βpsq �³s
0
rhpuq � ηksdu for �λ ¤ s ¤ λ. Note that (3.1) holds for h and it implies that hpuq ¥ 0 for all

u P R, consequently

βp�λq ¤ βpsq ¤ βpλq for all � λ ¤ s ¤ λ.

Moreover βp�λq ¤ �cλ and βpλq ¥ cλ, and since β is continuous we have βpr�λ, λsq �

r�cλ, cλs. From our choice of δ we have

wke
�cλ   x   wke

cλ ,

therefore lnp x
wk
q P r�cλ, cλs. Thus there exists �λ ¤ t ¤ λ such that βptq � lnp x

wk
q, which

implies

x � wk exp
�» t

0

rhpuq � ηksdu
	
,

and shows that px, hq P FηkpLk, r0, 2λsq.

By our choice of λ0 we have FηkpLk, r0, λsq
�
IηkpMηkq � ∅ for each k ¥ 1. Therefore,

w0 PM0 satisfies ϕ-C-SSTC.

Condition (H2) provides us a simple and useful result.

Lemma 3.4. If tηku � r0, 1s and twku � X are sequences such that ηk
kÑ8
ÝÑ 0, wk P Mηk for

k ¥ 1 and wk
kÑ8
ÝÑ w0, then w0 PM0.

Proof. From (H2) we have

dHpw0,M0q � inf
zPM0

dpw0, zq ¤ inf
zPM0

pdpw0, wkq � dpwk, zqq ¤ dpw0, wkq � dHpMηk ,M0q
kÑ8
ÝÑ 0,

that is, w0 PM0, since M0 is closed. q.e.d.

From Definition 3.2 we have directly the following result.

Lemma 3.5. Assume that w0 PM0 satisfies ϕ-C-STC. If a sequence tηku � r0, 1s is such that

ηk
kÑ8
ÝÑ 0, wk PMηk , k ¥ 1, is a sequence of points with wk

kÑ8
ÝÑ w0, and tσku is a sequence in Σ

with σk
kÑ8
ÝÑ σ0 then there exists an integer k1 ¥ k0 such that Bppw0, σ0q,

δ
2
q � Bppwk, σkq, δq �

FηkpLk, r0, 2λsq for all k ¥ k1.
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Lemma 3.6. Assume that every point of M0 satisfies ϕ-C-STC. Let x0 P XzM0, σ0 P Σ,

txku � X and tσku � Σ be sequences such that xk
kÑ8
ÝÑ x0 and σk

kÑ8
ÝÑ σ0. If tηku � r0, 1s is a

sequence such that ηk
kÑ8
ÝÑ 0, then

lim
kÑ8

φηkpxk, σkq � φ0px0, σ0q,

where φηkpxk, σkq represents the smallest positive time such that the positive semitrajectory of

xk at the fiber σk meets Mηk .

Proof. Since each point in M0 � Σ satisfies C-STC and we have condition (H1), the result

follows by [4, Theorem 3.12]. q.e.d.

Proposition 3.7. Let trpϕη, θqpX,Σq,Mη, IηsuηPr0,1s be a family of INDS, x0 P XzM0, σ0 P Σ,

txku � X, tσku � Σ and tηku � r0, 1s be sequences such that xk
kÑ8
ÝÑ x0, σk

kÑ8
ÝÑ σ0 and

ηk
kÑ8
ÝÑ 0. Assume that each point of M0 satisfies ϕ-C-STC. Given t ¥ 0, there exists a

sequence tεku � r0,8q such that εk
kÑ8
ÝÑ 0 and

ϕ̃ηkpt� εk, σkqxk
kÑ8
ÝÑ ϕ̃0pt, σqx0.

Proof. If follows by [4, Corollary 3.17] using the fact that each point from M0 � Σ satisfies

C-STC. q.e.d.

Proposition 3.8. Let trpϕη, θqpX,Σq,Mη, IηsuηPr0,1s be a family of INDS, x0 P XzM0, σ0 P Σ,

txku � X, tσku � Σ and tηku � r0, 1s be sequences such that xk
kÑ8
ÝÑ x0, σk

kÑ8
ÝÑ σ0 and

ηk
kÑ8
ÝÑ 0. Assume that each point of M0 satisfies ϕ-C-STC. If t ¥ 0 is not an impulsive time

of ϕ̃p�, σqx psee Definition 2.4q, then

ϕ̃ηkpt, σkqxk
kÑ8
ÝÑ ϕ̃0pt, σqx0.

Proof. If follows by [4, Proposition 3.14, Remark 3.15] using the fact that each point from

M0 � Σ satisfies C-STC for Π.

q.e.d.

Proposition 3.9. Let x0 P XzM0, σ0 P Σ, txku � X, tσku � Σ and tηku � r0, 1s be

sequences such that xk
kÑ8
ÝÑ x0, σk

kÑ8
ÝÑ σ0 and ηk

kÑ8
ÝÑ 0. Assume that each point of M0 satisfies

ϕ-C-STC. Then, given tαku � r0, 1s such that αk
kÑ8
ÝÑ 0 we have ϕ̃ηkpαk, σkqxk

kÑ8
ÝÑ x0.

Proof. Since x0 RM0, it follows from Lemma 3.6 that φηkpxk, σkq
kÑ8
ÝÑ φ0px0, σ0q. Then there

exists k P N such that αk   φηkpxk, σkq for all k ¥ k, and by (H1) we have

ϕ̃ηkpαk, σkqxk � ϕηkpαk, σkqxk
kÑ8
ÝÑ ϕ0p0, σ0qx0 � x0,

which concludes the proof. q.e.d.
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Next, to end this section, we present two new results that will give us one of the necessary

conditions to ensure the upper semicontinuity of impulsive cocycle attractors (see condition (b)

of Theorem 4.4).

Lemma 3.10. Let D be a universe and rpϕ, θqpX,Σq,M, Is be an INDS with pϕ̃,Dq�impulsive

cocycle attractor Â such that IpMq
�
M � ∅. Let K̂ P D be a pullback D-absorbing set such

that Apσq � Kpσq for all σ P Σ. Then Â is uniquely determined by

Apσq �
£
nPN

ϕ̃pn, θ�nσqrKpθ�nσqzM s.

Proof. By the pullback pϕ̃,Dq-attracting property of Â, since K̂ P D, we have£
nPN

ϕ̃pn, θ�nσqrKpθ�nσqzM s �
£
nPN

ϕ̃pn, θ�nσqKpθ�nσq � Apσq for all σ P Σ.

On the other hand, let n ¥ 1, σ P Σ and D̂ P D. There exists t0 � t0pθ�nσ, D̂q ¡ 0 such that

ϕ̃pt, θ�t�nσqDpθ�t�nσq � Kpθ�nσq for all t ¥ t0pθ�nσ, D̂q.

Since IpMq
�
M � H, we have

ϕ̃pt, θ�t�nσqDpθ�t�nσq � Kpθ�nσqzM for all t ¥ t0pθ�nσ, D̂q.

Consequently,

ϕ̃pn, θ�nσqϕ̃pt, θ�t�nσqDpθ�t�nσq � ϕ̃pn, θ�nσqrKpθ�nσqzM s for all t ¥ t0pθ�nσ, D̂q,

that is,

ϕ̃pn� t, θ�t�nσqDpθ�t�nσq � ϕ̃pn, θ�nσqrKpθ�nσqzM s for all t ¥ t0pθ�nσ, D̂q.

Thus, we may conclude that

(3.3) ϕ̃ps, θ�sσqDpθ�sσq � ϕ̃pn, θ�nσqrKpθ�nσqzM s for all s ¥ t0pθ�nσ, D̂q � n.

By (3.3), for each fixed n P N, the nonautonomous set tϕ̃pn, θ�nσqrKpθ�nσqzM suσPΣ is closed

and pullback pϕ̃,Dq�attracting. By minimality of the cocycle attractor Â, we have

Apσq � ϕ̃pn, θ�nσqrKpθ�nσqzM s

for all σ P Σ. Since n is taken arbitrary, we have Apσq �
£
nPN

ϕ̃pn, θ�nσqrKpθ�nσqzM s, for each

σ P Σ. q.e.d.

Theorem 3.11. Let D be a universe and rpϕ, θqpX,Σq,M, Is be an INDS with pϕ̃,Dq-impulsive

cocycle attractor Â such that IpMq
�
M � ∅. Let K̂ P D be a closed pullback D-absorbing such

that Apσq � Kpσq for all σ P Σ and
�
σPΣ Kpσq be compact. Assume that for each σ P Σ:

(a) lim
sÑ0�

dHpKpθ�sσq, Kpσqq � 0;
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(b) For x P M
�
Kpσq and t ¡ 0, there exists a sequence tzku � Kpθ�tσqzM such that

ϕ̃pt, θ�tσqzk
kÑ8
ÝÑ x.

Then lim
sÑ0�

dHpApθ�sσq, Apσqq � 0 for each σ P Σ.

Proof. Suppose to the contrary there exist σ P Σ, δ ¡ 0, a sequence sk
kÑ8
ÝÑ 0� and a sequence

txkux¥1 such that xk P Apθ�skσq and dpxk, Apσqq ¥ δ for all k ¥ 1. By the compactness of�
σPΣKpσq we may assume xk

kÑ8
ÝÑ x0. By hypothesis Apθ�skσq � Kpθ�skσq for all k ¥ 1, thus

condition (a) implies in x0 P Kpσq.

If x0 R M then we may assume that xk R M for all k ¥ 1. Using Proposition 3.9 we

obtain ϕ̃psk, θ�skσqxk
kÑ8
ÝÑ x0, and by the invariance of the nonautonomous set ÂzM we have

ϕ̃psk, θ�skσqxk P Apσq for all k ¥ 1. Consequently, x0 P Apσq which is a contradiction.

If x0 P M then, for each fixed n P N, using condition (b), there is a sequence tznk u �

Kpθ�nσqzM such that

ϕ̃pn, θ�nσqz
n
k
kÑ8
ÝÑ x0.

Hence, x0 P ϕ̃pn, θ�nσqrKpθ�nσqzM s for all n P N. By Lemma 3.10, x0 P Apσq which is a

contradiction. q.e.d.

This result is most useful in the form of the next corollary.

Corollary 3.12. Let D be a universe, rpϕ, θqpX,Σq,M, Is be an INDS such that IpMq
�
M �

∅ with pϕ̃,Dq-impulsive cocycle attractor Â and K0 � X be a compact set. Assume that

K̂ P D, Kpσq � K0 for every σ P Σ, is a closed pullback D-absorbing such that Apσq � K0 for

all σ P Σ. If for each x P M
�
K0 and t ¡ 0, there exists a sequence tzku � K0zM such that

ϕ̃pt, θ�tσqzk
kÑ8
ÝÑ x, then lim

kÑ8
dHpApθ�1{kσq, Apσqq � 0 for each σ P Σ.

4. Upper semicontinuity of impulsive cocycle attractors

Here we deal with the upper semicontinuity at 0 for a family of pϕ̃η,Dq-impulsive cocycle

attractors tÂηuηPr0,1s, that is, we will prove that for each σ P Σ we have

(4.1) lim
ηÑ0�

dHpAηpσq, A0pσqq � 0.

We recall that (4.1) is equivalent to the following statement: given sequences tηku � r0, 1s

with ηk
kÑ8
ÝÑ 0 and xk P Aηkpσq, there exists a subsequence tkjuj¥1 of the positive integers with

kj
jÑ8
ÝÑ 8 and a point x0 P A0pσq such that xkj

jÑ8
ÝÑ x0.
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To obtain this upper semicontinuity we consider and/or assume:

(A1)

$'''''''''''&
'''''''''''%

� a universe D;

� an INDS rpϕη, θqpX,Σq,Mη, Iηs with a pϕ̃η,Dq-impulsive cocycle attractor Âη

for each η P r0, 1s;

� conditions (H1)-(H4) are satisfied;

� each point of M0 satisfies ϕ0-C-SSTC;

� there exists ξ ¡ 0 such that φ0pI0pzq, σq ¥ ξ for all pz, σq PM0 � Σ.

In what follows we present three auxiliary lemmas, which will help us to prove our main

theorem. For the following results, we will additionally set:

(A2)

Fix σ P Σ and let tηku, tεku � r0, 1s be sequences such that ηk, εk
kÑ8
ÝÑ 0. Let

σk � θεkσ and xk P AηkpσkqzMηk for each k ¥ 1 and ψk be a global solution of ϕ̃ηk

through xk at σk.

Lemma 4.1. Assume that (A1) and (A2) hold. Let r ¥ 0, yk � ψkp�rq for each k ¥ 1, and

assume that yk
kÑ8
ÝÑ y0 P M0. Then sk � φηkpyk, θ�rσkq

kÑ8
ÝÑ 0, and for each t ¥ 0 there is a

sequence tβku � r0, 1s with βk
kÑ8
ÝÑ 0 such that ϕ̃ηkpt � βk, θ�rσkqyk

kÑ8
ÝÑ ϕ0pt, θ�rσqI0py0q. In

particular, if 0   t   ξ then ϕ̃ηkpt, θ�rσkqyk
kÑ8
ÝÑ ϕ0pt, θ�rσqI0py0q.

Proof. Note that by (H2) there exists a subsequence of tηku, which we will denote the same,

and a sequence twku � X with wk P Mηk such that wk
kÑ8
ÝÑ y0. Since M0 satisfies ϕ0-C-SSTC

it follows by Lemma 3.5 that there exist λ, δ ¡ 0 and k1 P N such that

Bppwk, θ�rσkq, δq � FηkpLk, r0, 2λsq for all k ¥ k1,

where FηkpLk, r0, 2λsq is a λ-tube through pwk, θ�rσkq with section Sk � FηkpLk, r0, 2λsq
�

Mηk

and F0pL0, r0, 2λsq is a λ-tube through py0, θ�rσq with section S0 � F0pL0, r0, 2λsq
�

M0. More-

over, we have FηkpLk, r0, λsq
�

IpMηkq � ∅ and

B
�
py0, θ�rσq,

δ
2

�
� F0pL0, r0, 2λsq

£
Bppwk, θ�rσkq, δq for all k ¥ k1.

Hence, there is k2 ¥ k1 such that pyk, θ�rσkq P Bppwk, θ�rσkq, δq for all k ¥ k2. Taking a

positive integer m such that mr ¡ λ, we have

Π̃ηkpmrqpψkp�pm� 1qrq, θ�pm�1qrσkq � pyk, θ�rσkq,

which implies that pyk, θ�rσkq belongs to the trajectory of the global solution of the impulsive

skew-product semiflow Π̃ηk associated to ϕ̃ηk , for some timemr ¡ λ. Therefore, Proposition 2.10

implies that pyk, θ�rσkq P FηkpLk, pλ, 2λsq for k ¥ k2 and, consequently, there is αk P p0, λs

such that Πηkpαkqpyk, θ�rσkq P Mηk , that is, ϕηkpαk, θ�rσkqyk P Mηk for k ¥ k2. We may
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assume that αk
kÑ8
ÝÑ α0 P r0, λs and from (H1) and Lemma 3.4 we obtain ϕηkpαk, θ�rσkqyk

kÑ8
ÝÑ

ϕ0pα0, θ�rσqy0 PM0.

Since ϕ0pp0, λs, θ�rσqy0

�
M0 � ∅, it follows that α0 � 0. Hence, as 0   φηkpyk, θ�rσkq ¤ αk

for all k ¥ k2, we obtain φηkpyk, θ�rσkq
kÑ8
ÝÑ 0.

Now, let t ¥ 0. If sk � φηkpyk, θ�rσkq, then

ϕηkpsk, θ�rσkqyk PMηk and ϕηkpsk, θ�rσkqyk
kÑ8
ÝÑ y0.

Moreover,

ϕ̃ηkpsk, θ�rσkqyk
kÑ8
ÝÑ I0py0q RM0

as I0pM0q
�
M0 � H. By Proposition 3.7, there is a sequence tµku � r0, 1s with µk

kÑ8
ÝÑ 0 such

that

ϕ̃ηkpt� µk � sk, θ�rσkqyk � ϕ̃ηkpt� µk, θsk�rσkqϕ̃ηkpsk, θ�rσkqyk
kÑ8
ÝÑ ϕ0pt, θ�rσqI0py0q.

Now, it is enough to take βk � sk � µk.

To end this proof note that for 0   t   ξ, we have t   φ0pI0py0q, θ�rσq (see the last condition

of (A1)). Since ϕ̃ηkpsk, θ�rσkqyk
kÑ8
ÝÑ I0py0q and sk

kÑ8
ÝÑ 0, sk   t   φηkpϕ̃ηkpsk, θ�rσkqyk, θsk�rσkq

for k sufficiently large, see Lemma 3.6. Then

ϕ̃ηkpt, θ�rσkqyk � ϕ̃ηkpt� sk, θsk�rσkqϕ̃ηkpsk, θ�rσkqyk

� ϕηkpt� sk, θsk�rσkqϕ̃ηkpsk, θ�rσkqyk
kÑ8
ÝÑ ϕ0pt, θ�rσqI0py0q.

q.e.d.

Lemma 4.2. Assume that (A1)-(A2) hold and assume additionally that there exists r ¥ 0

such that ψkp�rq
kÑ8
ÝÑ x0 PM0. If

(4.2)
¤
k¥1

ψkpRq is compact,

then there exists a positive integer m0 such that, for m ¥ m0, one can find km0 P N such that

φηkpψkp�1{m� rq, θ�1{m�rσkq ¡
1
m

for all k ¥ km0 .

Proof. Since ψkp�rq
kÑ8
ÝÑ x0 P M0, Lemma 4.1 implies that tk � φηkpψkp�rq, θ�rσkq

kÑ8
ÝÑ 0.

Thus, we may assume that 0   tk  
ξ
4

for all k ¥ 1.

By (2.1), there exists εx0,σ ¡ 0 such that
�
tPp0,εx0,σq

pFϕ0px0, t, θ�tσq
�
M0q � ∅. Choose

m0 P N such that 1
m0

  mintεx0,σ,
ξ
4
u and fix m ¥ m0. Using (4.2), taking a subsequence if

necessary, we may assume that ψkp�1{m� rq
kÑ8
ÝÑ ym. Set sk � φηkpψkp�1{m� rq, θ�1{m�rσkq

and suppose, arguing by contradiction, that there exists a subsequence of tsku, still denoted

the same, such that

sk ¤
1
m

for all k ¥ 1.
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Hence, tsku is bounded, and we can assume, without loss of generality, that sk
kÑ8
ÝÑ s. Taking

zk � ϕηkpsk, θ�1{m�rσkqψk
�
� 1
m
� r
�
PMηk and using (H1), we obtain

zk
kÑ8
ÝÑ ϕ0ps, θ�1{m�rσqym � wm PM0.

Then by (H3) we have

Iηkpzkq � ϕ̃ηkpsk, θ�1{m�rσkqψkp�1{m� rq
kÑ8
ÝÑ I0pwmq P I0pM0q.

Since φ0pI0pwmq, θs�1{m�rσq ¥ ξ by the last condition of (A1), it follows by Lemma 3.6 that

φηkpIηkpzkq, θsk�1{m�rσkq ¡
ξ
2
¡ 1

m
for k sufficiently large.

Thus for such values of k we have

ϕηk
�
tk �

1
m
� sk, θsk�1{m�rσk

�
Iηkpzkq � ϕηkptk, θ�rσkqϕηk

�
1
m
� sk, θsk�1{m�rσk

�
Iηkpzkq

� ϕηkptk, θ�rσkqϕ̃ηk
�

1
m
� sk, θsk�1{m�rσk

�
Iηkpzkq

� ϕηkptk, θ�rσkqϕ̃ηkp
1
m
� sk, θsk�1{m�rσkqϕ̃ηkpsk, θ�1{m�rσkqψkp�1{m� rq

� ϕηkptk, θ�rσkqϕ̃ηkp
1
m
, θ�1{m�rσkqψkp�1{m� rq

� ϕηkptk, θ�rσkqψkp�rq PMηk ,

which is a contradiction, since

tk �
1
m
� sk   tk �

1
m
  ξ

4
� 1

m0
  ξ

2
.

Therefore, there is km0 P N such that φηkpψkp�1{m � rq, θ�1{m�rσkq ¡
1
m

for all k ¥ km0 .

q.e.d.

Lemma 4.3. Assume that (A1)-(A2) and (4.2) hold, and ψkp�rq
kÑ8
ÝÑ x0 P X for some

r ¥ 0. Then

piq if x0 RM0 then there exists a bounded global solution ψ0 : R Ñ X through x0 at θ�rσ.

piiq if x0 P M0 then there exists m0 P N such that for m ¥ m0 the sequence tψkp�1{m � rqu

admits a subsequence with limit um R M0 such that um
mÑ8
ÝÑ x0. Moreover, there is a

bounded global solution ψm0 of ϕ̃0 through um at θ�1{m�rσ for each m ¥ m0.

Proof. By (4.2), there exists a subsequence, which we denote the same, such that

ψkp�r �mq
kÑ8
ÝÑ x�m for all m ¥ 1.

� Proof of piq. Suppose firstly that x�m R M0 for all m ¥ 1. By Proposition 3.7, for each

m ¥ 1, there exists a sequence tµmk u � r0,8q such that µmk
kÑ8
ÝÑ 0 and

ϕ̃ηkp1� µmk , θ�r�mσkqψkp�r �mq
kÑ8
ÝÑ ϕ̃0p1, θ�r�mσqx�m.

But ϕ̃ηkp1 � µmk , θ�r�mσkqψkp�r � mq � ϕ̃ηkpµ
m
k , θ�pr�m�1qσkqψkp�r � m � 1q, and using

Proposition 3.9 we obtain

ϕ̃ηkp1� µmk , θ�r�mσkqψkp�r �mq
kÑ8
ÝÑ x�m�1,
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and hence ϕ̃0p1, θ�r�mσqx�m � x�m�1 for each m ¥ 1. Consequently the map ψ0 : R Ñ X

given by

(4.3) ψ0ptq �

#
ϕ̃0pt�m, θ�r�mσqx�m, if t P r�m,�m� 1s, m ¥ 1,

ϕ̃0pt, θ�rσqx0, if t ¥ 0,

is a global solution of ϕ̃0 through x0 at θ�rσ. It remains to show that ψ0 is bounded. In fact,

let s P R and observe that if s ¥ 0, then ψ0psq � ϕ̃0ps, θ�rσqx0. By Proposition 3.7, there is a

sequence tγku � r0,�8q such that γk
kÑ8
ÝÑ 0 and

ψkps� γk � rq � ϕ̃ηkps� γk, θ�rσkqψkp�rq
kÑ8
ÝÑ ϕ̃0ps, θ�rσqx0 � ψ0psq,

and since ψkps� γk � rq P
�
ψkpRq for all k ¥ 1, we have ψ0psq P

�
ψkpRq.

On the other hand, if s P r�m,�m � 1s for some m ¥ 1, we have ψ0psq � ϕ̃0ps �

m, θ�r�mσqx�m. Again, using Proposition 3.7, there exists a sequence tαku � r0,�8q such

that αk
kÑ8
ÝÑ 0 and

ψkp�r � s� αkq � ϕ̃ηkps�m� αk, θ�r�mσkqψkp�r �mq
kÑ8
ÝÑ ϕ̃0ps�m, θ�r�mσqx�m � ψ0psq,

which implies that ψ0psq P
�
ψkpRq. Therefore, ψ0 is a bounded global solution of ϕ̃0 through

x0 at θ�rσ.

Now we suppose, without loss of generality, that x�m P M0 for all m ¥ 1. Let smk �

φηkpψkp�r � mq, θ�r�mσkq and rmk � φηkpψkp�r � m � 1q, θ�r�m�1σkq for k ¥ 1 and m ¥ 1.

By Lemma 4.1 we have smk
kÑ8
ÝÑ 0 and rmk

kÑ8
ÝÑ 0. As yk,m � ψkp�r �mq

kÑ8
ÝÑ x�m P M0 for all

m ¥ 1, we obtain

zk,m � ϕ̃ηkps
m
k , θ�r�mσkqyk,m

kÑ8
ÝÑ I0px�mq � z0,m for m ¥ 1.

As z0,m R M0 because I0pM0q
�
M0 � H, it follows by Proposition 3.7 that there exists a

sequence tηmk u � r0,8q such that ηmk
kÑ8
ÝÑ 0 and

ϕ̃ηkp1� ηmk , θ�r�m�smk σkqzk,m
kÑ8
ÝÑ ϕ̃0p1, θ�r�mσqz0,m RM0.

Using Proposition 3.9,

ϕ̃ηkp1� ηmk � rmk , θ�r�m�smk σkqzk,m
kÑ8
ÝÑ ϕ̃0p1, θ�r�mσqz0,m.

On the other hand, we note that

ϕ̃ηkp1� ηmk � rmk , θ�r�m�smk σkqzk,m � ϕ̃ηkp1� ηmk � rmk � smk , θ�r�mσkqyk,m

� ϕ̃ηkpη
m
k � rmk � smk , θ�r�m�1σkqϕ̃ηkp1, θ�r�mσkqyk,m

� ϕ̃ηkpη
m
k � rmk � smk , θ�r�m�1σkqψkp�r �m� 1q,

for each k ¥ 1. Since yk,m�1 � ψkp�r �m� 1q
kÑ8
ÝÑ x�m�1 PM0, m ¥ 2, we have

ϕ̃ηkpr
m
k , θ�r�m�1σkqψkp�r �m� 1q

kÑ8
ÝÑ I0px�m�1q � z0,m�1 RM0, m ¥ 2,
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and by Proposition 3.9,

ϕ̃ηkpη
m
k � rmk � smk , θ�r�m�1σkqψkp�r �m� 1q

kÑ8
ÝÑ I0px�m�1q � z0,m�1, m ¥ 2.

Hence, ϕ̃0p1, θ�r�mσqz0,m � z0,m�1 for all m ¥ 2. Thus the map ψ0 : R Ñ X given by

ψ0ptq �

#
ϕ̃0pt�m, θ�r�mσqz0,m, if t P r�m,�m� 1s, m ¥ 2,

ϕ̃0pt� 1, θ�r�1σqz0,1, if t ¥ �1.

is a global solution of ϕ̃0 through ϕ̃0p1, θ�r�1σqz0,1 at θ�rσ.

We claim that ϕ̃0p1, θ�r�1σqz0,1 � x0. Indeed, note that

ϕ̃0p1, θ�r�1σqz0,1 � ϕ̃0p1, θ�r�1σqI0px�1q.

By Lemma 4.1, there exists a sequence tβku � r0, 1s with βk
kÑ8
ÝÑ 0 such that

ϕ̃ηkpβk � 1, θ�r�1σkqψkp�r � 1q
kÑ8
ÝÑ ϕ̃0p1, θ�r�1σqI0px�1q.

On the other hand, using Proposition 3.9, we have

ϕ̃ηkpβk � 1, θ�r�1σkqψkp�r � 1q � ϕ̃ηkpβk, θ�rσkqϕ̃ηkp1, θ�r�1σkqψkp�r � 1q �

� ϕ̃ηkpβk, θ�rσkqψkp�rq
kÑ8
ÝÑ x0.

Thus, ϕ̃0p1, θ�r�1σqz0,1 � x0. In conclusion ψ0 : R Ñ X is a global solution through x0 at

θ�rσ. Using the argument of the previous case, we have ψ0 bounded.

� Proof of piiq. Since x0 PM0, if follows by (2.1) that there is εx0,σ ¡ 0 such that

(4.4)
¤

tPp0,εx0,σq

Fϕ0px0, t, θ�tσq
£

M0 � ∅.

By Lemma 4.2, there exists m0 P N which we may assume 1
m0

  εx0,σ, such that for m ¥ m0

one may find km0 P N with

φηkpψkp�1{m� rq, θ�1{m�rσkq ¡
1
m

for all k ¥ km0 .

Thus for k ¥ km0 we have

(4.5) ϕηk
�

1
m
, θ�1{m�rσk

�
ψkp�1{m� rq � ϕ̃ηk

�
1
m
, θ�1{m�rσk

�
ψkp�1{m� rq � ψkp�rq RMηk ,

and by (4.2) we may assume that ψkp�1{m � rq
kÑ8
ÝÑ um. As k Ñ 8 in (4.5), we get by (H1)

that

(4.6) ϕ0

�
1
m
, θ�1{m�rσ

�
um � x0 PM0 for each m ¥ m0.

Moreover, using (4.4), we have um RM0 for all m ¥ m0 since 1
m
  εx0,σ.

Now as ψkp�1{m � rq
kÑ8
ÝÑ um R M0 for m ¥ m0, it follows by item piq, that there exists a

bounded global solution ψm0 of ϕ̃0 through um at θ�1{m�rσ, for each m ¥ m0. Using (4.2) again,
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we may assume that tumum¥m0 is convergent and by (4.6) we have um
mÑ8
ÝÑ x0, which ends the

proof. q.e.d.

Theorem 4.4. Assume that (A1) and (A2) hold. Suppose additionally that for each σ P Σ:

paq
�
ηPr0,1s

�
tPRAηpθtσq compact;

pbq lim
sÑ0�

dHpA0pθ�sσq, A0pσqq � 0.

Then, given σ P Σ and sequences tηku, tεku � r0, 1s with ηk, εk
kÑ8
ÝÑ 0, we have

(4.7) lim
kÑ8

dHpAηkpσkqzMηk , A0pσqq � 0,

where σk � θεkσ, k P N.

In particular, for each σ P Σ, we have

(4.8) lim
kÑ8

dHpAηkpσqzMηk , A0pσqq � 0.

Moreover, if Aηpσq � AηpσqzMη for each η P r0, 1s and σ P Σ, then the family tÂηuηPr0,1s is

upper semicontinuous at 0.

Proof. Let σ P Σ be fixed, tεku, tηku � p0, 1s and txku � X be sequences such that ηk, εk
kÑ8
ÝÑ

0 and xk P AηkpσkqzMηk for all k ¥ 1. We shall prove that there exists x0 P A0pσq such that

xk
kÑ8
ÝÑ x0, up to a subsequence.

Using condition paq, we can assume that there exists x0 P X such that xk
kÑ8
ÝÑ x0, up to a

subsequence. So, it remains to prove that x0 P A0pσq.

Since xk P AηkpσkqzMηk for each k ¥ 1, we use the notation of (A2), and condition paq in

particular implies (4.2) (see Corollary 2.18). Moreover, we can assume that

ψkp�mq
kÑ8
ÝÑ x�m for each m ¥ 1.

If x0 RM0, Lemma 4.3 item piq guarantees that there exists a bounded global solution ψ0 for

ϕ̃0 at σ through x0 given by (4.3), that is, x0 P A0pσq.

If x0 PM0 then Lemma 4.3 item piiq implies that there exist m0 ¥ 1 such that the sequence

tψkp�1{mqu admits a subsequence, denoted by the same, such that ψkp�1{mq
kÑ8
ÝÑ um RM0 for

m ¥ m0. Moreover, um
mÑ8
ÝÑ x0 and there exists a bounded global solution ψm0 of ϕ̃0 through

um at θ�1{mσ for all m ¥ m0, that is, um P A0pθ�1{mσq for all m ¥ m0. Hence, using condition

pbq, we conclude that x0 P A0pσq.

The last assertion follows from the identity

dHpC,Dq � dHpC,Dq for all nonempty sets C,D.

q.e.d.
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5. Applications

We will revisit Example 3.3, to use Theorem 4.4 to obtain upper semicontinuity of the im-

pulsive cocycle attractors. Let rpϕη, θqpR,Σq,Mη, Iηs be the impulsive nonautonomous dynamical

system defined by (3.2), which satisfies conditions (H1) - (H4) and the points �1 and 1 of

M0 � Σ satisfy ϕ0-C-SSTC.

Proposition 5.1. There exists a compact subset K0 of R that pullback ϕ̃η-absorbs all fixed

bounded sets of R, for each η P r0, 1s. Moreover, if D is the universe of all nonautonomous sets

D̂ with
�
gPΣ Dpgq bounded in R, the compact nonautonomous set K̂0 � tK0ugPΣ is pullback

pϕ̃η,Dq-absorbing, for each η P r0, 1s.

Proof. Fix B a bounded subset of R.

If B � r�1 � η, 1 � ηs then ϕ̃ηpt, g�tqx � ϕηpt, g�tqx P r�1 � η, 1 � ηs for all x P B, t ¥ 0,

η P r0, 1s and g P Σ.

Otherwise, let b� � sup |B| � supt|b| : b P Bu and fix h P Σ. Note that sη � φηpb
�, hq   8

since b� ¡ 1� η. Therefore, » sη
0

hpuqdu� ηsη � ln
� b�

1� η

	
,

and thus » sη
0

hpuqdu ¤ lnpb�q for all h P Σ and η P r0, 1s.

By (3.1) we get
³�8
0

hpuqdu � �8 for each h P Σ, and thus sup
hPΣ, ηPr0,1s

φηpb
�, hq   8. Let

t� � sup
hPΣ, ηPr0,1s

φηpb
�, hq   8.

If x P B
�
p1 � η,8q then ϕ̃ηpt, g�tqx P r1 � η, 2 � ηs for all t ¥ t�, η P r0, 1s and g P Σ.

Analogously, if x P B
�
p�8,�1� ηq then ϕ̃ηpt, g�tqx P r�2� η,�1� ηs for all t ¥ t�, η P r0, 1s

and g P Σ.

Thus, taking K0 � r�3, 3s we have

(5.1) ϕ̃ηpt, g�tqB � K0 for all t ¥ t�.

Moreover, given a nonautonomous set B̂ P D, (5.1) also holds, just making B �
�
gPΣ Bpgq,

which is bounded in R. q.e.d.

By Theorem 2.16, rpϕη, θqpX,Σq,Mη, Iηs admits a pϕ̃η,Dq-impulsive cocycle attractor Âη for

each η P r0, 1s. Moreover,

(5.2)
¤

ηPr0,1s

¤
gPΣ

Aηpgq � K0,

which is compact in R. It is not hard to see that Aηpgq � r�2� η,�1� ηs Y t0uY r1� η, 2� ηs

for all g P Σ.
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Now it remains to verify condition (b) of Theorem 4.4 to conclude the upper semicontinuity

of the family tÂηuηPr0,1s at 0. To that end we will use Corollary 3.12. Note that in this case

M0

�
K0 � t�1, 1u.

We define the function τ : R� � Σ Ñ R given by

τps, hq � exp

�» s
0

hpuqdu



for all s ¥ 0 and h P Σ.

Note that, using (3.1), τp�, hq is nondecreasing for each fixed h P Σ, and also τ ¥ 1.

Now fix t ¡ 0, g P Σ and take x � 1 pthe case x � �1 is analogousq. Let n ¥ 1 be such that

2n�1   τpt, g�tq ¤ 2n and define the sequence

xk �

�
1

2n�1
�

1

2n�k



τpt, g�tq, for k ¥ 1.

Since 2n�1   τpt, g�tq ¤ 2n, we have 2n�1

�
1

2n�1
�

1

2n�k



  xk ¤ 2n

�
1

2n�1
�

1

2n�k



, that

is, 1�
1

2k�1
  xk ¤ 2�

1

2k
for all k ¥ 1. Thus xk P p1, 3q for all k ¥ 1.

Fix k ¥ 1 and let s1 � s1pkq � φ0pxk, g�tq.

Proposition 5.2. Under the previous assumptions, the following properties hold:

paq xk � τps1, g�tq.

pbq s1 ¡ t provided n � 1.

pcq s1   t provided n ¥ 2.

Proof. paq Note that

ϕ0ps1, g�tqxk � 1 ô xk � exp

�» s1
0

g�tpuqdu



� τps1, g�tq.

pbq If this is not the case then

τpt, g�tq ¥ τps1, g�tq � xk �

�
1�

1

2k�1



τpt, g�tq,

which is a contradiction.

pcq If this is not the case then

τpt, g�tq ¤ τps1, g�tq � xk �

�
1

2n�1
�

1

2n�k



τpt, g�tq,

which is a contradiction since 1
2n�1 �

1
2n�k

  1 for all n ¥ 2 and k ¥ 1. q.e.d.
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For any h P Σ, setting s�phq � φ0p2, hq, we know that τps�phq, hq � 2. Set h0 � g�t,

t0 � s0 � 0, recall that s1 � φ0pxk, h0q, and define t1 � s1. We will also set the following$'''''&
'''''%

h1 � g�t�t1 , s2 � s�ph1q and t2 � t1 � s2,

h2 � g�t�t2 , s3 � s�ph2q and t3 � t2 � s3,

...

hn�1 � g�t�tn�1 , sn � s�phn�1q and tn � tn�1 � sn, n ¥ 2.

Before continuing, note that

exp

�» tj
tj�1

g�tpuqdu

�
� exp

�» sj
0

hj�1puqdu



� τpsj, hj�1q � τps�phj�1q, hj�1q � 2,

for j � 2, . . . , n.

Proposition 5.3. For n ¥ 2 it holds tn�1 ¤ t   tn.

Proof. First, let us argue by contradiction that t   tn�1. Then

τpt, g�tq   τptn�1, g�tq � exp

�» tn�1

0

g�tpuqdu



� 2n�2 exp

�» s1
0

g�tpuqdu




�2n�2τps1, g�tq � 2n�2xk � 2n�2

�
1

2n�1
�

1

2n�k



τpt, g�tq �

�
1

2
�

1

2k�2



τpt, g�tq,

which is a contradiction since 1
2
� 1

2k�2   1 for all k ¥ 1.

Also, suppose to the contrary that t ¥ tn. Then

τpt, g�tq ¥ τptn, g�tq � 2n�1xk � 2n�1

�
1

2n�1
�

1

2n�k



τpt, g�tq �

�
1�

1

2k�1



τpt, g�tq,

which is a contradiction since 1� 1
2k�1 ¡ 1 for all k ¥ 1. Then the proof is concluded. q.e.d.

Proposition 5.4. There holds ϕ̃0pt, θ�tgqxk
kÑ8
ÝÑ 1.

Proof. If n � 1, it follows by Proposition 5.2 that

ϕ̃0pt, g�tqxk � ϕ0pt, g�tqxk � xk exp

�
�

» t
0

g�tpuqdu



� 1�

1

2k�1
for k ¥ 1,

and therefore ϕ̃0pt, g�tqxk
kÑ8
ÝÑ 1.

Now, let n ¥ 2. By Proposition 5.3, tn�1 ¤ t   tn, consequently

ϕ̃0pt, θ�tgqxk � ϕ0pt� tn�1, hn�1q2,



24 E. M. BONOTTO, M. BORTOLAN, T. CARABALLO & R. COLLEGARI

and hence

ϕ̃0pt, θ�tgqxk � 2 exp

�
�

» t�tn�1

0

hn�1puqdu



� 2 exp

�
�

» t
tn�1

g�tpuqdu




� 2 exp

�» tn�1

t1

g�tpuqdu�

» t1
0

g�tpuqdu�

» t
0

g�tpuqdu




� 2n�1xk exp

�
�

» t
0

g�tpuqdu




� 1�
1

2k�1
for all k ¥ 1,

that is, ϕ̃0pt, θ�tgqxk
kÑ8
ÝÑ 1. q.e.d.

Thus conditions of Corollary 3.12 are satisfied, and we obtain

lim
sÑ0�

dHpA0pg�sq, A0pgqq � 0 for each g P Σ.

Hence, (4.7) holds for tÂηuηPr0,1s, as a direct application of Theorem 4.4. We also have

Aηpgq � AηpgqzMη, and hence the family tÂηuηPr0,1s is upper semicontinuous at 0.

6. Lower semicontinuity

In this last section, we establish sufficient conditions to obtain the lower semicontinuity for

a family of impulsive cocycle attractors. We will describe the theoretical foundation to achieve

our result of lower semicontinuity.

Definition 6.1. Let ψ� : R Ñ X be a global solution of ϕ̃ at σ P Σ and set Ψ� � ψ�pRq.
(i) The unstable set of ψ� at σ P Σ is defined by

W upψ�qpσq � tz P X : there exists a global solution ψ of ϕ̃ at σ through z and

such that lim
tÑ�8

dpψptq,Ψ�q � 0u.

(ii) The unstable set of ψ� is the nonautonomous set Ŵ upψ�q � tW upψ�qpσquσPΣ.

(iii) Given δ ¡ 0, we also define the local unstable set of ψ� at σ P Σ by

W u
δ pψ

�qpσq � tz P X : there exists a global solution ψ of ϕ̃ at σ through z

such that dpψptq,Ψ�q   δ for all t ¤ 0 and lim
tÑ�8

dpψptq,Ψ�q � 0u.

(iv) The local unstable set of ψ� is the nonautonomous set Ŵ u
δ pψ

�q � tW u
δ pψ

�qpσquσPΣ.

Lemma 6.2. If ψ� is a global solution of ϕ̃ then Ŵ upψ�q is ϕ̃-invariant.

Proof. Fix t ¥ 0 and σ P Σ. For a given z P W upψ�qpσq, there exists a global solution ψ of ϕ̃ at

σ such that ψp0q � z such that lim
sÑ�8

dpψpsq,Ψ�q � 0. Note that ϕ̃pt, σqz � ϕ̃pt, σqψp0q � ψptq.
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Define ψ1 : R Ñ X by ψ1psq � ψps� tq for s P R, which is a global solution of ϕ̃ at θtσ such

that ψ1p0q � ψptq � ϕ̃pt, σqz. Hence,

lim
sÑ�8

dpψ1psq,Ψ
�q � lim

sÑ�8
dpψps� tq,Ψ�q � 0,

and ϕ̃pt, σqz P W upψ�qpθtσq.

On the other hand, let z P W upψ�qpθtσq. There exists a global solution ψ of ϕ̃ at θtσ such

that ψp0q � z and lim
sÑ�8

dpψptq,Ψ�q � 0.

We claim that w � ψp�tq P W upψ�qpσq. Indeed, define ψ2 : R Ñ X by ψ2psq � ψps � tq.

Thus ψ2 is a global solution of ϕ̃ at σ and ψ2p0q � ψp�tq � w. Also

lim
sÑ�8

dpψ2psq,Ψ
�q � lim

sÑ�8
dpψps� tq,Ψ�q � 0,

and the proof is complete. q.e.d.

From the above definitions and Corollary 2.18, we have the following straightforward result.

Lemma 6.3. Fix D as the universe of nonautonomous sets with
�
σPΣDpσq bounded in

X. Let rpϕ, θqpX,Σq,M, Is be an INDS with a pϕ̃,Dq-impulsive cocycle attractor Â such that

IpMq
�
M � ∅. If ψ� is a bounded global solution of ϕ̃ at σ then W upψ�qpσq � ApσqzM .

Proof. Let x P W upψ�qpσq. There exists a global solution ψ of ϕ̃ at σ through x such that

lim
sÑ�8

dpψpsq,Ψ�q � 0. Since IpMq
�
M � ∅, we have ψpRq

�
M � ∅. Since Ψ� is bounded

and the INDS has a pϕ̃,Dq-impulsive cocycle attractor, we obtain ψ is bounded. Therefore,

using Corollary 2.18, we conclude that x � ψp0q P ApσqzM . q.e.d.

Definition 6.4. We say that two global solutions ψ1 and ψ2 of ϕ̃ at σ are separated in the

past if lim sup
tÑ�8

dpψ1ptq, ψ2ptqq ¡ 0.

Remark 6.5. If ψ1 and ψ2 are global solutions of ϕ̃ at σ which are not separated in the past,

then lim
tÑ�8

dpψ1ptq, ψ2ptqq � 0 and, therefore, W upψ1qpσq � W upψ2qpσq.

Let Spσq be the set of all bounded separated global solutions in the past of ϕ̃ at σ P Σ.

Lemma 6.6. Let rpϕ, θqpX,Σq,M, Is be an INDS with a pϕ̃,Dq-impulsive cocycle attractor Â

such that IpMq
�
M � ∅. Then

ApσqzM �
¤

ψPSpσq

W upψqpσq for each σ P Σ.

Proof. Let σ P Σ and x P ApσqzM . By Corollary 2.18, there is a bounded global solution

ψ though x at σ. Thus, x P W upψqpσq by definition of the unstable set. If ψ P Spσq then the

proof is finished. Otherwise, there is ψ1 P Spσq such that ψ1 and ψ are not separated in the

past, and therefore, W upψ1qpσq � W upψqpσq (see Remark 6.5). Hence, x P W upψ1qpσq. Lemma

6.3 ensures the other inclusion. q.e.d.
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The following result provides sufficient conditions for a type of lower semicontinuity at η � 0

of a family of impulsive cocycle attractors.

Theorem 6.7. Let rpϕη, θqpX,Σq,Mη, Iηs be an INDS with a pϕ̃η,Dq-impulsive cocycle attractor

Âη, for each η P r0, 1s, satisfying the conditions of Theorem 4.4. Additionally, assume that:

(a) for each η P r0, 1s and σ P Σ there exists a sequence of separated global solutions in the

past Sηpσq � tψ�j,ηuj¥1 with

sup
tPR

�
dpψ�j,ηptq, ψ

�
j,0ptqq � dpψ�j,0ptq, ψ

�
j,ηptqq

�
ηÑ0
Ñ 0,

for each j ¥ 1;

(b) for each σ P Σ there exists δ ¡ 0 such that

dHpW
u
δ pψ

�
j,0qpσq,W

u
δ pψ

�
j,ηqpσqq � dHpW

u
δ pψ

�
j,ηqpσq,W

u
δ pψ

�
j,0qpσqq

ηÑ0
Ñ 0,

for each j ¥ 1;

(c) for each σ P Σ we have

A0pσq �
¤
j¥1

W upψ�j,0qpσq.

Then given σ P Σ and x P A0pσq there exist sequences ηk, εk
kÑ8
ÝÑ 0 and xk P AηkpθεkσqzMηk

such that xk
kÑ8
ÝÑ x.

Proof. Fix σ P Σ, x0 P A0pσq and ε ¡ 0. Using item (c), there exists, xε P
�
j¥1W

upψ�j,0qpσq

such that

dpxε, x0q  
ε

2
.

Let j ¥ 1 be such that xε P W upψ�j,0qpσq and ξj be the global solution of ϕ̃0 at σ such

that ξjp0q � xε and lim
tÑ�8

dpξjptq,Ψ
�
j,0q � 0. There exists τ ¡ 0 such that zε � ξjp�τq P

W u
δ pψ

�
j,0qpθ�τσq. By condition (b), there exist a sequence ηk

kÑ8
ÝÑ 0 and zk P W

u
δ pψ

�
j,ηk

qpθ�τσq

such that zk
kÑ8
ÝÑ zε.

Now, since zε R M0 by Lemma 6.6, using Proposition 3.7 there exists a sequence tεku �

r0,�8q such that εk
kÑ8
ÝÑ 0 and

xk :� ϕ̃ηkpεk � τ, θ�τσqzk
kÑ8
ÝÑ ϕ̃0pτ, θ�τσqzε � ϕ̃0pτ, θ�τσqξjp�τq � ξjp0q � xε.

Then the result follows, noting that xk P AηkpθεkσqzMηk . q.e.d.

Consequently, we obtain the following lower semicontinuity result, with direct proof.

Corollary 6.8. Assume that all the conditions of Theorem 6.7 are satisfied. Suppose also

that given sequences ηk, εk
kÑ8
ÝÑ 0 and xk P AηkpθεkσqzMηk there exists zk P Aηkpσq for each

k ¥ 1 such that dpxk, zkq
kÑ8
ÝÑ 0. Then the family tÂηuηPr0,1s is lower semicontinuous at 0.
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Conclusion and final remarks

In this work, we presented the collective tube conditions for nonautonomous impulsive dyna-

mical systems and we proved a result containing sufficient conditions to ensure the upper

semicontinuity of impulsive cocycle attractors of nonautonomous dynamical systems. Our main

result is Theorem 4.4.

The difficulties of this theory appear in the applications: the conditions are very hard to

verify, and in most examples are assumed artificially. Even conditions (2.1) for the autonomous

case are not easy to verify in examples, both in finite or infinite dimensional spaces (see the

application in Section 5).

In this paper we chose to present a more simple example (an ODE in the real line) precisely

to show the computations required to verify all the needed conditions. Thus, in the theory of

impulsive systems, this is one of the many problems yet to be solved: to find concrete examples

in which the conditions can be verified, and also try to find results that simplify the verification

of these conditions.

Lastly, we presented abstract results to obtain lower semicontinuity of impulsive cocycle

attractors for nonautonomous dynamical systems. As for applications, there is still a large

theory to be developed, namely, the study of the unstable sets of invariants and their continuity

with respect to small perturbations, and we plan to analyze them in the future.
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