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Abstract

In this work we present results to ensure a weak upper semicontinuity for a family
of impulsive cocycle attractors of nonautonomous impulsive dynamical systems, as well
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1. Introduction

When dealing with the modeling of real world phenomena, perturbations are likely to occur.
Truncated measurements in data collection, simplifications in the model, and even the use
of well known empirical laws, are bound to introduce particularities in the modeled problem
that do not appear in the real one. These small divergences are expected to occur, but if left
untreated they may invalidate the obtained results when we want to translate them to the real
problem. How can we be sure that the obtained properties may be transported to the limiting
problem without any loss of information? Or if there is some kind of loss, can we foresee how
small or how large will it be?

This problem can be treated in several different ways and in a few distinct levels of complexity.
The first level is the upper semicontinuity, which roughly speaking means that we can assure
that the solutions of the perturbed problems are close to the solutions of the limiting problem,
as long as the perturbation is small and well behaved. Formally speaking, a family { Ay} ea of
nonempty subsets of a metric space (X, d), indexed in a topological space A, is said to be upper
semicontinuous at Ag if

(11) lim dH(A)\,A)\O) = O,
)“})\O

where dy (A, B) = sup li)nf d(a,b) is the Hausdorff semidistance between A and B. This semidis-
acA V&
tance measures how far A is from being inside the closure of B. Hence, in such a way, the upper

semicontinuity at A\g means that Ay is not far from being inside A,,, for A sufficiently close to
Ao-

This matter, as well as the more complicated problem of lower semicontinuity, is well estab-
lished for the case of continuous dynamical systems both in the autonomous and nonautonomous
framework (see, for instance, [2] [7, 1], [16]). The parallel in the impulsive case has seen its first
steps very recently in [4] for the autonomous case. For nonautonomous impulsive dynamical
systems we are not aware of results in this line and we intend to present some results in this
work.

The next level in the study of continuity is the already mentioned lower semicontinuity, and
it is related to the non-implosion of solutions of the perturbed problems, for small and well
behaved perturbations. The family {Ay}aea is said to be lower semicontinuous at Ay if

(12) lim dH(A)\O,A)\) = O,
)\*))\0

which can be translated to the property that, for A close to Ay, the sets A, are as complex as
A,y,. Although it is just a change of position in the computation of the Hausdorff semidistance,
the lower semicontinuity if a far more difficult subject than the upper semicontinuity, and to
be tackled, it requires a knowledge of the internal structures of Ay,.
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Nevertheless, the lower semicontinuity has also been studied in the past decades and is still
being developed nowdays. Both theoretical abstract results and their applications to attractors
of continuous differential equations can be seen in [8, 11}, 6] 17]. Again, the parallel in the
impulsive autonomous case was developed in [4], where the authors presented abstract results to
obtain lower semicontinuity. There are also higher levels of continuity, namely the topological
stability and the geometrical stability, which will not be discussed here, but in forthcoming
works.

In what follows, Section [2is an overview of the already known results concerning the existence
of impulsive cocycle attractors for impulsive dynamical systems. For a more detailed approach,
the reader may see [3],[5]. In this section, we will also set the main definitions and notations
that will be used throughout the paper. In Section [3, we present the so called collective tube
conditions for impulsive nonautonomous dynamical systems (see Definitions and . Such
conditions play a crucial role when dealing with perturbations of impulsive systems, and the
definitions presented here follow the ideas contained in [4] for the autonomous case, which
are briefly described in Subsection . We also present two new results (see Lemma m
and Theorem that will be used to prove the upper semicontinuity of impulsive cocycle
attractors in Section Ml

Section {4]is the main section of this work and contains a result presenting sufficient conditions
to ensure the upper semicontinuity for a family of impulsive cocycle attractors for impulsive
nonautonomous dynamical systems (see Theorem [4.4]). Furthermore, we present an example
of an impulsive nonautonomous dynamical system in the real line to illustrate our main result
(see Section [f)).

In Section [6] we present a theoretical approach to the results regarding lower semicontinuity
and we end our paper with a final section containing the summary of our results and some open

problems of this theory.

2. Impulsive nonautonomous dynamical systems

The theory of continuous nonautonomous dynamical systems is very well established and
here, to make our presentation as much self-contained as possible, we will present the main
concepts concerning impulsive nonautonomous dynamical systems. For more details on the
continuous theory, the reader may consult [1], 6l 9l 10, 12 13| 1§].

Let R, =[0,400) and N = {1,2,3,...} be the set of all natural numbers. We denote Ny by
N u {0}. We will denote, in any space, sequences indexed in N by {ax} or {ax}r, and the latter
will be used if it is necessary to avoid confusion with the index.

Let X be a complete metric space and {6;: t = 0} be a semigroup in ¥, that is, it is a family
of continuous maps from ¥ into itself, satisfying the following conditions: 6yo = o for all o € %,
0,5 = 0,0, for all t,s € R, and the map R, x ¥ 3 (t,0) — 6,0 € ¥ is continuous.
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Also, let us consider another complete metric space (X, d) and for each pair (t,0) € R, x X,
let o(t,0): X — X be a map satisfying the following properties:
(i) ¢(0,0)x = x for all z € X and 0 € ¥;
(ii) o(t+ s,0) = p(t,0:0)p(s,0) for all t,s € R, and o € &;
(iii) the map R, x ¥ x X 3 (t,0,2) — ¢(t,0)x € X is continuous.

Definition 2.1. With the previous definitions and relations, (¢, #)x) is said to be a nonau-
tonomous dynamical system, or simply a NDS.

The semigroup {6;: t = 0} in this context is called driving semigroup, the map ¢ is called
cocycle and the property (ii) above is commonly known as the cocycle property.

~

A nonautonomous set is a family D = {D(0)}sex of subsets of X indexed in ¥. We
say that D is an open (closed, compact) nonautonomous set if each fiber D(o) is an open
(closed, compact) subset of X. A nonautonomous set D is called p—invariant if

o(t,0)D(0) = D(0,0) forall t>0 and each o€ X.

A universe D is a collection of nonautonomous sets which is closed with respect to inclusion,
that is, if Dy € ® and Dy(0) © Dy(0) for all o € ¥, then D, € D.

In the sequel, we present the concept of impulsive nonautonomous dynamical systems.

Let (,0)(x,n) be a NDS and for each D < X, J c R, and o € ¥, we define

F,(D,J,0) ={xe X: ¢(t,o)xr € D for some t € J}.
A point z € X is said to be an initial point if F,(z,7,0) = @ for all 7 > 0 and for all 0 € X.

Definition 2.2. An impulsive nonautonomous dynamical system, or simply an INDS,
denoted by [(¢,8)xx), M, I], consists of a NDS (¢, 0)x ), a nonempty closed subset M < X
such that for each x € M and each o € X there exists €, , > 0 such that

(2.1) ) (Fu(z,t,0.0)[1M) =2 and {p(s,0)z: s€ (0,60)} [ | M =2,
te(0,€x,0)

and a continuous function I: M — X whose action will be specified later. The set M is
called the impulsive set and the function [ is called the impulse function. We also define
M} (x,0) = {p(r,0)x: 7> 0} (| M for each (z,0) € X x X.

One important property which may be observed is that if M; (x,0) # @, then there exists
t > 0 such that ¢(t,0)z € M and ¢(1,0)x ¢ M for 0 < 7 < t, and as a consequence, for each
o € X, we are able to define the function ¢(-,0): X — (0, +o0| by

s, if p(s,0)r e M and ¢(t,0)x ¢ M for 0 <t < s,

(2:2) ¢(z,0) =
+o0, if p(t,o)x ¢ M for all t > 0.
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In the first case, the value ¢(z, o) represents the smallest positive time such that the positive
semitrajectory of x in the fiber o meets M and we say that the point ¢(¢(z,0),0)z is the
impulsive point of z in the fiber o.

Definition 2.3. Given ¢ € X, the impulsive positive semitrajectory of x € X starting
at o by the INDS [(¢,0)xx), M, 1] is a map ¢(-,0)z defined in an interval J, . < R,
0 € Ji,o), With values in X given inductively by the following rule: if M} (z,0) = &, then
@(t,0)r = p(t,o)x for all t € [0, +00) and in this case ¢(z, o) = +o0. However, if M7 (z,0) #
then we denote x = 27 and we define $(-, o)z on [0, ¢(xg, )] by

ot )i it 0<t<o(i,0),

o(t,o)r =
(t,0) H(p(d(xs, o), 0)xl), if ¢ = d(ag, o).

Now, let sg = ¢(zd,0), 11 = p(so,0)x and x{ = I(p(so,0)xg). In this case, sy < 400
and the process can go on, but now starting at zy. If M*(gzr1 ,05,0) = @ then we define
o(t,0)x = p(t — so,05,0)x] for sy <t < +o0 and in this case ¢(z],0,,0) = +o0. However, if
M} (], 05,0) # @, then we define (-, 0)x on [so, 5o + ¢(21 ,05,0)] by

~ o(t — s, 0s,0) 7, if  so<t<so+ P(ay,0,,0),
p(t, o)z =
I((,D(gb(fﬁl 70 U) QSOU)ZL‘T), if t= S0 + gb(l‘l 79 U)
Now let sy = ¢(x7,04,0), 2 = 9(s1,0s,0)x] and x5 = I(¢(s1,0,,0)x]), and so on.

This process ends after a ﬁmte number of steps if M (z},0;,0) = @ for some n = 0 (with
to = 0and t, = so+...+s, 1 for n = 1), or it may proceed indefinitely, if M‘; (x},0,,0) # @ for

+0
all n = 0, and in this case ¢(-, 0)x is defined on the interval [0, T'(x, o)), where T'(z,0) = >, s;.

As presented in [3], we may assume hereon the following assumption:

(G) T(x,0)=+0 forall zeX andoeX.

This assumption holds, for instance, when there exists £ > 0 such that ¢(z,0) = £ for all
xelI(M) and o € X.

Definition 2.4. Given z € X and o € X, a time £ > 0 is called an impulsive time for

@(+, o)z if there is n = 0 such that ¢t = > s;, where sg = ¢(x,0) and s; = ¢(x;,0;.0) with
i=0
t;

+...+Si_1,i:172,...n

Remark 2.5. The construction of the function ¢ and the impulsive positive semitrajectory
¢ allows us to state the following important relationship, whose proof may be found in [3]. Let
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(¢,0)(xx) be a NDS and {II(t): t > 0} be its associated skew-product semiflow in X = X x ¥.
Define II* by

IT* (t)(z,0) = (p(t,0)x,0,0) forall (x,0)eX and t =0,

and also let {II(t): t = 0} be the impulsive dynamical system (X, II, M, I), where M = M x X
and I : M — X is given by I(z,0) = (I(z),0), for z € M and o € 3. Then

IT*(t) = 11(t) forall t=0.

Moreover, if ¢ is the function defined in (2.2)), then it coincides with the function used to define
the impulsive positive semitrajectory {II(t): t = 0}. Also, for each o € ¥ and ¢, s € R, we have

Pt +s,0) = @(t,0:0)¢(s,0),
that is, ¢ satisfies the cocycle property.

2.1. Tube conditions. The tube conditions are very important for the theory of impulsive
dynamical systems. Here, we briefly present the results of [3] (which uses the results of [15])

for tube conditions of impulsive nonautonomous dynamical systems. Recall that X = X x X

and Ml = M x X. For D c X and J < R, we define
F(D,J) = {(z,0) e X: II(t)(x,0) € D for some t € J}.

Definition 2.6. A closed set S containing (z,0) € X is called a section through (z,o) if
there exist A > 0 and a closed subset L of X such that:
(a) F(L,X) =S;
(b) F(L, [0,2\]) contains a neighborhood of (z,0);
(c) F(L,») N F(L,C) = @, if 0 < v < ¢ < 2\,
We say that the set F(LL, [0,2)]) is a A—tube (or simply tube) and the set L is a bar.

The Definition [2.6] is the same definition of tube for general impulsive systems (X, 7, M, I),
see [14].

Definition 2.7. A point (x,0) € M satisfies the strong tube condition (STC), if there
exists a section S through (x,c) such that S = F(LL,[0,2\]) (M. Also, we say that a point
(z,0) € M satisfies the special strong tube condition (SSTC) if it satisfies STC and the
A—tube F(L, [0,2)]) is such that F(L, [0, \]) I(M) = @.

Now, we introduce the concepts of STC and SSTC in the context of INDS.

Definition 2.8. Let [(y,0)xx), M, I] be an INDS. We say that a point x € M satisfies the
p—strong tube condition (¢—STC), if for each o € 3, the pair (x,0) satisfies STC with
respect to the impulsive skew-product (X, II, M, T). Also, we say that a point x € M satisfies
the p—special strong tube condition (p—SSTC), if for each o € X, the pair (z,0) satisfies
SSTC with respect to the impulsive skew-product (X, IT, M[, I).
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Next, we exhibit two auxiliary results.

Theorem 2.9. [3, Theorem 3.5] Let [(p, 0)(x 5y, M, I] be an INDS such that each point of M
satisfies p—STC. Then ¢ is upper semicontinuous in X x 3, and it is continuous in (X\M) x 3.
Moreover, if there are no initial points in M and ¢ is continuous at (x,c) for some o € ¥, then

¢ M.

Proposition 2.10. [3| Propositon 3.7] Let [(y, 0)(x x), M, I] be an INDS such that I(M) () M
@ and let y € M satisfy -SSTC. Then, for each o € 3, the point (y,0) satisfies SSTC with
A-tube F(LL, [0,2)]) such that L)X (F(L,[0,\]) = @ for all t > .

This part of the paper demands a small explanation. There is a question on why we do not
define the tube conditions (and then the collective tube conditions in Section [3|) using directly
the nonautonomous dynamical system [(¢,0)x ), M, I] instead of the associated impulsive
skew-product (X, II, M, T). One short answer to this problem is that “because it works when
we use the impulsive skew-product”, but of course this is not a mathematic response. The
main problem there is that in the nonautonomous context, we are constantly changing the
fibers when using ¢(t,0) - we go from o to 6,0 - and therefore the continuity required to
prove Theorem does not work properly without the second coordinate of the skew-product
semiflow. Hence, it is not possible to ensure the continuity of ¢ (even only for the first variable),
which is paramount, using only properties of the impulsive nonautonomous dynamical system
instead the ones of the impulsive skew-product.

2.2. Existence of impulsive cocycle attractors. In [3], the definition of impulsive nonau-
tonomous dynamical systems is introduced and also sufficient conditions to ensure the existence
of an impulsive cocycle attractor are proved. In this subsection, we present their main results.

The definition of p—invariance is analogous to the notion of p—invariance simply replacing
¢ by ©.

Definition 2.11. Given an INDS [(p,0)x sy, M, ], a nonautonomous set B is said to be
pullback (p,®)—attracting, if for each o0 € ¥ and D € © we have

tlir+n du(p(t,0_10)D(0_40), B(o)) = 0,

where dg(-,-) denotes the Hausdorff semidistance, that is, dg(C, D) = sup ing d(z,y) for any
z€C Y€
nonempty sets C, D < X.

A nonautonomous set B is said to be pullback © —absorbing for the INDS [(0,0) x5y, M, 1],
if for each o € ¥ and D € D, there exists t) = to(o, D) = 0 such that
Q(t,0 _10)D(0_10) < B(o) for all t = t.

Definition 2.12. Given a universe ® and an INDS [(y,0)x ), M,I], a compact nonau-
tonomous set A is called the (p,D)-impulsive cocycle attractor if:
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(i) A\M = {A(0)\M}gex is ¢—invariant;
(ii) A is pullback (¢, D)—attracting;

(iii) A is minimal among the closed nonautonomous sets satisfying (ii).

We may observe that if A; and A, are two (@,®)—impulsive cocycle attractors then
Aj(o)\M = Ay(c)\M forall oeX.
As studied in [5], to find sufficient conditions to ensure the existence of an impulsive cocycle

attractor for an INDS, we present at first the concept of the impulsive pullback w-limit set.

Definition 2.13. Given a universe ®, a nonautonomous set Be®andoe 32, we define the
impulsive pullback w-limit of B at o as the set

ﬂU U o(t +¢€,0_40)B(0_0)

s20t=s ee[0,s~1)

and the impulsive pullback w-limit of B as the nonautonomous set &(B) = {&(B, 0)}ex.
The impulsive pullback w-limit set also may be characterized as presented in the next result.
Lemma 2.14. [3, Lemma 4.2] For B€ ® and 0 € ¥, we have
O(B,o) = {x e X: there exist sequences {t,}n=1, {€n}n=1 € Ry and {xn}ns1 < B(0_y,0)

with t, =3 0, €, =% 0 such that $(t, + €n,0_, 0)Tn —> 2}

and &(B, o) is closed in X .
Next, we present the concept of pullback ®—asymptotically compactness for INDS.
Definition 2.15. An INDS [(¢,0)x ), M, I] is said to be pullback ®—asymptotically

compact, if for any o € &, D € D and sequences {totns1 € Ry, {@n st © X with t, "25° +oo
and x,, € D(0_4,0) for n = 1, then the sequence {@(t,,0 ¢, 0)x,}n>1 pOSsesses a convergent

subsequence.
The existence of the (¢, D)—impulsive cocycle attractor is presented in Theorem m

Theorem 2.16. [5, Theorem 3.16] Let [(¢, 0)(x x), M, I be an INDS pullback D — asymptotically
compact such that I[(M)(\M = @& and every point from M satisfies o—SSTC. Assume that
there ezists a pullback (¢, D)— attracting nonautonomous set K €®. Then, the nonautonomous
set A, given by A(o) = &(K,0), is the (¢, D)—impulsive cocycle attractor.

Definition 2.17. Given an INDS [(¢,0)x ), M, I], we say that ¢: R — X is a global
solution of ¢ at 0 € X if
Q(t — s,0,0)(s) = (t) forall t > s and seR.

If 1(0) = x then v is called a global solution of ¢ through =z at o. If ¢)(R) is a bounded subset
of X, we say that 1 is a bounded global solution of ¢.
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Corollary 2.18. [3, Proposition 5.5] If the INDS [(p,0)x ), M,I] has an impulsive co-
cycle attractor A € © with universe ® consisting of all the nonautonomous sets B such that
Uyes B(0) is bounded in X and I(M) (M = &, then

A(0)\M = {z € X: there exists a bounded global solution of ¢ at o through z}.

3. Collective tube conditions for INDS

The tube conditions are essential to assure that a continuous flow and its associated impulsive
flow have controled behavior in their evolutions near the impulsive set. In [4], the authors
present the definition of collective tube conditions in order to establish an upper semicontinuity
result for global attractors of impulsive autonomous systems. Using their ideas, we introduce
the notion of collective tube conditions for a family of impulsive nonautonomous dynamical
systems.

Throughout this section, we shall consider for each 7 € [0,1], an INDS [(¢y, 0)(x x), My, I;]

with a (¢,, ®)-impulsive cocycle attractor fln satisfying the following conditions:

(H1) ¢,(t,0)x L ©o(t, o)z uniformly in bounded subsets of R x ¥ x X.

n—07"

(H2) dH(Mn,MO) +dH(M0,Mn) — 0

(H3) Given e > 0 and wy € M there exists ¢ > 0 such that if € [0, d), w € M,, and d(w, wp) < §
then d(Z,(w), Io(wp)) < €.

(H4) I,(M,) M, = @ for all n e [0,1].

According to Remark we may consider for each n € [0, 1], the impulsive skew-product
semiflow associated with [(¢y, 0)(x x), My, I,)], given by {(X,II,, M, L) },ef0,1]- Inspired by [4]
Definition 3.3], we present the following.

Definition 3.1. We say that a point (wp,0¢) € My satisfies the collective strong tube
condition (C-STC) if given:
e {n} < [0,1] such that n, =% 0;

o w, €M

. k—00
0er k=1, with w,, == wp;

¢ {0, } < X with g,, % 00,
there exists A\g > 0 such that for each 0 < A < Xy one can find 6 = 6(\) > 0 such that
for each j € {0} J{nk} we have a A-tube F,(L;,[0,2\]) through (w;,o;) with section S; =
F;(Lj, [0,2A]) M and B((w;,05),6) < F;(L;, [0,2A]).

Moreover, if F;(L;, [0, A\])(L;(M;) = @ for all j then we say that (wp,oy) satisfies the
collective special strong tube condition (C-SSTC).
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The reader may consult [4] for examples and more details of collective tube conditions on
autonomous impulsive systems. In the case of impulsive nonautonomous systems, we present
the following definition for the tube conditions.

Definition 3.2. Let {[(vy,0)x5), My, In]} e be a family of INDS’s. We say that a
point wy € M, satisfies the p—collective strong tube condition (p—C-STC) if for each
o € X, the pair (wy, o) satisfies C-STC with respect to the family of impulsive skew-product
{(X, 1L, ML, 1)) oeo,1)- Also, wy € My satisfies the ¢—collective special strong tube con-
dition (¢—C-SSTC) if for each o € X, the pair (wp, o) satisfies C-SSTC with respect to the
family of impulsive skew-product {(X, II,, ML, I;)},e[0,1]-

Example 3.3 (Collective tube conditions). Let Cy(R) be the Banach space of continuous
and bounded functions from R to R with the supremum norm, and f € C,(R) be a function
such that for each o > 0 there exists ¢, > 0 satisfying

a+x
(3.1) Co < J f(u)du  for all z € R.

T

Consider for each 7 € R the translation f.(-) = f(7 + -), and assume that f is such that
> = {f,: 7 € R} is compact in Cy(R) (we could consider f globally Lipschitz or almost periodic,
for instance, and use Proposition 2.1 from [13]). For each ¢t € R, consider the group 6;: ¥ — X
given by 6:g = g;. Now, for each 1 € [0,1], consider the INDS [(,, 0) & x), My, I,] given by

t

(3.2) ©on(t, g)To = 10 €xp (—J [g(u) + n]du) for all (¢,g,70) € Ry x ¥ x R,

0
M, ={-1-n1+n}, I,(—1 —n) = —2—nand I,(1 +7n) = 2+ n. Note that condition (3.1
ensures (2.1)) of Definition [2.2]

This INDS is generated by the family of initial value ordinary differential equations given by

T =[f(t)+nlx, t=0,
z(0) = zg € R,

for each n € [0,1].

Note that conditions (H1)-(H4) are satisfied, and we claim that both points in M, satisfies
p—C-SSTC. We will prove it for wy = 1, and the other is analogous.

In fact, let 7y "% 0+ with e < % forall k > 1, wy = 1+n;, and consider {(X, I, M, 1) }e[0,1]
the family of impulsive skew-product semiflow associated with the family of INDS {[(¢y, 0)(& ),
M, ]77]}7]6[071]'

Since f is bounded, if M = sup f(u) then Sj”f(u)du < Ma for all z € R and a > 0.

u€R

Therefore, we can choose Ao > 0 such that e™™H* < 2 for all 0 < A < Ag. Now, let 0 < A < \g
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and consider the set L = U IL,, (A)(wy, g) for each k > 0, where 7 = 0, and note that
geX

S

(2,h) € Ty (L [0,2)]) i 2 = wy exp (j [hu) + neldu). for some s € [, ]

0
With ¢y > 0 given in (3.1)), choose ¢ = §()\) such that

0 <0 <min{l —e *,e* —1}.

Consider x € R such that z € (wy — d,wx + 0) and h € X. Define the function [(s) =

§olh(u) + mi]du for —A < s < A Note that (3.1)) holds for h and it implies that i(u) = 0 for all
u e R, consequently

B(=A) < B(s) < PB(N) forall —A<s<A

Moreover 3(—\) < —c, and (A) = ¢y, and since [ is continuous we have G([—X,\]) D

|—ca, €x]. From our choice of § we have
wre N < < wie?

therefore In(;-) € [—cx,cx]. Thus there exists —A < ¢ < A such that 3(f) = In(g-), which

implies
t

T = wy exp (Jo [h(u) + nk]du),

and shows that (z,h) € F,, (L, [0, 2)]).
By our choice of A\g we have F,, (ILy,[0,\]) (), (M,,) = @ for each k& > 1. Therefore,
wo € My satisfies ¢-C-SSTC.

Condition (H2) provides us a simple and useful result.

Lemma 3.4. If {ni} < [0,1] and {wy} € X are sequences such that ny %0, wy € M, for

k=1 and wy oo wy, then wg € M.
Proof. From (H2) we have

dH(wo, M()) = inf d(’wo, Z) < inf (d(’LUo,wk) + d(wk, Z)) < d(wg,wk) + dH(an Mo) ]ﬂg 0,

ZEMO ZEM()

that is, wg € My, since My is closed. q.e.d.
From Definition [3.2] we have directly the following result.

Lemma 3.5. Assume that wy € My satisfies o-C-STC. If a sequence {ni} < [0, 1] is such that
Mk sy 0, wy € M,,, k=1, is a sequence of points with wy, b= wo, and {oy} is a sequence in 3
with o, =3 oo then there exists an integer ky > ko such that B((wo, 09), 3) = B{(wy, 0v),6) =

F,, (L, [0,2X]) for all k = k.
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Lemma 3.6. Assume that every point of My satisfies p-C-STC. Let xq € X\My, og € %,
{z1} € X and {0} = X be sequences such that xy, 2% 2o and o, =% oo, If {n} < [0,1] is a

sequence such that ny sy 0, then

lim ¢, (T, 0%) = Po(0, 00),
k—o

where ¢y, (Ti, ox) Tepresents the smallest positive time such that the positive semitrajectory of

xy, at the fiber o, meets M,, .

Proof. Since each point in My x ¥ satisfies C-STC and we have condition (H1), the result
follows by [4, Theorem 3.12]. q.e.d.

Proposition 3.7. Let {[(¢y,0) x5y, My, Iy }eo,11 be a family of INDS, xy € X\Mj, 0o € 3,
{z1} < X, {ox} = £ and {n,} < [0,1] be sequences such that z, =3 xo, o =3 oo and

k—o0

. — 0. Assume that each point of My satisfies p-C-STC. Given t = 0, there exists a
sequence {ex} < [0,00) such that €, 220 and

~ k— -
P (t + €k, Uk)l’k =% SOD(t, O')IEo.

Proof. 1f follows by [4, Corollary 3.17] using the fact that each point from M, x 3 satisfies
C-STC. q.e.d.

Proposition 3.8. Let {[(¢n,0) x5y, My, Iy|}eo) be a family of INDS, xg e X\M,, oy € 3,
{zi} < X, {or} < ¥ and {ni} < [0,1] be sequences such that xy 2% 0, o 23 0o and
Mk "2%0. Assume that each point of My satisfies p-C-STC. If t = 0 is not an impulsive time
of ¢(+,0)x (see Definition[2.]), then

~ k— ~
P (ta O'k)l'k —Og SOO(ty O').I'().

Proof. 1f follows by [4], Proposition 3.14, Remark 3.15] using the fact that each point from
My x X satisfies C-STC for II.
q.e.d.

Proposition 3.9. Let g € X\My, 09 € %, {z} < X, {ox} < ¥ and {n:} < [0,1] be
sequences such that xy, =% Xo, Ok sy oo and Ny "2% 0. Assume that each point of My satisfies
©-C-STC. Then, given {ay} < [0, 1] such that oy 2% 0 we have Oy (e, O ), 2% 2.

Proof. Since xy ¢ My, it follows from Lemma that ¢, (xk, ox) oo ¢0(xo,00). Then there
exists k € N such that ay < ¢y, (zx,0%) for all k > k, and by (H1) we have

~ k
P (ak7 Uk)ZVC = ©ny, (aka O'k)xk =3 900(07 UO)ZEO = o,

which concludes the proof. q.e.d.
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Next, to end this section, we present two new results that will give us one of the necessary

conditions to ensure the upper semicontinuity of impulsive cocycle attractors (see condition (b)
of Theorem (4.4)).

Lemma 3.10. Let ® be a universe and [(y, 0)x ), M, I] be an INDS with (¢, D)—impulsive
cocycle attractor A such that IIM)NM =o. Let K € ®© be a pullback D-absorbing set such
that A(0) € K(o) for all 0 € ©. Then A is uniquely determined by

Ae) = [ ¢, 0-n0) [K (0—o\M].

neN

Proof. By the pullback (@, ®)-attracting property of A, since K € D, we have

() &(n, 0_u ) [K(0_,0)\M] = (| ¢(n.0-n0)K(0—0) < A(o) foralloeX.

neN neN

On the other hand, let n > 1, 0 € ¥ and D € ©. There exists t; = to(60_n0, ﬁ) > 0 such that
G(t,0_4_n0)D(0_y_po) © K(0_,0) forall = ty(0_,0,D).
Since (M) (M = &, we have
G(t,0_y_p0)D(0_i_p0o) © K(0_yo)\M for all t > t(6_,0, D).
Consequently,
(1, 0_,0)3(t,0_1_no)D(0_y o) < G(n,0_,0)[K(0_pno)\M] for all t = to(0_,0, D),
that is,
G(n +t,0_1_,0)D(0_1_0) < @(n,0_,0)[K(O_,o \M] for all t = ty(h_,0, D).

Thus, we may conclude that

(3.3) @(s,0_,0)D(0_,0) < 3(n, 0_n,o)[K(0_no)\M] for all s = ty(6_,0,D) + n.

By (3.3), for each fixed n € N, the nonautonomous set {P(n, 0_,0)[K (0_,,0)\M]},ex is closed
and pullback (¢, ®)—attracting. By minimality of the cocycle attractor A, we have

A(0) € §(n, 0-n0)[K(0-no)\M]

for all o € ¥. Since n is taken arbitrary, we have A(o) < ﬂ o(n,0_,0)[K(0_,0)\M], for each

neN
o e . q.e.d.
Theorem 3.11. Let ® be a universe and [(¢,0)x x), M, I] be an INDS with (¢, D)-impulsive
cocycle attractor A such that I(M)(\M = @. Let K € © be a closed pullback D-absorbing such
that A(o) < K(o) for all o € ¥ and | J, . K(0) be compact. Assume that for each o € X:

(a) slir(% dp(K(0_0),K(0)) =0;
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(b) For x € M(\K(o) and t > 0, there exists a sequence {z} < K(0_0)\M such that
Q(t,0_10)z i

Then lim dg(A(0_s0), A(o)) =0 for each o € 3.

s—0+

Proof. Suppose to the contrary there exist o € ¥, § > 0, a sequence sy, 290+ and a sequence
{zi}s>1 such that xp € A(0_;, 0) and d(zy, A(c)) = ¢ for all & = 1. By the compactness of
U, e K (0) we may assume x, 2% 2o. By hypothesis A(0_5,0) c K(0_s,0) for all k = 1, thus
condition (a) implies in zg € K (o).

If g ¢ M then we may assume that x;, ¢ M for all £k > 1. Using Proposition we
obtain @(sg, 0_s, o) “2% 2o, and by the invariance of the nonautonomous set A\M we have
P(sk, 0_s,0)xr € A(o) for all k > 1. Consequently, zo € A(c) which is a contradiction.

If o € M then, for each fixed n € N, using condition (b), there is a sequence {z}'} <
K(0_,0)\M such that

B(n, 0_,0)2 =% 2.

Hence, g € @¢(n,0_,0)[K(0_,0)\M] for all n € N. By Lemma [3.10, z, € A(c) which is a
contradiction. q.e.d.

This result is most useful in the form of the next corollary.

Corollary 3.12. Let © be a universe, [(¢,0)(xs), M, I] be an INDS such that I(M) (M =
& with (p,®)-impulsive cocycle attractor A and Ky < X be a compact set. Assume that
Ke®, K(0) = Ky for every 0 € ¥, is a closed pullback ©-absorbing such that A(c) < Ko for
all 0 € . If for each v € M () Ky and t > 0, there exists a sequence {z} < Ko\M such that
O(t,0_40)z B2 2, then klgrolo di(A(0-1k0), A(0)) = 0 for each o € X.

4. Upper semicontinuity of impulsive cocycle attractors

Here we deal with the upper semicontinuity at 0 for a family of (&,,®)-impulsive cocycle

attractors {An}ne[O,lb that is, we will prove that for each o € ¥ we have

(4.1) lir(r]l+ du(4,(0),Ag(0)) = 0.
'r)*)
We recall that (4.1) is equivalent to the following statement: given sequences {n;} < [0, 1]
with 7y “=3 0 and 2, € A,, (o), there exists a subsequence {k;};>1 of the positive integers with

k; 2% o0 and a point zg € Ap(o) such that xy, 2% 2.
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To obtain this upper semicontinuity we consider and/or assume:
[ % a universe D;
* an INDS [(¢y, 0)(x,5), My, I,] with a (&,, D)-impulsive cocycle attractor A,
for each n € [0,1];
» conditions (H1)-(H4) are satisfied;
* each point of M, satisfies py-C-SSTC;
| * there exists £ > 0 such that ¢o(lo(2),0) = £ for all (2,0) € My x X.

(A1) A

In what follows we present three auxiliary lemmas, which will help us to prove our main

theorem. For the following results, we will additionally set:

Fix 0 € 3 and let {nx}, {ex} < [0, 1] be sequences such that 7, € 20 0. Let
(A2) o = 0,0 and z), € A, (05)\M,, for each k =1 and ¢, be a global solution of @,,

through x; at oy.

Lemma 4.1. Assume that (A1) and (A2) hold. Letr =0, yp = ¢y(—r) for each k = 1, and
assume that yy oo Yo € My. Then s = ¢n, (Yi, 0—r0%) o 0, and for each t = 0 there is a
sequence {fx} < [0, 1] with by 2% 0 such that O (t + Bry 00k Y o wolt, 0 ,0)Io(yo). In
particular, if 0 <t < & then @, (t,0_.0%)ys =% wo(t,0_.0)Io(yo).

Proof. Note that by (H2) there exists a subsequence of {n;}, which we will denote the same,
and a sequence {wy} < X with wy, € M,, such that wy oo Yo. Since My satisfies ¢o-C-SSTC
it follows by Lemma that there exist A\,0 > 0 and k; € N such that

B((wg, 0_,01),8) < By, (Li, [0,2)])  for all k > ky,

where F,, (ILy, [0,2A]) is a A-tube through (wy, 0_,04) with section Sy = F,, (L, [0, 2A]) (| M),
and Fo(Lg, [0,2)]) is a A-tube through (yo, 6_,0) with section Sy = Fo(LLo, [0, 2A]) [ M. More-
over, we have F, (Ly, [0, A\]) (I(M,,) = @ and

B ((yo,0-:0), %) = Fo(Lo, [0, 2\]) [ B((wx, 0—,0%),0)  for all k > ki
Hence, there is ko = k; such that (yg,0_.0%) € B((wg,0_.0%),0) for all k > ky. Taking a
positive integer m such that mr > A, we have

ﬁﬂk (mr) (¢k(_(m + 1)T)7 Qf(erl)rUk) = (yka Q_TO'k),

which implies that (yg, 0 .0%) belongs to the trajectory of the global solution of the impulsive
skew-product semiflow 1:‘[77k associated to ¢, , for some time mr > . Therefore, Propositionm
implies that (yx,0_,01) € F,, (Lg, (A, 2X]) for & = ky and, consequently, there is oy € (0, A]
such that IL, (o) (yk, 0_r0) € M,,, that is, ¢, (o, 0_,01)yr € M, for k = k,. We may
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k—w

assume that oy =5 o € [0, A\] and from (H1) and Lemma |3.4| we obtain ¢,, (o, 0_,0k)yx —
wo(w, 0 0)yo € M.

Since ¢o((0, ], 0—r0)yo [ Mo = 2, it follows that g = 0. Hence, as 0 < ¢y, (yx, 0—r0%) < g
for all k& > ko, we obtain ¢,, (yx, 0_,0%) 290,

Now, let t = 0. If s, = ¢, (yg, 0—r0%), then

k—oo

P (5167 Q*To-k)yk € Mnk and P (Skv H*Tak)yk — Yo-

Moreover,
- k—
Pon (585 0—r 00y — To(yo) ¢ Mo

as Io(Mo) (1Mo = &. By Proposition , there is a sequence {ug} < [0, 1] with 2% 0 such
that

~ ~ ~ k—
Py, (t + M + Sk, gfra—k)yk’ = Pn (t + Mk, eskfro—k:)@nk (Sk, efrak)yk —O.; SOO(ta 977"0_)[0(3/0)-

Now, it is enough to take G, = sp + .

To end this proof note that for 0 < t < £, we have t < ¢o(Io(yo), 6 ,0) (see the last condition
of (A1)). Since @, (Sk, 0—r0k)Ys o In(yo) and sy, o 0, sp <t < ¢y, (P, (Sky O—r0k) Y, 05, —rOk)
for k sufficiently large, see Lemma [3.6] Then

Qank (t7 g—ro-k‘)yk = @nk (t — Sk, st_"'o-k)@nk (Skv H—To-k)yk
~ k—
= o (t = 81, Oy —r03) By (815 001 )y = @o(t, 0-r0) Lo (o).
q.e.d.

Lemma 4.2. Assume that (A1)-(A2) hold and assume additionally that there exists r = 0
such that ¥ (—r) 2% o€ My, If

(4.2) U Uk (R) is compact,

k=1

then there exists a positive integer mg such that, for m = my, one can find ki* € N such that

¢77k (wk(_l/m - T)a efl/mfra—k) > % fO?“ all k > kgl

Proof. Since ¢y (—r) 2% 20 € My, Lemma implies that t, = ¢, (Vp(—7),0_.0%) %0,
Thus, we may assume that 0 < £, < % for all kK > 1.

By (2.1), there exists €;,, > 0 such that Ute(oﬁgoyg)(FS(,(J (o, t,0 10) (V1 Mo) = @. Choose
mp € N such that m%) < min{é,, 4, %} and fix m = mg. Using ({.2)), taking a subsequence if

necessary, we may assume that ¢ (—1/m —r) 2% Y. Set s, = Gy, (Vr(=1/m —71),0_1 jmp—r0%)

and suppose, arguing by contradiction, that there exists a subsequence of {s;}, still denoted
the same, such that
forall k=>1.

1
Skgﬁ
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Hence, {s;} is bounded, and we can assume, without loss of generality, that sy e Taking
2k = P (S 01 /m—rOk) Vg (—% — r) € M,, and using (H1), we obtain
2k Iﬂg 300(37 e—l/m—ra)ym = Wp € MO-

Then by (H3) we have

L, (21) = @y (58, 01 pmes 00 )i (=1 /m — 1) =3 T () € To(My).
Since ¢o(Lo(Wm), Os—1/m—r0) = & by the last condition of (Al), it follows by Lemma [3.6] that
Gy (Ine (28), Os—1 jm—rOk) > % > % for k sufficiently large.

Thus for such values of k£ we have

Cne (b + = = 55, Osp—1/mr0%) Lo (2) = Oy (b, 003 0 (= = 51y O —1ym—r0%) Iy (21)
= @ (b, 0+08) P, (o = ks Os—1/m—r0n) Iy (2)
= o, (te, 0_ro%) Py ( — ks Osy—1/m—r0k) Pry (S -1 jm—r 0% ) Ui (=1/m — 1)
= @, (ti, 0-r0%) Py, (75 01 /m—r0n) b1 (= 1/m — 1)
= (i, O—r o) (—r) € My,

which is a contradiction, since

tht s —sp<ti+=<5+L4<$

1
Therefore, there is kf* € N such that ¢,, (Yp(—1/m — )
q.e.d.

1/m_rak) > % for all £ > kJ.

Lemma 4.3. Assume that (A1)-(A2) and [£.2) hold, and vy(—r) 2% 2o € X for some
r>=0. Then

(1) if zo ¢ My then there exists a bounded global solution 1y: R — X through zq at 0_,0.

(17) if xg € My then there exists mg € N such that for m = my the sequence {tp(—1/m —r)}
admits a subsequence with limit wu,, ¢ My such that u,, 2P . Moreover, there is a
bounded global solution Vg* of ¢y through u, at 0_,_.o for each m = my.

Proof. By ., there exists a subsequence, which we denote the same, such that
k—a0
Ur(—=r —m) — x_,, for all m > 1.

* Proof of (i). Suppose firstly that x_,, ¢ My for all m > 1. By Proposition for each
m = 1, there exists a sequence {p}'} < [0,00) such that p}* 2% 0 and

k—o0 ~

(157716(1 + Mﬁ efrfmak)wk(_r - m) - 900(1 0 mO)SE
But @, (1 4+ p',0_r—pow)bu(=r — m) = @p (U7, 0—r4m-1)0k)Yx(—r — m + 1), and using
Proposition we obtain

k—w

O (L 41, 0 Ok ) (=1 — M) — 111,
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and hence po(1,0_,_,0)x_p, = T_pq for each m > 1. Consequently the map ¢y: R —» X
given by

(4.3)

Go(t +m,0_, 0)x_p, ifte[-m,—m+1],m=>=1,
wol) = Go(t,0_,0)x0, if t >0,

is a global solution of ¢y through z( at 6_,0. It remains to show that v, is bounded. In fact,
let s € R and observe that if s > 0, then ¥y(s) = @o(s,0_.0)xo. By Proposition there is a
sequence {7} < [0, +00) such that 7y 2% 0 and

k(s + e = 1) = B (5 + Vs 001 )0r(—1) =5 Bo(s, 0_,0)x0 = to(s),

and since Yg(s + v —r) € [JYr(R) for all k = 1, we have ¢ (s) € | ¢x(R).

On the other hand, if s € [—m,—m + 1] for some m = 1, we have ¥y(s) = @o(s +
m,0_,_,0)2_p,. Again, using Proposition [3.7, there exists a sequence {ay} < [0, 400) such
that ay, "% 0 and
V(= 4 5+ i) = Go (5 + M+ g, 0y o) (=1 — m) 25 Gols +m, 0y o) = o (5),

which implies that ¢y(s) € [ J¢x(R). Therefore, 1, is a bounded global solution of ¢y through
Ty at 0_,0.

Now we suppose, without loss of generality, that z_,, € My for all m > 1. Let s)' =
G (Y (=7 —m),0_,_por) and 1 = ¢y, (Yp(—r — m + 1),0_,_,110%) for K = 1 and m > 1.
By Lemma we have s}’ "% 0 and i %0, As Ykom = Yp(—1 —m) oo T_, € My for all

m = 1, we obtain
~ m k—o0
Zkom = Pny (Sk 70—7‘—m0-k)yk,m ’ IO(x—m) = 20,m for m = 1.

As zom & My because Io(My) (Mo = &, it follows by Proposition that there exists a
k—o0
sequence {n"} < [0, 00) such that n* — 0 and

k—o0 ~

O (L + 17, 9—r—m+sg0k)2k,m — Po(1,0_,_10)z0.m ¢ Mo.
Using Proposition [3.9]
G (L0 + 13,0y s O8) 2km % 5o(1, 0 m0)20,m-
On the other hand, we note that
G (L1 + 1 0 rmisp 0x) 2hm = P (L 7 + 8 008 Yk
= G (" + 11" + 81 0 108) Py (1,008 ) Ybom
= @ (M 1+ 8 O mr108) k(= —m + 1),

for each k > 1. Since ygm—1 = Yr(—r —m + 1) koo T_my1 € My, m = 2, we have

~ m k—
907719 (rk 767r7m+10'k:)wk(_7' —m + 1) —O>O [O(xferl) = ZO,mfl ¢ M07 m 2 27
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and by Proposition [3.9

~ k—s
O (M + 1"+ 80,0108V (—r —m + 1) =% In(x_pi1) = 2om—1, ™M =2.

Hence, @o(1,0_,—n0)20.m = 20.m—1 for all m = 2. Thus the map 1ho: R — X given by
Go(t +m,0_,_0)20m, ifte|—m,—m+1], m=2,
Yolt) = {@0@ + 1,0, 10)z,  ift>—L.
is a global solution of @ through ¢o(1,0_,_10)zp1 at 6_,0.
We claim that $y(1,60_,_10)201 = zo. Indeed, note that
Go(1,0_,_10)z01 = Po(1,0_,_10)Io(z_1).
By Lemma , there exists a sequence {3} < [0,1] with 8; =3 0 such that

k—w

G (Bre + 1,0 103)hp(—r — 1) — Go(1,0 . 10)lo(z1).
On the other hand, using Proposition |[3.9] we have

95% (ﬁk + 17 efrflak)wk(_r - 1) = @ﬂk (ﬁkv Q,TUk)@nk(l, 9,r,10'k)¢k(—7’ - 1) =

k—o0

= Py (B, 00k ) (—1) = 0.
Thus, ¢o(1,0_,_10)2z01 = xo. In conclusion ¢): R — X is a global solution through z, at

f_,0. Using the argument of the previous case, we have 1)y bounded.

* Proof of (i7). Since xy € My, if follows by (2.1)) that there is €,, , > 0 such that

(4.4) U Foolwot,0-0) [ | My = 2.

te(0,€x,0)

By Lemma , there exists my € N which we may assume mLO < €490, Such that for m = my
one may find k' € N with

G Wk (=1/m = 7),0 1/ yop) > L for all k = k"
Thus for k£ > k' we have
(45) P, (%’ Hfl/m*TO-k) 1/}k(_1/m - 7”) = @ﬂk (%7 Hfl/mfro-k) 77blc(_1/7rl - T) = @/}k(—T) ¢ me

and by (4.2) we may assume that ¢ (—1/m — r) "% . As k — o0 in (4.5)), we get by (H1)
that

(4.6) ©o (%, 9_1/m_r0) Up, = To € My for each m = my.

Moreover, using (4.4)), we have u,, ¢ My for all m > mq since % < €zp.0-

Now as ¥y (—1/m —r) 2% e ¢ My for m = my, it follows by item (1), that there exists a

bounded global solution 3" of ¢ through w,, at 0_/,_,0, for each m = my. Using (4.2) again,
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we may assume that {tm, }msm, is convergent and by (4.6) we have u,, "—> xy, which ends the
proof. q.e.d.

Theorem 4.4. Assume that (A1) and (A2) hold. Suppose additionally that for each o € X:

(a) Une[o,l] Uier An(0i0) compact;
(b) lir(r)l+ dy(Ag(0_s0), Ag(o)) = 0.

Then, given o € ¥ and sequences {ng}, {ex} < [0, 1] with nx, € 290, we have
(4'7) 1}1_{2) dH(Amc (Ok)\Mnkv AO(U)) =0,

where oy, = 0,0, ke N.
In particular, for each o € X, we have

(4.8) lim dg (A, (0)\M,,, Ao(c)) = 0.

k—ao0

Moreover, if A,(c) = A,(c)\M, for each n € [0,1] and o € X, then the family {An}ne[o,l] is
upper semicontinuous at 0.

Proof. Let o € ¥ be fixed, {€}, {n} < (0,1] and {zx} = X be sequences such that n, € o
0 and zj, € A, (0x)\M,, for all k& = 1. We shall prove that there exists zy € A¢(c) such that
zr 2% 20, up to a subsequence.

Using condition (a), we can assume that there exists o € X such that z oo Zp, up to a
subsequence. So, it remains to prove that xzo € Ag(0).

Since z, € A,, (0x)\M,, for each k = 1, we use the notation of (A2), and condition (a) in
particular implies (4.2)) (see Corollary . Moreover, we can assume that

We(=m) =5 2_,, for each m > 1.

If 2o ¢ My, Lemmal[d.3)item (i) guarantees that there exists a bounded global solution 1 for
@o at o through zq given by (4.3)), that is, xg € Ag(o).

If xg € My then Lemma item (77) implies that there exist my > 1 such that the sequence
{e(=1/m)} admits a subsequence, denoted by the same, such that 1,(—1/m) =3 u,, ¢ M, for
m = mg. Moreover, u,, —> x, and there exists a bounded global solution Yy of ¢o through
Up, 8t O_y1 /0 for all m = my, that is, u, € Ag(0_1/,0) for all m > my. Hence, using condition
(b), we conclude that x¢ € Ay(o).

The last assertion follows from the identity

dy(C, D) = dy(C, D) for all nonempty sets C, D.
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5. Applications

We will revisit Example [3.3] to use Theorem to obtain upper semicontinuity of the im-
pulsive cocycle attractors. Let [(¢y, @) x), My, I,;] be the impulsive nonautonomous dynamical
system defined by (3.2)), which satisfies conditions (H1) - (H4) and the points —1 and 1 of
My x 3 satisty ¢o-C-SSTC.

Proposition 5.1. There exists a compact subset Ky of R that pullback ¢,-absorbs all fized
bounded sets of R, for each n € [0,1]. Moreover, if ® is the universe of all nonautonomous sets
D with Uyes D(9) bounded in R, the compact nonautonomous set Ko = {Ko}gex is pullback
(Py, ®)-absorbing, for each ne [0,1].

Proof. Fix B a bounded subset of R.

If Bc [-1—mn,1+n] then ¢,(t,9-¢)z = ¢y(t,9-)r € [-1—n,1+n]forall ze B, t >0,
ne[0,1] and g € X.

Otherwise, let b* = sup |B| = sup{|b|: b € B} and fix h € ¥. Note that s, = ¢,(b*,h) < o©

since b* > 1 + n. Therefore,
Sn b*
h(u)du 4+ ns, = In ( ),
|t s, =10 (=

and thus

S
J h(u)du < In(b*) for all h € ¥ and n € [0, 1].
0

By (3-I) we get §;  h(u)du = +oo for each h € ¥, and thus  sup  ¢,(b*, h) < oo. Let
heX, nel0,1]
t*=  sup ¢,(b* h) < .
hex, nel0,1]
If z € B()(1+n,00) then ¢, (t,g-1)x € [L + 1,2+ n] for all t = ¢*, n € [0,1] and g € X.

Analogously, if € B()(—o0, —1—n) then ¢, (¢, g_)x € [-2—n,—1—n] for all t > t*, n € [0,1]
and g € X.
Thus, taking Ky = [—3, 3] we have

(5.1) Oy(t,g-)Bc Ky forallt >t"

Moreover, given a nonautonomous set B € D, (5.1)) also holds, just making B = J sex B(9),
which is bounded in R. q.e.d.

By Theorem m [(©y,0) (x5, My, I] admits a (@, D)-impulsive cocycle attractor An for
each n € [0, 1]. Moreover,

(5.2) U U = K.

nel0,1] ge%

which is compact in R. It is not hard to see that A,(g) = [-2—n,—1—n] v {0} U [l +n,2+17]
for all g € X..
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Now it remains to verify condition (b) of Theorem to conclude the upper semicontinuity
of the family {An}ne[O,l] at 0. To that end we will use Corollary . Note that in this case
My Ko = {—1,1}.

We define the function 7: R, x ¥ — R given by

7(s,h) = exp (J h(u)du) for all s > 0 and h e 2.
0
Note that, using (3.1]), 7(-, h) is nondecreasing for each fixed h € ¥, and also 7 = 1.
Now fix t > 0, g € ¥ and take z = 1 (the case x = —1 is analogous). Let n = 1 be such that
2"t < 7(t,g4) < 2™ and define the sequence

1 1
T = (zn_l + 2n+k) T(t,g ), forkz=1.

, 1 1 1 1
Since 27! < 7(t,g4) < 2", we have 2"} (2n_1 + 2n+k> <z <27 (2n_1 + W), that

1 1
is,1+W<xk<2+2—kf0rallk>1. Thus zy, € (1,3) for all k£ > 1.

Fix k > 1 and let 51 = s1(k) = ¢o(xk, g ¢).
Proposition 5.2. Under the previous assumptions, the following properties hold:

(a) Tk = T(Slvgft)'
(b) s1 >t provided n = 1.
(¢) s1 <t provided n = 2.

Proof. (a) Note that

S1
o509 ) = 1< 4 = exp ( [ g_t<u>du) R —_—
0

(b) If this is not the case then

1
rltig) > o) = o0 = (14 g ) 70,90
which is a contradiction.

(¢) If this is not the case then

1 1
T(t,9-t) < T(51,9-1) = T = <2n_1 + W) 7(t, 9-1),

which is a contradiction since 2,%1 + ﬁ <lforalln>2andk > 1. q.e.d.
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For any h € X, setting s*(h) = ¢o(2,h), we know that 7(s*(h),h) = 2. Set hy = g4,
to = so = 0, recall that s; = ¢g(xy, ho), and define t; = s;. We will also set the following

(h1 =0 t11,, So="(h1) and to = t1 + s,
hy = G_t11,, 53 = 5"(he) and t3 =ty + s3,

L1 = G—thty s Sno=8"(hn—1) and t, = t,1 + 55, = 2.
Before continuing, note that

tj
exp f
t .

j—

1g_t(u)du> _exp (J hj_l(u)du> (55, hy1) = (5" (hya) By 1) = 2,

0
forj=2,....,n.
Proposition 5.3. Forn > 2 it holds t,,_1 <t <t,.

Proof. First, let us argue by contradiction that ¢ < ¢,_;. Then

H(t g 0) < T(tn 1,g4) — oxp (f gt(u)du> _ on 2y ( J : gt(u)du>

0 0
o o L1 1 11
=2 2T(Sl7gft) =2 ka =2 2 (2n—1 + 2n+k> T(tvgft) = (5 + 2k:+2) T(tagft)7

which is a contradiction since % + 2,}+2 < 1forall k> 1.

Also, suppose to the contrary that ¢t > ¢,,. Then

. 1 1 1
T(t,g_t) = T(tmg—t) =2 lxk = 2" (2n—1 T W) T(t7g—t) = (1 + W) T(tag—t)v

which is a contradiction since 1 + 216% > 1 for all £ = 1. Then the proof is concluded. q.e.d.

Proposition 5.4. There holds Go(t, 0_ig)zy =3 1.

Proof. If n = 1, it follows by Proposition that
! 1
Go(t, g-1)rr = @olt,g¢)Tk = T4 exp (—f gt(U)du) =1+ fork>1,
0

and therefore @o(t, g_¢)xx .
Now, let n = 2. By Proposition [5.3] ¢, 1 <t < t,,, consequently

(150(t> eftg):[;k‘ = QOO(t - Zfnfla hn71)27
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and hence
t—tn_1 t
Qo(t,0-1g)xr = 2exp (—J hn_l(u)du) = 2exp <—J g_t(u)du)
0 tn—1
tn—1 t1 t
= 2exp (J g—t(u)du + J g—t(u)du — f g_t(u)du)
t1 0 0
¢
= 2" exp (—J g_t(u)du>
0
=1—|—2k+1 for all £ > 1,
that is, @o(t, 6_,g)z), =3 1. qe.d.

Thus conditions of Corollary are satisfied, and we obtain
lim du(Ao(g-s), Ao(g)) =0 for each g € X.
5s—0

Hence, (4.7) holds for {An}ne[(),l]; as a direct application of Theorem . We also have
A,(g) = A, (9)\M,, and hence the family {An}ne[o,l] is upper semicontinuous at 0.

6. Lower semicontinuity

In this last section, we establish sufficient conditions to obtain the lower semicontinuity for
a family of impulsive cocycle attractors. We will describe the theoretical foundation to achieve
our result of lower semicontinuity.

Definition 6.1. Let *: R — X be a global solution of ¢ at o € ¥ and set W* = *(R).
(i) The unstable set of ¢* at o € X is defined by

W (*) (o) ={z € X: there exists a global solution v of ¢ at o through z and
such that tlim d(y(t),¥*) = 0}.
——00

(i) The unstable set of \* is the nonautonomous set W*(1p*) = {W*(1)*)(0)}es.
(iii) Given § > 0, we also define the local unstable set of )* at o € 3 by

Wi(*)(o) = {z € X: there exists a global solution v of ¢ at o through z
such that d(y(t), U*) < 0 for allt <0 and tlim d(y(t), U*) = 0}.
—>—C0
(iv) The local unstable set of * is the nonautonomous set W (¥*) = {W2(1*)(0)}pes.

Lemma 6.2. If ¢* is a global solution of @ then W*(1)*) is ¢-invariant.

Proof. Fixt = 0 and o € ¥. For a given z € W*(¢)*)(0), there exists a global solution 9 of ¢ at
o such that ¢(0) = z such that lim d(¢(s), U*) = 0. Note that @(t,0)z = ¢(t,0)(0) = ¥(t).
s——0
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Define ¢1: R — X by ¥1(s) = ¢(s + t) for s € R, which is a global solution of ¢ at ;0 such
that ¢1(0) = ¥(t) = ¢(t,0)z. Hence,

lim d(va(s), %) = lim_d(w(s +1), %) = 0

and @(t,0)z € W (¢*)(0,0).

On the other hand, let z € W*(¢*)(0;0). There exists a global solution v of ¢ at 60 such
that ¢(0) = z and Sl_i)r_noo d(y(t), ¥*) = 0.

We claim that w = ¢¥(—t) € W*(¢*)(0). Indeed, define 1)9: R — X by ¥n(s) = (s —t).
Thus v is a global solution of ¢ at o and 19(0) = ¥(—t) = w. Also

lim d(a(s), ¥*) = lim d((s —t), ¥*) =0,
5§——00 5§—>—00
and the proof is complete. q.e.d.
From the above definitions and Corollary [2.18] we have the following straightforward result.

Lemma 6.3. Fiz © as the universe of nonautonomous sets with | .5, D(c) bounded in
X. Let [(¢,0)(xx), M,I] be an INDS with a (¢,D)-impulsive cocycle attractor A such that
I(MYM = @. If Y* is a bounded global solution of ¢ at o then W*(p*)(o) < A(o)\M.

Proof. Let x € W*(1p*)(0). There exists a global solution ¢ of ¢ at o through x such that
ngoo d(¢(s), ¥*) = 0. Since I[(M)(\M = &, we have )(R) (M = @. Since ¥* is bounded
and the INDS has a (¢, ®)-impulsive cocycle attractor, we obtain 1 is bounded. Therefore,
using Corollary [2.18] we conclude that z = ¢(0) € A(c)\M. q.e.d.

Definition 6.4. We say that two global solutions 1y and 1y of ¢ at o are separated in the
past if limsup d(¢(t), 2(t)) > 0.
t——00

Remark 6.5. If ¢/; and ¢, are global solutions of ¢ at o which are not separated in the past,
then tlim d(¢1(t),1a(t)) = 0 and, therefore, W*(¢)(0) = W¥(1)2)(0).
——0a0

Let S(o) be the set of all bounded separated global solutions in the past of ¢ at o € X.

Lemma 6.6. Let [(¢,0)xx), M,I| be an INDS with a (p,D)-impulsive cocycle attractor A
such that I(M)(\M = @. Then

A(o)\M = U W ()(o) for each o€ 3.
eS(o)

Proof. Let 0 € ¥ and x € A(c)\M. By Corollary 2.18] there is a bounded global solution
¥ though x at o. Thus, x € W"(¢))(c) by definition of the unstable set. If ) € S(o) then the
proof is finished. Otherwise, there is ¢; € S(o) such that v, and ¢ are not separated in the
past, and therefore, W*(41)(c) = W*(¥)(0) (see Remark [6.5]). Hence, € W*(¢1)(0). Lemma
ensures the other inclusion. q.e.d.
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The following result provides sufficient conditions for a type of lower semicontinuity at n = 0

of a family of impulsive cocycle attractors.

Theorem 6.7. Let [(py,0)(xx), My, I)] be an INDS with a (@, ®)-impulsive cocycle attractor
fln, for each n € [0,1], satisfying the conditions of Theorem . Additionally, assume that:

(a) for each m € [0,1] and o € ¥ there exists a sequence of separated global solutions in the

past S,(o) = {w;n}j?l with

* * # * -0
sup [ (1, (1), ¥1o(0) + d(5(0). w5, (1) =0,

for each j = 1;

(b) for each o € ¥ there exists 6 > 0 such that
W,k W,k W,k w(, )k —0
dr (W3 (¥50)(0), Wi (5,)(0)) + du (W3 (45, (0), Wi (¥50) (0)) "= 0,
for each j = 1;

(c) for each o € ¥ we have

Ao(0) = [ WH(W3o) (o).

Then given o € ¥ and x € Ao(c) there exist sequences my, e —> 0 and x € Ay, (0, 0)\M,,

such that xy, e

Proof. Fix 0 € ¥, z9 € Ag(c) and € > 0. Using item (c), there exists, z. € | J;-, W"(¢})(0)
such that

d(xe, z9) < %

Let j = 1 be such that x. € W"(¢%;)(c) and §; be the global solution of @, at o such

that ¢;(0) = z. and tlim d(&;(t),Vi,) = 0. There exists 7 > 0 such that z. = §;(—7) €
——a0 ’

Wi (¥5)(0—-0). By condition (b), there exist a sequence 7y, 2% 0 and 2, € Wi (5, )(0_.0)

such that z; oo Ze.

Now, since z. ¢ My by Lemma [6.6] using Proposition there exists a sequence {e;} <
|0, +00) such that e 2% 0 and

Tk -= 95% (Ek +7, Q*Ta)zk’ = 950(77 Q*TU)ZE = 950(7—’ 9*7’0)61'(_7) = fj (0) = Te.
Then the result follows, noting that zj € A,, (0, 0)\M,,. q.e.d.

Consequently, we obtain the following lower semicontinuity result, with direct proof.

Corollary 6.8. Assume that all the conditions of Theorem are satisfied. Suppose also
that given sequences my, e —3 0 and xy € Ay (O, 0)\M,, there exists z, € A, (o) for each

k =1 such that d(xy, zx) “2%0. Then the family {An}ne[o,l] is lower semicontinuous at 0.
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Conclusion and final remarks

In this work, we presented the collective tube conditions for nonautonomous impulsive dyna-
mical systems and we proved a result containing sufficient conditions to ensure the upper
semicontinuity of impulsive cocycle attractors of nonautonomous dynamical systems. Our main
result is Theorem [4.4]

The difficulties of this theory appear in the applications: the conditions are very hard to
verify, and in most examples are assumed artificially. Even conditions for the autonomous
case are not easy to verify in examples, both in finite or infinite dimensional spaces (see the
application in Section .

In this paper we chose to present a more simple example (an ODE in the real line) precisely
to show the computations required to verify all the needed conditions. Thus, in the theory of
impulsive systems, this is one of the many problems yet to be solved: to find concrete examples
in which the conditions can be verified, and also try to find results that simplify the verification
of these conditions.

Lastly, we presented abstract results to obtain lower semicontinuity of impulsive cocycle
attractors for nonautonomous dynamical systems. As for applications, there is still a large
theory to be developed, namely, the study of the unstable sets of invariants and their continuity

with respect to small perturbations, and we plan to analyze them in the future.
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