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Abstract. In this work, we study permanence of hyperbolicity for autonomous
differential equations under nonautonomous random/stochastic perturbations.

For the linear case, we study robustness and existence of exponential di-

chotomies for nonautonomous random dynamical systems. Next, we establish
a result on the persistence of hyperbolic equilibria for nonlinear differential

equations. We show that for each nonautonomous random perturbation of

an autonomous semilinear problem with a hyperbolic equilibrium there exists
a bounded random hyperbolic solution for the associated nonlinear nonau-

tonomous random dynamical systems. Moreover, we show that these random
hyperbolic solutions converge to the autonomous equilibrium. As an applica-

tion, we consider a semilinear differential equation with a small nonautonomous

multiplicative white noise, and as an example, we apply the abstract results
to a strongly damped wave equation.

1. Introduction

The study of permanence properties in dynamical systems has been widely de-
veloped in the past decades (see [2, 3, 4, 7, 12, 14, 15, 19, 20, 21, 26, 24, 28, 27, 29]
and references therein). Some of these works dealt with exponential dichotomies,
which corresponds to the notion of hyperbolicity in the non-autonomous framework
and gives, for each time, a decomposition of the space into two parts, one along
which solutions decay exponentially to zero forwards, and another along which solu-
tions decay exponentially to zero backwards. In several of these papers they proved
robustness of exponential dichotomies for deterministic nonautonomous dynamical
systems [20, 21, 23], and random dynamical systems [6, 29].

Our purpose is to establish robustness results of exponential dichotomies for
nonautonomous random dynamical systems. First, we extend the concept of expo-
nential dichotomies to encompass random and nonautonomous dynamical systems
and provide conditions to guarantee that it persists under perturbation. Then,
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we apply these abstracts results to study permanence of hyperbolicity on nonau-
tonomous random semilinear differential equations obtained by small perturbations
of an autonomous problem.

In this way, we consider a autonomous semilinear problem in a Banach space X

ẏ = Ay + f0(y), t > 0, y(0) = y ∈ X, (1.1)

and nonautonomous random perturbations of it

ẏ = Ay + fη(t, θtω, y), t > τ, y(τ) = yτ ∈ X, η ∈ (0, 1], (1.2)

where A generates a strongly continuous semigroup {eAt : t ≥ 0} ⊂ L(X), θt : Ω→
Ω is a random flow defined in a probability space (Ω,F ,P). We assume that there
exist a hyperbolic equilibrium for (1.1) y∗0 , i.e., y∗0 is such that f(y∗0) = −Ay, and
the linearized problem ż = Az + f ′(y∗0)z admits an exponential dichotomy. Then,
we provide conditions to prove existence and continuity of “hyperbolic equilibria”
for (1.2). In fact, we show that for each small perturbation fη of (1.1), there exists
a global solution of (1.2) ξ∗η that presents an hyperbolic behavior (which means that
the linear nonautonomous random dynamical system generated by

ẏ = Ay +Dyfη(t, θtω, ξ
∗
η(t, θtω))y, t ≥ τ,

admits an exponential dichotomy), and that these hyperbolic solutions ξ∗η converges
to y∗0 , as η → 0.

To prove this result on the existence and continuity of “hyperbolic equilibria”
for semilinear differential equations, we need first to guarantee permanence of hy-
perbolicity for linear nonautonomous random dynamical systems, which can be
interpreted as follows: suppose that fη(t, θtω, ·) := Bη(t, θtω) ∈ L(X) is a linear
perturbation of ẋ = Ax, and that the autonomous evolution process generated by
A admits an exponential dichotomy, then we prove the linear co-cycle generated by

ẋ = Ax+ Bη(t, θtω)x, (1.3)

admits an exponential dichotomy, under the assumption that B(t, θtω) is uniformly
small (on time). We prove the robustness result via “discretization”, i.e., we first
prove the robustness for the discrete case, then we provide some “connecting”
results between discrete and continuous dynamical systems, and we use these results
to establish the robustness result for continuous nonautonomous random dynamical
systems.

As an application of these results, we consider a family of stochastic differential
equations with a nonautonomous multiplicative white noise

dy = Aydt+ f0(y)dt+ ηκty ◦ dWt, t ≥ τ, y(τ) = yτ ∈ X, (1.4)

where η ∈ [0, 1], and the mapping R 3 t 7→ κt ∈ R is a real function. We use a
formal change of variables to obtain a family of nonautonomous random differential
equations like (1.2). As an example, we consider a damped wave equation with a
nonautonomous multiplicative white noise utt + βut −∆u = f(u) + ηκtu ◦ Ẇ , x ∈ D,

u(0, x) = h1(x), ut(0, x) = h2(x), x ∈ D,
u(t, x) = 0, x ∈ ∂D, t > 0.

(1.5)
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This work was motivated by the following stochastic differential equation, with
a small (autonomous) multiplicative white noise,

dyt = Aydt+ εy ◦ dWt, t ≥ τ, y(τ) = yτ ∈ X. (1.6)

where ẏ = Ay admits an exponential dichotomy, the family {Wt : t ∈ R} is the
standard Wiener process, and ε > 0. Consider a stochastic process z(t, ω) = z∗(θtω)
known as the Orstein-Uhlenbeck process (which will be describe later), where ω is
a parameter in the probability space (Ω,F ,P), and {θt : t ∈ R} is a group on Ω.
By a standard procedure, we define v(t, ω) = e−εz

∗(θtω)y(t, ω), that satisfies

v̇ = Av + εz∗(θtω)v, (1.7)

which is a (autonomous) random differential equation as a perturbation of an au-
tonomous problem. However, for each random parameter ω ∈ Ω, our perturbation
Bε(θtω) := εz∗(θtω) have some sub-linear growth on t, which brings some funda-
mental difficulties to prove robustness, because we cannot assume that operator
B(θtω) is uniformly bounded in time. Therefore, when v̇ = Av is hyperbolic it is
not possible to guarantee that (1.7) admits an exponential dichotomy, in the sense
of [6, 29], for ε > 0 small enough. To deal with this issue we propose “to bound”
the noise with respect to time.

Bounded noise is very sensible in real life applications, [12, 13, 16, 22, 28]. For
instance, in [13] the authors consider an Ornstein-Uhlenbeck process depending on
a control parameter that allows them to ensure that the noise is inside a bounded
interval, which is fixed by practitioners based on experiments. They use such a
bounded noise to model perturbations on the input flow of a chemostat. This idea
is generalized in [12], where several examples in population dynamics with bounded
random fluctuations are given. In this work, we “bound” the noise in the following
way:

Since the stochastic process z∗ satisfies limt→±∞ |z∗(θtω)/t| = 0, for almost all
ω, see [14], it is possible to choose any differentiable positive real function κ such
that there is a random variable m > 0 such that

m(ω) := sup
t∈R

{
|κtz∗(θtω)|+ |κ̇tz∗(θtω)|

}
< +∞.

Hence, instead of (1.6), we consider

dyt = Aydt+ εκty ◦ dWt, (1.8)

where κt is a real function that allows us to control the white noise on time. By
the change of variables v(t, ω) = e−εκtz

∗(θtω)y(t, ω), we obtain

v̇ = Av − ε[κ̇tz∗(θtω)− κtz∗(θtω)]v, (1.9)

which is a linear nonautonomous random differential equation. Since the perturba-
tion Bε(t, θtω) := ε[κ̇t−κt]z∗(θtω) is uniformly bounded on time, we can develop a
theory of exponential dichotomies to guarantee existence of hyperbolicity for (1.9).

Historically, to study permanence of properties under perturbations it is sensible
to assume that the perturbation is uniformly bounded on time, see [2, 3, 4, 6, 10, 19,
23]. For instance, if ẏ = Ay is hyperbolic, and B : R→ L(X) is uniformly bounded
with respect of t, then the hyperbolicity persists on ẏ = Ay+B(t)y, see [23]. Also,
for a differential equation on a Banach space, driven by a group θt : Σ → Σ on
a compact Hausdorff set Σ, ẏ = A(θtσ)y, exhibiting an exponential dichotomy,
[20] proved that the hyperbolicity persists for B : Σ → L(X), which is naturally



4 T. CARABALLO, A. N. CARVALHO, J. A. LANGA, AND A. N. OLIVEIRA-SOUSA

uniformly bounded by the compactness of Σ, and in [21] they considered an the
case that B is a unbounded operator, but also with some uniformly boundedness
condition on time.

More recently, they consider the random case, in [6, 29] it was studied stabil-
ity of tempered exponential dichotomies for random difference equations, yn+1 =
A(θω)yn, where θ : Ω→ Ω is a random flow defined on a probability space (Ω,F ,P),
but usually in the situation the assumption on the perturbation B are more re-
stricted because has to be exponentially small, typically ‖B(θnω)‖ ≤ δ(ω)e−ν|n|.
Therefore, all these results on robustness assume that the perturbation are uni-
formly bounded on time. However, as seen before, we cannot assume that even a
small noise is satisfy such property. For this reason, to prove permanence of hy-
perbolicity we have to consider a time dependent scalar function κt to compensate
the the growth of the noise in time, (1).

Accordingly, we consider a small nonautonomous random perturbation B : R×
Ω → L(X) of a hyperbolic problem ẏ = Ay. Our perturbation B(t, ω) depends
on two parameters, the time t of deterministic nature, and another ω varying in a
probability set (Ω,F ,P). This leads us to establish robustness results of exponential
dichotomies for nonautonomous random dynamical systems, which is a co-cycle
(ϕ,Θ) driven by Θ : R × Ω → R × Ω. Hence, using similar techniques to those in
[29] (for the discrete case), and [20] (for the continuous case), we establish stability
results, and applied these results to guarantee existence of exponential dichotomy
for ẏ = Ay + B(Θt(τ, ω))y, where B is uniformly small (with respect to t), and
ẋ = Ax is hyperbolic.

For the nonlinear case, inspired by [19], considering a small nonautonomous
bounded noise as in (1.4) we provide conditions that allow us to prove existence
and continuity of random hyperbolic solutions for (1.2). In [19] they study existence
and continuity of hyperbolic solutions, invariant manifolds, and provide conditions
to prove continuity of pullback attractors for evolution processes. This work was
crucial for further development on continuity and stability of attractors in a deter-
ministic scenario [10, 11, 17]. However, for random dynamical systems the theory
is still under development. There are many works on the existence and upper semi
continuity of random attractors, including nonautonomous random dynamical sys-
tems, see [9, 15, 25, 24, 27], and references therein. Nevertheless, as it is suggested
in [19, 17], the lack of theorems on the persistence of random hyperbolic solutions
makes very difficult to prove results on the lower semi-continuity of random attrac-
tors for problems under small random perturbations. The study of these special
solutions are the core on the problem of continuity and stability of attractors, and
we believe that this paper provides a direction to study continuity and stability of
random attractors.

For random dynamical systems, Arnold, Boxler, Crauel and Kloeden [2, 3, 4],
studied the effect of the noise on hyperbolic dynamical systems. In [2] they proved
existence of a stationary solution for a nonlinear random differential equation. More
recently, in [26], they studied stability of tempered stationary solutions, and tem-
pered attractors for small random perturbations of nonautonomous problems. How-
ever, differently of our work, in none of these works it is possible to conclude that
their stationary solutions exhibit hyperbolicity, because the noise presents some
growth in time that do not allow us to apply any robustness result.
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We organize our paper as follows. In Section 2, we present a notion of ex-
ponential dichotomy, simultaneously, for discrete and continuous nonautonomous
random dynamical systems. Then, for the discrete case, we prove a robustness
result, uniqueness, and continuous dependence of projections associated with the
exponential dichotomy for the discrete case in Subsection 2.1. In Subsection 2.2 we
establish some theorems to compare exponential dichotomies of discrete and con-
tinuous nonautonomous random dynamical systems which allows to conclude the
same stability results for the continuous case. In Section 3, we apply the abstract
robustness results for nonautonomous random/stochastic differential equations. In
Subsection 3.1, we show existence of exponential dichotomy for (1.3) for the linear
case. Later, in Subsection 3.2, we consider a family of nonautonomous random
semilinear differential equations, we establish the existence and continuity of ran-
dom hyperbolic solutions for (1.2). Finally, in Subsection 3.3, we show how to apply
our result on persistence of hyperbolic equilibria for (1.4), and as an example, we
consider a damped wave equation with a nonautonomous multiplicative white noise
(1.5).

2. Exponential dichotomies for Nonautonomous RDS

In this section, we introduce the notion of nonautonomous random dynamical
systems in a Banach space X. We consider a driving flow {Θt}t∈T over T × Ω,
where (Ω,F ,P) is a probability space, and T = Z or T = R.

Definition 2.1. Let (Ω,F ,P) be a probability space. We say that a family of maps
{θt : Ω→ Ω : t ∈ T} is a random flow if it satisfies

• θ0 = IdΩ;
• θt+s = θt ◦ θs, for all t, s ∈ T;
• θt : Ω→ Ω is measurable for all t ∈ T.

Definition 2.2. Let θ := {θt : Ω → Ω : t ∈ T} be a random flow. Define
Θt(τ, ω) := (t+ τ, θtω) for each (τ, ω) ∈ T×Ω, and t ∈ T. We say that a family of
maps {ϕ(t, τ, ω) : X → X; (t, τ, ω) ∈ T+ ×T×Ω} is a nonautonomous random
dynamical system (co-cycle) driven by Θ if

(1) the mapping T+ × Ω × X 3 (t, ω, x) 7→ ϕ(t, τ, ω)x ∈ X is measurable for
each fixed τ ∈ T;

(2) ϕ(0, τ, ω) = IdX , for each (τ, ω) ∈ T× Ω;
(3) ϕ(t + s, τ, ω) = ϕ(t,Θs(τ, ω)) ◦ ϕ(s, τ, ω), for every t, s ≥ 0 in T, and

(τ, ω) ∈ T× Ω;
(4) ϕ(t, τ, ω) : X → X is a continuous map for each (t, τ, ω) ∈ T+ × T× Ω.

We usually denote the pair (ϕ,Θ)(X,T×Ω), or (ϕ,Θ), to denote the co-cycle ϕ driven
by Θ.

Remark 2.3. To simplify the notation we will write ωτ := (τ, ω) ∈ T × Ω, and
Θt(ωτ ) := (θtω)τ+t.

Remark 2.4. Let (ϕ,Θ)(X,T×Ω) be a nonautonomous random dynamical system
such that the mapping

T+ ×X 3 (t, x) 7→ ϕ(t, ωτ )x ∈ X is continuous, for each ωτ ∈ T× Ω. (2.1)
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Then (ϕ,Θ) can be associate with a family of continuous evolutions processes. In
fact, for each ωτ ∈ T× Ω, we define the following evolution process

Φωτ := {ϕt,s(ωτ ) := ϕ(t− s,Θsωτ ) ; t ≥ s}.

This means that, for each ωp ∈ T× Ω the family of maps Φωτ satisfies

(1) φt,t(ωτ ) = IdX , for each t ∈ T;
(2) φt,s(ωτ ) ◦ φs,r = ϕt,r(ωτ ), for each t ≥ s ≥ r;
(3) the mapping {(t, s) ∈ T2 : t ≥ s} × X 3 (t, s, x) 7→ ϕt,s(ωτ )x ∈ X is

continuous.

Throughout this work we will assume that a nonautonomous random dynamical
system (ϕ,Θ) satisfies condition (2.1). This assumption is sensible in the applica-
tions, for instance, when the co-cycle is induced by a well-posed stochastic/random
differential equation.

In this paper, we will use the concept of global solutions for the evolution process
Φωp , for each ωp ∈ T× Ω, associated with a given co-cycle (ϕ,Θ).

Definition 2.5. Let S = {S(t, s) : t ≥ s, t, s ∈ T} a evolution process on a
Banach space X. We say that a map ξ : R → X is a global solution for S if
S(t, s)ξ(s) = ξ(t) for every t, s ∈ T with t ≥ s.

A global solution ξ is backwards bounded if ξ(−∞, 0]) = {ξ(t) : t ≤ 0} is a
bounded subset of X.

We set L(X) as the space of all bounded linear maps between X and X.
Recall the definition of strongly measurable:

Definition 2.6. Let Ω be a measurable space, and X a Banach space. A map
P : Ω → L(X) is said to be strongly measurable if for every x ∈ X the map
Ω 3 ω 7→ P (ω)x ∈ X is measurable.

Definition 2.7. A map D : T × Ω → R is said to be Θ-invariant if for each
ωτ ∈ R× Ω we have that D(Θtωτ ) = D(ωτ ), for every t ∈ T.

Now, we define the notion of exponential dichotomy for linear nonautonomous
random dynamical systems.

Definition 2.8. A nonautonomous random dynamical system (ϕ,Θ) such that
ϕ(t, τ, ω) ∈ L(X), for all (t, τ, ω) ∈ T+ × T × Ω, is said to admit an (uniform)

exponential dichotomy if there exists a θ-invariant subset Ω̃ of Ω with full mea-
sure, P(Ω̃) = 1, and a family of projections, Πs := {Πs(ωτ ) : ωτ ∈ T × Ω̃} such
that

(1) for each τ ∈ T the map Πs
τ (·) := Πs(τ, ·) : Ω̃→ L(X) is strongly measurable;

(2) Πs(Θtωτ )ϕ(t, ωτ ) = ϕ(t, ωτ )Πs(ωτ ), for every t ∈ T+ and ωτ ∈ T× Ω̃;
(3) ϕ(t, ωτ ) : R(Πu(ωτ )) → R(Πs(Θtωτ )) is an isomorphism, where Πu

τ :=
IdX −Πs

τ for all τ ∈ T;
(4) there exist Θ-invariant maps α : T×Ω→ (0,+∞) and K : T×Ω→ [1,+∞)

such that

‖ϕ(t, ωτ )Πs(ωτ )‖L(X) ≤ K(ωτ )e−α(ωτ )t, for every t ≥ 0;

‖ϕ(t, ωτ )Πu(ωτ )‖L(X) ≤ K(ωτ )eα(ωτ )t, for every t ≤ 0,

for every ωτ ∈ T× Ω̃
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In this case, the function K is called a bound and α an exponent for the expo-
nential dichotomy.

We refer to the exponential dichotomy as: continuous if T := R, and discrete
if T := N.

Remark 2.9. If for each ωp the map R 3 t→ K(Θtωp) is not constant we say that
(ϕ,Θ) admits an nonuniform (with respect to t) exponential dichotomy. In
the special case when the mapping R 3 t→ K(Θtωp) is tempered we say that (ϕ,Θ)
admits a tempered exponential dichotomy In this work, we do not deal with the
case of nonuniform exponential dichotomies. For more information on this topic
we recommend [6, 8, 29].

Remark 2.10. If a co-cycle (ϕ,Θ) admits an exponential dichotomy, then for each

fixed ωp ∈ T× Ω̃ the associated evolution process Φωp also admits it in the sense of
Henry [23, Section 7.6].

The interpretation of a nonautonomous random dynamical system as a family of
evolution processes with a parameter provides also a special function usually called
as Green functions:

Definition 2.11. Let (ϕ,Θ) be a co-cycle which admits an exponential dichotomy
with family of projections Πs. A Green function associated to (ϕ,Θ) and family
of projection Πs is given by

Gωp(t, s) =

{
ϕt,s(ωp)Π

s(Θsωp), if t ≥ s,
−ϕt,s(ωp)Πu(Θsωp), if t < s,

for each ωp fixed.

2.1. Exponential dichotomy for nonautonomous random co-cycles: dis-
crete case.

In this subsection, we study a discrete nonautonomous random dynamical system
with exponential dichotomy. In this paper, the purpose of the discrete case is to
works as a tool to obtain results for the continuous case of exponential dichotomies
and hence, for differential equations. The goal is to presented a summary of results
concerning exponential dichotomy for discrete co-cycles driving by flows over non-
compact symbols spaces that we are going to need in order to establish robustness
results of hyperbolicity for differential equations. We prove that the property of
admitting an discrete exponential dichotomy is stable under perturbation (Theorem
2.14), a type of admissibility result (Theorem 2.12), and uniqueness and continuous
dependence of projections (see Corollary 2.13 and Theorem 2.23, respectively).

The techniques used in this subsection are the same introduced by Henry [23] (for
deterministic dynamical systems) and by Zhou et al. in [29] (for random dynamical
systems).

A linear discrete nonautonomous random dynamical systems (ϕ,Θ) can be as-
sociated with nonautonomous random difference equations. In fact, for each ωp ∈
Z× Ω we study

xn+1 = A(Θnωp)xn, xn ∈ X and n ∈ Z, (2.2)

where A : T × Ω → L(X) and ϕ(n, ωp) := A(Θn−1ωp) ◦ · · · ◦ A(ωp) for n > 0 and
ϕ(0, ωp) = IdX .

We prove existence of solutions for the non-homogeneous problem

xn+1 = A(Θnωp)xn +B(Θnωp)xn + fn, for every n ∈ Z. (2.3)
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As in the deterministic case, see Henry [23], this plays an important role in the
proof of robustness of exponential dichotomy.

Theorem 2.12. Let (ϕ,Θ) be a co-cycle generated by A : Z × Ω → L(X) and
assume that it admits an exponential dichotomy with bound K and exponent α.
Then there exists a Θ-invariant map δ with

0 ≤ δ(ωp) <
1− e−α(ωp)

1 + e−α(ωp)
, for each ωp ∈ Z× Ω,

for which, if B : Z× Ω→ L(X) satisfies

‖B(Θkωp)‖L(X) ≤ δ(ωp)K(ωp)
−1,∀k ∈ Z,

then, for each ωp fixed and {fn} ∈ l∞(Z) the difference equation

xn+1 = A(Θnωp)xn +B(Θnωp)xn + fn, for every n ∈ Z, (2.4)

possesses a unique bounded solution x(·, ωp).

The proof of Theorem 2.12 follows the same line of arguments presented by Zhou
et al. in [29, Lemma 2]. Some details of the proof are included for they will be
needed in forthcoming results.

Proof. Let ωp ∈ Z × Ω̃ and f ∈ l∞(Z). As a standard procedure, see for instance
[23, 29], we only need to prove that the operator

(Γfx)(n, ωp) :=

+∞∑
k=−∞

Gωp(n, k + 1)(B(Θkωp)xk + fk), ∀n ∈ Z

has a unique fixed point x(·, ωp) in l∞(Z).
First, let us prove that Γfx(·, ωp) ∈ l∞(Z), for x ∈ l∞(Z).

‖(Γfx)(n, ωp)‖X ≤
+∞∑

k=−∞

‖Gωp(n, k + 1)‖L(X)(‖B(Θkωp)‖L(X) ‖xk‖X + ‖fk‖X)

≤
+∞∑

k=−∞

K(Θk+1ωp)e
−α(ωp)|n−1−k|(δ(ωp)K(ω)−1‖xk‖X + ‖fk‖X)

≤
+∞∑

k=−∞

e−α(ωp)|n−1−k|(δ(ωp)‖x‖l∞ + ‖f‖l∞K(ωp))

≤ 1 + e−α(ωp)

1− e−α(ωp)
(δ(ωp)‖x‖l∞ + ‖f‖l∞K(ωp)) < +∞.

Then, Γf (·, ωp)(l∞(Z)) ⊂ l∞(Z). Finally, if x, y ∈ l∞(Z), we have that

‖(Γfx)(n, ωp)− (Γfy)(n, ωp)‖X

≤
+∞∑

k=−∞

‖Gωp(n, k + 1)‖L(X) ‖B(Θkωp‖L(X)‖xk − yk‖X

≤
+∞∑

k=−∞

K(Θk+1ωp)e
−α(ωp)|n−1−k|δ(ωp)K(ωp)

−1‖xk − yk‖X

≤ 1 + e−α(ωp)

1− e−α(ωp)
δ(ωp)‖x− y‖l∞ .
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Therefore,

‖Γfx(·, ωp)− Γfy(·, ωp)‖l∞ ≤
1 + e−α(ωp)

1− e−α(ωp)
δ(ωp)‖x− y‖l∞ ,

thus, we choose δ(ωp) <
1−e−α(ωp)

1+e−α(ωp)
, thus Γf (·, ωp) is a contraction in l∞(Z). In this

way, we obtain x ∈ l∞(Z) such that xn(ωp) = (Γfx)(n, ωp) for each n ∈ Z, in other
words, x(·, ωp) is the only solution for (2.4). �

The following corollary establishes uniqueness for the family of projections. The
proof follows the ideas of [18, Corollary 7.5] and it is included for the readers
convenience.

Corollary 2.13. If (ϕ,Θ) admits an exponential dichotomy, then the family of
projections are uniquely determined.

Proof. Let Πu,(i), for i = 1, 2, be projections associated with an exponential di-
chotomy of (ϕ,Θ).

Given ωp ∈ Z× Ω̃ and z ∈ X, define fn = 0, for all n 6= −1, and f−1 = z. From
Theorem 2.12 with B = 0, there exists {x(n, ωp) : n ∈ Z} the unique bounded
solution of

xn+1(ωp) = A(Θnωp)xn + fn, n ∈ Z.
From the proof of Theorem 2.12 (with B = 0), it is possible to see that this solution
is given by

xn(ωp) =

+∞∑
k=−∞

G(i)
ωp(n, k + 1)fk, for i = 1, 2, (2.5)

where G(i) is the Green function associated with Π(i), for i = 1, 2. By uniqueness of

the solution, we must have that x0(ωp) =
∑+∞
−∞G

(i)
ωp(0, k + 1)fk = G

(i)
ωp(0, 0)f−1 =

Πu,(i)(ωp)z, for i = 1, 2. Therefore, Πu,1(ωp) = Πu,2(ωp) for all ωp ∈ T× Ω̃. �

Now, we state a robustness result of exponential dichotomies for nonautonomous
random dynamical systems.

Theorem 2.14. Let (ψ,Θ) be a discrete nonautonomous random dynamical system
with an exponential dichotomy with bound K and exponent α. There exists a Θ-
invariant map with

0 ≤ δ(ωp) <
1− e−α(ωp)

1 + e−α(ωp)
, for each ωp ∈ Z× Ω,

for which, if (ϕ,Θ) is a discrete nonautonomous random dynamical system such
that

sup
n∈N
{K(ωp)‖ψ(1,Θnωp)− ϕ(1,Θnωp)‖L(X)} ≤ δ(ωp), (2.6)

then (ϕ,Θ) admits an exponential dichotomy with bound

M(ωp) := K(ωp)

(
1 +

δ(ωp)

(1− ρ(ωp))(1− e−α(ωp))

)
max{D1(ωp), D2(ωp)},

and exponent

α̃(ωp) := − ln(coshα(ωp)− [cosh2 α(ωp)− 1− 2δ(ωp) sinhα(ωp)]
1/2),
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where ρ(ωp) := δ(ωp)(1 + e−α(ωp))/(1− e−α(ωp)), D1(ωp) := [1− δ(ωp)e−α(ωp)/(1−
e−α(ωp)−α̃(ωp))]−1, D2 := [1 − δ(ωp)e−β̃(ωp)/(1 − e−α(ωp)−β̃(ωp))]−1 and β̃(ωp) :=
α̃(ωp) + ln(1 + 2δ(ωp) sinhα(ωp)).

The proof of Theorem 2.14 follows from the proof of Theorem 1 by Zhou et al.
[29], which is done for tempered exponential dichotomies.

Remark 2.15. Actually, the proof of [29, Theorem 1] works for any co-cycle defined
of a non-compact symbol space. In fact, let ϕ be a linear co-cycle driving by a flow
Σ × Ω 3 (σ, ω) 7→ Θt(σ, ω) = (θ1

t σ, θ
2
tω), where θ1

t : Σ → Σ is a flow in a metric
space Σ and θ2

t : Ω→ Ω is a random flow, and t ∈ Z. Then, following the ideas of
[29], it is possible to provide a suitable definition of tempered exponential dichotomy
for a general linear co-cycle (ϕ,Θ)(X,Σ×Ω) and to prove a robustness result for it.

In this work, we choose to deal with the case where the bound K is Θ-invariant,
because we want to understand the effect of a bounded noise on the hyperbolicity of
an autonomous problem, and therefore it is not expect to obtain tempered exponen-
tial dichotomies which means that, the mapping t 7→ K(θtωp) has a sub-exponential
growth, see [29].

Remark 2.16. Note that, thanks to the approach given by [29] we are able to

provide explicit expressions for the bound K̃ and exponent α̃ for the obtained expo-
nential dichotomy. This can also be done in the continuous case.

Now, we prove a continuous dependence result of the projections associated with
exponential dichotomy for co-cycle. The proof is inspired in [18, Theorem 7.9].

Theorem 2.17. Suppose that ϕ and (ψ,Θ) are nonautonomous random dynamical
systems and that they admit an exponential dichotomy with projections Πs

ϕ and Πs
ψ,

exponents αϕ and αψ, respectively, and with the same bound K. If

sup
n∈Z
{K(ωp)‖ϕn(ωp)− ψn(ωp)‖L(X)} ≤ ε,

then

sup
n∈Z
‖Πs

ϕ(Θnωp)−Πs
ψ(Θnωp)‖L(X) ≤

e−αψ(ωp) + e−αϕ(ωp)

1− e−(αψ(ωp)+αϕ(ωp))
ε.

Proof. Let z ∈ X, ω ∈ Ω̃, and m, p ∈ Z be fixed and consider

fn(ωp) =

{
0, if n 6= m− 1,
z, if n = m− 1.

Thus by Theorem 2.12 for each ωp ∈ Z× Ω̃ there exists a bounded solution x(ωp) =
{xn(ωp)}n∈Z given by xjn(ωp) := Gjωp(n,m)z−1 for j = ϕ,ψ. Note that

xϕn+1 − ψn(ωp)x
ϕ
n = ϕn(ωp)x

ϕ
n − ψn(ωp)x

ϕ
n + fn(ωp)

and xψn+1 − ψn(ωp)x
ψ
n = fn(ωp). Then, if zn := xϕn − xψn we obtain that zn+1 =

ϕnzn + yn, where yn := (ϕn(ωp) − ψn(ωp)x
ϕ
n(ωp) for all n ∈ Z. Thanks to the

boundedness of the sequence {xϕn(ωp)}n∈Z and by the hypotheses on ϕn − ψn we
have that {yn}n∈Z is bounded and by Theorem 2.12 we have that

zn =

∞∑
k=−∞

Gψωp(n, k + 1)(ωp)(ϕk(ωp)− ψk(ωp))G
ϕ
ωp(k,m)z
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and therefore, by the hypotheses on Ψ− Φ, we deduce

‖zm‖X ≤
∞∑

k=−∞

K(ωp)e
−αψ(ωp)|m−k−1|e−αψ(ωp)|k−m|‖ϕk(ωp)− ψk(ωp)‖L(X)‖z‖X

≤ e−αψ(ωp) + e−αϕ(ωp)

1− e−(αψ(ωp)+αϕ(ωp))
ε ‖z‖X .

The definition of z in m yields

zm = xϕm − xψm = (Gϕωp(m,m)−Gψωp(m,m))z = (Πs
ϕ(Θmωp)−Πs

ψ(Θmωp))z.

Consequently,

‖(Πs
ϕ(Θmωp)−Πs

ψ(Θmωp))z‖X ≤
e−αψ(ωp) + e−αϕ(ωp)

1− e−(αψ(ωp)+αϕ(ωp))
ε ‖z‖X ,

which concludes the proof of the theorem. �

2.2. Exponential dichotomy for co-cycle: continuous case. We study ex-
ponential dichotomies for a continuous nonautonomous random dynamical system
(ϕ,Θ).

Our goal is to prove a robustness result for nonautonomous random dynami-
cal systems that possesses a uniform exponential dichotomy. This section follows
closely the ideas of Chow and Leiva [20]. However, while they consider a driv-
ing flow θt : Σ → Σ on a compact Hausdorff space Σ in a deterministic con-
text, we deal with a nonautonomous random dynamical systems driven by a flow
R × Ω 3 (τ, ω) 7→ Θt(τ, ω) = (t + τ, θtω) ∈ R × Ω, where θt : Ω → Ω is a random
flow defined on a probability space Ω.

We first prove results to compare existence of exponential dichotomies between
continuous and discrete nonautonomous random dynamical systems (Theorem 2.18
and Theorem 2.20). As an applications of these results we obtain a robustness
result of exponential dichotomies for continuous nonautonomous random co-cycles
(Theorem 2.21), and uniqueness and continuous dependence of the family of pro-
jections associated with the exponential dichotomy (Corollary 2.19 and Theorem
2.23, respectively).

We first prove that if a co-cycle possesses an exponential dichotomy, then its
discretization also admits an exponential dichotomy.

Theorem 2.18. Let (ϕ,Θ)(X,R×Ω) be a linear co-cycle that admits an exponential
dichotomy with bound K, exponent α and family of projections Πu := {Πu(ωp) :

ωp ∈ R× Ω̃}, where P(Ω̃) = 1 and Ω̃ is θ-invariant. Then for each ωp ∈ R× Ω̃ the
sequence of linear operators {ϕn(ωp) := ϕ(1,Θnωp) ; n ∈ Z} admits an exponential
dichotomy with bound K(ωp) and exponent α(ωp).

Proof. Let Πs be a family of projections associated with the exponential dichotomy.
Define, for each n ∈ Z and ωp, the projector Pn(ωp) := Πs(Θnωp). Then

Pn+1(ωp)ϕn(ωp) = Πs(Θn+1(ωp))ϕ(1,Θn(ωp))

= ϕ(1,Θn(ωp))Π
s(Θn(ωp))

= ϕn(ωp)Pn(ωp),

and the first property is proved. Note that, if Q = IdX − P , we have that

ϕn(ωp)|R(Qn(ωp))) = ϕ(1,Θn(ωp))|R(Πu(Θn(ωp)))
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is an isomorphism onto R(Qn+1(ωp)).
Finally, for n ≥ m we see that

‖ϕn,m(ωp)Pm(ωp)‖L(X) ≤ K(Θmωp)e
−α(ωp)(n−m),

and for n < m

‖ϕn,m(ωp)Qm(ωp)‖L(X) ≤ K(Θmωp)e
α(ωp)(n−m),

where ϕn,m(ωp) is the inverse of ϕm,n(ωp) over R(Qm(ωp)), and the proof follows
by the Θ-invariance property of K. �

As a corollary of Theorem 2.18 and Corollary 2.13 we obtain uniqueness of
projectors for the continuous case.

Corollary 2.19. If (ϕ,Θ) admits an exponential dichotomy, then the family of
projections are uniquely determined.

Now, we provide conditions to prove a kind of converse result of Theorem 2.18.
If the discretization admits an exponential dichotomy then the continuous co-cycle
also possesses.

Theorem 2.20. Let (ϕ,Θ)(X,R×Ω) be a co-cycle and for each ωp consider the as-
sociated sequence of operators

{ϕn(ωp) := ϕ(1,Θnωp)}n∈Z.

Suppose that there is a full measure set Ω̃ such that for each ωp ∈ R× Ω̃

• we have that

L(ωp) := sup
0≤t≤1

‖ϕ(t, ωp)‖L(X) < +∞,

satisfies L(Θtωp) ≤ L(ωp), for all t ∈ R.
• there exists Θ-invariant maps K,α such that the sequence {ϕn(ωp)}n∈Z

admits an exponential dichotomy with bound K(ωp), exponent α(ωp), and
family of projections {Pn(ωp) : n ∈ Z} such that for each (n, p) ∈ Z×R the

map Pn(p, ·) : Ω̃→ L(X) is strongly measurable.

Then (ϕ,Θ) admits an exponential dichotomy with exponent α, and bound

K̂(ωp) = K(ωp) sup
0≤t≤1

{‖ϕ(t, ωp)‖L(X)e
α(ωp)t }.

Proof. Let {Pn(ωp);n ∈ Z} be the family of projectors associated with the expo-

nential dichotomy of {ϕn(ωp)}n∈Z. Define Πs : R× Ω̃→ L(X) by

Πs(ωp) := P0(ωp).

Thus for each p ∈ R fixed Πs(p, ·) : Ω̃→ L(X) is strongly measurable.
Claim 1: For each k ∈ Z fixed, we have that Pk(ωp) = Πs(Θkωp).
Indeed, for each k ∈ Z fixed the sequence {ϕn(Θkωp)}n∈Z admits an exponential

dichotomy with projections {Pn(Θkωp);n ∈ Z}. Note that,

ϕn(Θkωp) = ϕ(1,Θn(Θkωp)) = ϕn+k(ωp).

Then, from Lemma 2.13 we have that Pn(Θkωp) = Pn+k(ωp) for all n, k ∈ Z. In
particular, Pk(ωp) = Πs(Θkωp).

Next, we prove that this projector operator is the candidate to obtain the expo-
nential dichotomy.
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Claim 2: For all t ≥ 0 and ωp ∈ Z× Ω̃, we have that

‖ϕ(t, ωp)Π
s(ωp)‖L(X) ≤ K̂(ωp)e

−α(ωp)t,

where K̂(ωp) = K(ωp) sup0≤t≤1{eα(ωp)t‖ϕ(t, ωp)‖L(X)}.
Indeed, choose n ∈ N, such that n ≤ t < n+ 1, then we write

ϕ(t, ωp) = ϕ(t− n,Θnωp)ϕ(n, ωp).

Therefore

‖ϕ(t, ωp)Π
s(ωp)‖L(X) ≤ K(ωp)e

−α(ωp)n‖ϕ(t− n,Θnωp)‖L(X)

≤ K̂(ωp)e
−α(ωp)t.

Claim 3: Let x ∈ R(Πu(ωp)), t < 0 and choose n ≤ 0 such that n ≤ t < n+ 1.
Define the linear operator

ϕ(t, ωp)x := ϕ(t− n,Θnωp)ϕ(n, ωp)x,

where ϕ(n, ωp) is the inverse of ϕ(−n,Θnωp)|R(Πu(Θnωp)). Then for all t ≤ 0

‖ϕ(t, ωp)Π
u(ωp)‖L(X) ≤ K̂(ωp)e

α(ωp)t.

The proof of Claim 3 follows by a similar argument used on the proof of Claim
2.

Claim 4: The range of Πs(ωp) is characterized as follows

R(Πs(ωp)) = {z ∈ X ; [0,+∞) 3 t 7→ ϕ(t, ωp)z is bounded }.

Indeed, if x ∈ R(Πs(ωp)) from Claim 2 we have that

‖ϕ(t, ωp)x‖X ≤ K̂(ωp)e
−α(ωp)t‖x‖X , for every t ≥ 0.

Thus, it follows that [0,+∞) 3 t 7→ ϕ(t, ωp)x is bounded. Conversely, suppose that
x /∈ R(Πs(ωp)) and define v = ϕ(n, ωp)Π

u(ωp)x,, hence

‖ϕ(−n,Θnωp)Π
u(Θnωp)v‖X ≤ K(Θnωp)e

−α(ωp)n‖v‖X ,

for n ≥ 0. Thus we obtain

‖Πu(ωp)x‖X ≤ K(ωp)e
α(ωp)n‖ϕ(n, ωp)Π

u(ωp)x‖X , for n ≥ 0.

Since Πu(ωp)x 6= 0 and we obtain that [0,+∞) 3 n 7→ ϕ(n, ωp)Π
u(ωp)x is un-

bounded, then the mapping [0,+∞) 3 t 7→ ϕ(n, ωp)x is unbounded and complete
the proof of Claim 4.

Claim 5: The range of Πu(ωp) is characterized as follows: z ∈ Πu(ωp) if and
only if there exists a backwards bounded solution ξ∗ for the evolution process
Φωp = {ϕt,s(ωp) : t ≥ s}, see Remark 2.4, such that ξ∗(0) = z.

In fact, let z ∈ R(Πu(ωp)), and t < 0, we define

ξ(t) = ϕ(t− n,Θnωp)ϕ(n, ωp)z,

where n ≤ 0 is such that n ≤ t < n + 1. Then ξ is a backwards bounded solution
for the evolution process {ϕt,s(ωp) : t ≥ s} through z. In fact, for t ≥ s

ϕt,s(ωp)ξ(s) = ϕ(t− s,Θsωp)ϕ(s− n,Θnωp)ϕ(n, ωp)z

= ϕ(t− n,Θnωp)z = ξ(t),

which shows that ξ is a backwards solution. From Claim 3 we have that ξ is bounded
and ξ(0) = z. Conversely, choose x ∈ X such that x /∈ R(Πu(ωp)) and suppose that



14 T. CARABALLO, A. N. CARVALHO, J. A. LANGA, AND A. N. OLIVEIRA-SOUSA

there exists a backwards solution of {ϕt,s(ωp) : t ≥ s} through x on t = 0. Then,
for n ≤ 0,

‖Πs(ωp)x‖X = ‖Πs(ωp)ϕ(−n,Θnωp)ξ(n)‖X
≤ ‖ϕ(−n,Θnωp)Π

s(Θnωp)‖L(X)‖ξ(n)‖X
≤ K(ωp)e

α(ωp)n‖ξ(n)‖X .

Since Πs(ωp)x 6= 0 we see that ξ is unbounded, and the proof is complete.
Now, from Claim 4 and Claim 5, we obtain that:
Claim 6: R(Πs(·)) is positively invariant and R(Πu(ωp) is invariant, i.e.,

ϕ(t, ωp)R(Πs(ωp)) ⊂ R(Πs(Θtωp)), for all t ≥ 0, and

ϕ(t, ωp)R(Πu(ωp)) = R(Πu(Θtωp)), for all t ≥ 0.

Claim 7: The linear operator ϕ(t, ωp) : R(Πu(ωp))→ X is injective.
Indeed, let z ∈ R(Πu(ωp) such that ϕ(t, ωp)z = 0. Choose n ∈ N such that

n ≤ t ≤ n+ 1, then

0 = ϕ(n− t,Θtωp)ϕ(t, ωp)z = ϕ(n, ωp)z.

Now, Claim 7 follows by the fact that ϕ(n, ωp)|R(Πu(ωp)) is injective for any integer
n ≤ 0.

Then it follows directly from Claims 6 and 7 that ϕ(t, ωp) : R(Πu(ωp)) →
R(Πu(Θtωp)) is an isomorphism.

Finally, from Claim 6, we obtain that ϕ(t, ωp)Π
s(ωp) = Πs(Θtωp)ϕ(t, ωp) for all

t ≥ 0, and the proof of the theorem is complete. �

Now, we state our robustness result for nonautonomous random dynamical sys-
tems with an exponential dichotomy.

Theorem 2.21. Let (ϕ,Θ) be an co-cycle with an exponential dichotomy with
bound K and exponent α. Assume that there is a random variable L : R × Ω →
(0,+∞) such that

L(ωp) := sup
0≤t≤1

{
‖ϕ(t, ωp)‖L(X)

}
< +∞,

that satisfies L(Θtωp) ≤ L(ωp), for all t ∈ R. Then there exists a Θ-invariant map
δ : Z× Ω→ R with

0 < δ(ωp) <
1− e−α(ωp)

1 + e−α(ωp)
, for each ωp ∈ R× Ω,

such that every co-cycle (ψ,Θ) satisfying

sup
0≤t≤1

{
‖ϕ(t, ωp)− ψ(t, ωp)‖L(X)

}
≤ δ(ωp),

admits an exponential dichotomy with exponent α̃(ωp) and bound

M̂(ωp) = M(ωp) sup
0≤t≤1

{
‖ψ(t, ωp)‖L(X)e

α̃(ωp)t
}
,

where M and α̃ are the bound and exponent of the discretization of (ψ,Θ) given in
Theorem 2.14.
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Proof. First, we consider the discretization of the co-cycle (ϕ,Θ), i.e., for each
ωp we consider the family of linear operators {ϕn(ωp) := ϕ(1, ωp) : n ∈ Z}. From
Theorem 2.18, we have that {ϕn(ωp) : n ∈ Z} admits a exponential dichotomy with
bound K(ωp) and exponent α(ωp). By Theorem 2.14, there exists a Θ-invariant
map δ such that if {ψn(ωp)}n∈Z is a sequence of bounded linear operators which
satisfies

sup
n∈Z
‖ϕn(ωp)− ψn(ωp)‖L(X) ≤ δ(Θnωp) = δ(ωp),

{ψn(ωp)}n∈Z admits an exponential dichotomy with bound M(ωp) and exponent
α̃(ωp) (see Theorem 2.14). Now, in order to use Theorem 2.20 to guarantee that
(ψ,Θ) admits an exponential dichotomy it remains only to see that

sup
0≤t≤1

‖ψ(t, ωp)‖L(X) ≤ δ(ωp) + L(ωp) < +∞.

Therefore, the hypotheses of Theorem 2.20 are satisfied, and the proof is complete.
�

Remark 2.22. Note that for each nonautonomous evolution process (ϕ,Θ) with a
uniform exponential dichotomy there exists δ in the previous theorem that depends
only on the exponent of exponential dichotomy. When applying Theorem 2.14 we
obtain explicit functions for the bound and exponent of the perturbations, which is
an improvement of the result of robustness in the case of Ω a Hausdorff compact
topological space on [20].

To end this subsection we extend the result on the continuous dependence of
projections for discrete co-cycle, Theorem 2.17, to continuous co-cycle.

Theorem 2.23. Suppose that (ϕ,Θ) and (ψ,Θ) are nonautonomous random dy-
namical systems and that they admit an exponential dichotomy with projections Πs

ϕ

and Πs
ψ, and exponents αϕ and αψ, respectively. If

sup
t∈R

{
K(ωp)‖ϕ(t, ωp)− ψ(t, ωp)‖L(X)

}
≤ ε,

then

sup
t∈R
‖Πs

ϕ(Θtωp)−Πs
ψ(Θtωp)‖L(X) ≤

e−αψ(ωp) + e−αϕ(ωp)

1− e−(αψ(ωp)+αϕ(ωp))
ε.

Proof. The proof is a consequence of Theorem 2.20 and Theorem 2.17. �

3. Hyperbolicity on nonautonomous random differential equations

This section is dedicated to apply the exponential dichotomies results to nonau-
tonomous random/stochastic differential equations. First we prove the existence of
an exponential dichotomy for a linear nonautonomous random dynamical system
obtained from a nonautonomous random perturbation of an autonomous problem.
Then we apply this result to show existence and continuity of random hyperbolic
solutions for nonautonomous random semilinear differential equations.

Before we start we remark some facts about nonautonomous random differen-
tial equations and generation of nonautonomous random dynamical systems. Let
(θ,Ω,F ,P) be a random flow, and consider the following initial value problem

ẏ = f(t, θtω, y), t > τ and y(τ) = y0. (3.1)
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Assume that for almost all ω ∈ Ω the solutions of (3.1) are associated with a
nonlinear evolution process Sω := {Sω(t, s) : t ≥ s}. More precisely, if for every
τ ∈ R and y0 ∈ X there exists [τ,+∞) 3 t 7→ y(t, τ, ω; y0) a solution for (3.1), then
we define Sω(t, τ, ω)u0 := y(t, τ, ω;u0).

Another equivalent way to generate a dynamical system from problem (3.1) is
the following: define x(t) := y(t+ τ, τ, ω;u0), for every t ≥ 0 and some fixed τ ∈ R.
Hence we obtain the initial value problem

ẋ = f(t+ τ, θt+τω, x), t > 0 and x(0) = x0.

Now, the relation f(t+τ, θt+τω) = f(Θt(t, θτω)), where Θ is the flow {Θt : R×Ω→
R×Ω}t∈R defined as Θt(τ, ω) = (t+ τ, θtω), leads us to consider a nonautonomous
random differential with a nonlinearity driven by the flow Θ i.e.

ż = f(Θt(τ, ω), z), t > 0 and z(0) = z0, for each (τ, ω) ∈ R× Ω. (3.2)

Thus, the solutions of (3.2) defines a nonautonomous random dynamical system
ϕ(t, τ, ω)z0 := z(t, (τ, ω); z0).

Therefore, we rewrite problem (3.1) using formulation of (3.2) as follows

ϕ(t, τ, ω)y0 := y(t+ τ, τ, θ−τω; y0).

Or equivalently, for almost all ω ∈ Ω we have that

ϕ(t, τ, ω) = Sθ−τω(t+ τ, τ), t ≥ 0, τ ∈ R.

Consequently, we study asymptotic behavior of both dynamical systems: the co-
cycle (ϕ,Θ)(X,R×Ω) generated by (3.2), and the family of evolution processes {Sω; ω ∈
Ω} associated with (3.1).

3.1. Linear nonautonomous random differential equations.
In this subsection we shall study linear nonautonomous random differential equa-

tions on a Banach space X. We provide conditions to guarantee the existence of an
exponential dichotomy for a nonautonomous random perturbation of a hyperbolic
autonomous problem. The results contained here were inspired by those of Chow
and Leiva [20] in a deterministic context, where the base flow is a group over a
Hausdorff compact set.

Let A be the generator of a strongly continuous semigroup {eAt : t ≥ 0} and
B : R×Ω→ L(X) be a bounded operator depending on parameters on R×Ω. We
study the linear problem

ẋ = Ax+B(Θtωτ )x, t > 0 and x(0) = x0. (3.3)

where ωτ := (τ, ω) and for every t ∈ R the map Θt : R× Ω→ R× Ω is defined by
Θtωτ := (t+ τ, θtω).

To study equation (3.3), we consider the following family of integral equations

x(t, τ, ω;x0) = eAtx0 +

∫ t

0

eA(t−s)B(Θsωτ )x(s)ds, x0 ∈ X, t ≥ 0, ωτ ∈ R× Ω.

We have the following result on the robustness of exponential dichotomies for
linear nonautonomous random differential equations.

Theorem 3.1. Let (ϕ,Θ) be a linear nonautonomous random dynamical system
with

L(ωτ ) := sup
t∈R
‖ϕ(t, ωτ )‖L(X) < +∞, for each ωτ ∈ R× Ω, (3.4)
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where supt∈R L(Θtωτ ) ≤ L(ωτ ). Suppose that (ϕ,Θ) admits an exponential di-
chotomy with exponent α and bound K. Then there exists a Θ-invariant map
ε : R× Ω→ (0,+∞) such that for every B : R× Ω→ L(X) with

sup
0≤t≤1

‖
∫ t

0

B(Θsωτ )xds‖X < ε(ωτ )‖x‖X

a nonautonomous random dynamical system satisfying

ψ(t, ωτ ) = ϕ(t, ωτ ) +

∫ t

0

ϕ(t− s,Θsωτ )B(Θsωτ )ψ(s, ωτ )ds (3.5)

admits an exponential dichotomy with bound M̂ and exponent α̃ provided in Theo-
rem 2.21.

Proof. Let (ψ,Θ) be a nonautonomous random dynamical system satisfying (3.5).
Then

‖ψ(t, ωτ )x‖X ≤ L(ωτ )‖x‖X+

∫ t

0

L(Θsωτ )‖B(Θsωτ )‖L(X)‖ψ(s, ωτ )x‖X ds, 0 ≤ t ≤ 1.

From Grönwall’s inequality we obtain ‖ψ(t, ωτ )‖L(X) ≤ L1(ωτ ) := L(ωτ )eL(ωτ )ε(ωτ ),
for every 0 ≤ t ≤ 1.

Hence, for every 0 ≤ t ≤ 1

‖ϕ(t, ωτ )x− ψ(t, ωτ )x‖X ≤ ε(ωτ )L(ωτ )L1(ωτ )‖x‖X .

Finally, since (ϕ,Θ) admits an exponential dichotomy, there exists a Θ-invariant
measurable map δ > 0 as in Theorem 2.21. Therefore, for each ωτ choose ε =
ε(ωτ ) > 0 such that ε(ωτ )L(ωτ )L1(ωτ ) < δ(ωτ ). Note that, for every t ∈ R
L2(Θtωτ ) := L(Θtωτ )L1(Θtωτ ) ≤ L2(ωτ ), therefore we choose ε(Θtωτ ) = ε(ωτ ),
and the proof is complete. �

Remark 3.2. Theorem 3.1 is saying that if problem ẋ = A(Θtωτ )x generates
a nonautonomous random dynamical system with an exponential dichotomy then
for the class of bounded linear perturbation B given in the Theorem the perturbed
nonautonomous random dynamical system generated by problem

ẋ = A(Θtωτ )x+B(Θtωτ )x, x(0) = x0 ∈ X, t ≥ 0, (3.6)

admits an exponential dichotomy.

Now, as a corollary we have the following robustness result for an autonomous
problem under nonautonomous random perturbation.

Theorem 3.3. Assume that A generates a analytic semigroup {eAt : t ≥ 0},
and that the spectrum of A, σ(A) does not intersect the imaginary axis and that
the set σ+ := {λ ∈ σ(A) : Reλ > 0} is compact. Then there exists a Θ-invariant
map ε : R× Ω→ (0,+∞) such that, if B : R× Ω→ L(X) satisfies

sup
0≤t≤1

‖
∫ t

0

B(Θsωτ )xds‖X < ε(ωτ )‖x‖X ,

then any nonautonomous random dynamical system satisfying

ϕ(t, ωτ ) = eAt +

∫ t

0

eA(t−s)B(Θsωτ )ϕ(s, ωτ ) ds (3.7)
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admits an exponential dichotomy with bound M̂ and exponent α̃ provided in Theo-
rem 2.21.

Proof. These assumptions on A implies the existence of an exponential dichotomy
for {eAt : t ≥ 0}, see for instance [23]. In fact, if γ is a smooth closed simple curve
in ρ(A) ∩ {λ ∈ C : Reλ > 0} oriented counterclockwise and enclosing σ+ let

Q = Q(σ+) =
1

2πi

∫
γ

(λ−A)−1dλ,

and define X+ = QX, X− = (I − Q)X, and A± := A±. At this scenario, A−
generates a strongly continuous semigroup on X−, A+ ∈ L(X+), and there are
M ≥ 1, β > 0 such that

‖eA+t‖L(X+) ≤Meβt, t ≤ 0;

‖eA−t‖L(X−) ≤Me−βt, t ≥ 0.

Now we are ready to apply Theorem 3.1 for {eAt : t ≥ 0}. �

Remark 3.4. Similar as in Henry [23], Theorem 3.3 can be proved in the para-
bolic case, when −A is a sectorial operator with A ∈ L(Xα, X), for a unbounded
perturbation B : R × Ω → L(Xα, X), where Xα is a fractional power of X, with
0 ≤ α < 1. In this situation there exists a Θ-invariant ε such that if B satisfies

‖B(Θtωτ )x‖X ≤ b(ωτ )‖x‖Xα ,
sup0≤t≤1 ‖

∫ t
0
B(Θsωτ )x ds‖X < q(ωτ )‖x‖Xα ,

and q(ωτ )δb(ωτ )1−δ ≤ ε(ωτ ) with 0 < δ < (1 − α)/2, then any nonautonomous
random dynamical system satisfying (3.7) admits an exponential dichotomy in Xα.

Remark 3.5. Note that, Theorem 3.3 can be proved independently of Theorem 3.1
and any nonautonomous random dynamical systems (ϕε,Θ) satisfying (3.7) will
satisfy the hypotheses of Theorem 3.1.

3.2. Existence and continuity of random hyperbolic solutions.
Now we study a semilinear problem under a nonautonomous random perturba-

tion. We provide conditions to obtain existence of a bounded random hyperbolic
solution for a co-cycle. We consider the semilinear problem on a Banach space X

ẏ = By + f0(y), y(0) = y0 (3.8)

and a nonautonomous random perturbation of it

ẏ = By + fη(Θtωτ , y), y(0) = y0, (3.9)

where (θ,Ω) is a random flow, and {Θt : t ∈ R} is a driving flow given by Θt(ωτ ) =
(t+ τ, θtω) for every ωτ ∈ R× Ω, and η ∈ (0, 1] is a real parameter.

We assume that problem (3.8) generates a (nonlinear) semigroup {T (t) : t ≥ 0},
and that (3.9) generates a (nonlinear) nonautonomous random dynamical system
(ψη,Θ), for each η ∈ [0, 1].

Our goal is to provide conditions on the limit “fη → f0”, as η → 0, such that,
if {T (t) : t ≥ 0} has a hyperbolic equilibrium y∗0 , then there exists a (unique)
random hyperbolic equilibrium for (ψη,Θ) near y∗0 , for η > 0 “small enough”. We
first prove existence and continuity of global solutions for (3.9) and then show that
these solutions exhibit a hyperbolic behavior.
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Definition 3.6. Let (ψ,Θ) be a nonautonomous random dynamical system. We
say that a map ζ : R× Ω→ X is a global solution for (ψ,Θ) if

ψ(t, ωτ )ζ(ωτ ) = ζ(Θtωτ ), for every t ≥ 0.

Remark 3.7. For random dynamical systems some authors called these global so-
lutions of equilibria. In our work, we will only refer as equilibrium to these kind of
global solutions when it exhibits a hyperbolic behavior. In this situation, we will call
hyperbolic equilibria or hyperbolic solutions.

Remark 3.8. Let (ψ,Θ) be a nonautonomous random dynamical system and a
global solution ζ. Then, for each ωτ fixed, the mapping R 3 t 7→ ξ(t, ωτ ) := ζ(Θtωτ )
defines a global solution for the evolution process {ψ(t− s,Θsωτ ) : t ≥ s}.

Suppose that y∗0 ∈ X is a hyperbolic equilibrium for (3.8), i.e., the linear
operator A := B + f ′0(y∗0) generates a C0-semigroup {et : t ≥ 0} that admits an
exponential dichotomy, see for instance Henry [23]. Let U be an open neighborhood
of y∗0 in X such that, fη(ωτ , ·) ∈ C1(U,X), for all η ∈ [0, 1] and ωτ ∈ R× Ω.

Define

λ(η, ωτ ) := sup
(t,x)∈R×U

{
‖fη(Θt(ωτ ), x)−f0(x)‖X +‖(fη)x(Θt(ωτ ), x)−f ′0(x)‖L(X)

}
,

and we assume that

lim
η→0

sup
t∈R

λ(η,Θtωτ ) = 0. (3.10)

Also suppose

ρ(ε) := sup
x∈×U

sup
‖h‖≤ε

{
‖f0(x+ h)− f0(x)− f ′0(x)h‖X

‖h‖X

}
→ 0, as ε→ 0. (3.11)

Theorem 3.9. Let y∗0 be a hyperbolic equilibrium for (3.8) and assume that (3.10)
and (3.11) hold. Given ε > 0 small enough, there exists a Θ-invariant map ηε :
R× Ω→ (0, 1] such that there exists

R 3 t 7→ ξ∗η(t, ωτ ) ∈ X, for every η ∈ (0, ηε(ωτ )],

a global solution of {ψη(t− s,Θsωτ ) : t ≥ s} such that

sup
t∈R
‖ξ∗η(t, ωτ )− y∗0‖X < ε, for every η ∈ (0, ηε(ωτ )].

Proof. Let y be a global solution of (3.9). Then, if we define φ = y− y∗0 , it satisfies

φ̇ = Aφ+ gη(Θtωτ , φ),

where gη(Θtωτ , φ) = fη(Θtωτ , y
∗
0 + φ)− f0(y∗0)− f ′0(y∗0)φ, so that

φ(t) = eA(t−τ)φ(τ) +

∫ t

τ

eA(t−s)gη(Θsωτ , φ(s))ds (3.12)

Hence, if we project Q and I −Q and take limits we obtain

φ(t) =

∫ +∞

−∞
GA(t, s)gη(Θsωτ , φ(s))ds,

where G is the Green function associated with the semigroup {eAt : t ≥ 0} and
projection Q.
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Consequently, a complete bounded solution to (3.12) exists in a small neighbor-
hood of x = 0, if and only if, the operator

Iωτ ,η(φ)(t) =

∫ +∞

−∞
GA(t, s)gη(Θsωτ , φ(s))ds

has a unique fixed point in the set

Xε :=
{
φ : R→ X : sup

t∈R
‖φ(t)‖X ≤ ε

}
for a given ε > 0 small. This follows by a fixed point argument for Iωτ ,η for each
ω ∈ Ω fixed.

Indeed, let ε1 > 0 such that

‖f ′0(y∗0 + h)− f ′0(y∗0)‖L(X) <
1

6Mβ−1
, for every ‖h‖X < ε1, (3.13)

and ε2 ∈ (0, 1/2) be such that ρ0(ε) < 1/6Mβ−1, for every 0 < ε < ε2, where
M > 1 is the bound, and β > 0 is the exponent of the exponential dichotomy of
{eAt : t ≥ 0}. Define ε0 = min{ε1, ε2/2} and for a given ωτ ∈ R × Ω fixed and
ε ∈ (0, ε0), define ηε(ωτ ) > 0 such that

λ(η, ωτ ) <
ε

6Mβ−1
, for every η ∈ (0, ηε(ωτ )].

Then, it is possible to prove that Iωτ ,η maps Xε into itself. In fact, for φ ∈ Xε

‖gη(Θtωτ , φ(t))‖X ≤ ‖fη(Θtωτ , y
∗
0 + φ(t))− f0(y∗0 + φ(t))‖X + ρ(ε)ε

≤ λ(η, ωτ ) + ρ0(ε)ε,

hence
‖Iη,ωφ(t)‖X ≤ 2β−1M‖gη(Θtωτ , φ(t))‖X < ε,

and that Iωτ ,η is a contraction. Let φ1, φ2 ∈ Xε

‖gη(Θtωτ , φ1(t))− gη(Θtωτ , φ2(t))‖X
≤ ‖fη(Θtωτ , y

∗
0 + φ1(t))− fη(Θtωτ , y

∗
0 + φ2(t))− f ′0(y∗0)(φ1(t)− φ2(t))‖X

≤
[
λ(η, ωτ ) + ρ(ε) + ‖f ′0(y∗0 + φ1)− f ′0(y∗0)‖L(X)

]
‖(φ1(t)− φ2(t))‖X .

Then

‖Iη,ωφ1(t)− Iη,ωφ1(t)‖X ≤
1

2
‖φ1(t)− φ2(t)‖X .

Therefore, there exists a fixed point φ∗η(·, ωτ ) of Iωτ ,η in Xε, and the global solution
of (3.9) is given by ξ∗η(·, ωτ ) = φ∗η(·, ωτ ) + y∗0 . �

As in the deterministic case, see Carvalho and Langa [19], these solutions {ξ∗η}
play the role of an hyperbolic equilibrium for (3.9). Given ε > 0 define, for each ωτ
fixed and η ∈ (0, ηε(ωτ )],

ζ∗η (τ, ω) := ξ∗η(0, ωτ ).

Note that, for each ωτ fixed, there exists ηε(ωτ ) > 0 such that the mapping R 3
t 7→ ξ∗η(t, ωτ ) := ζ∗η (Θtωτ ), t ∈ R is a complete solution for

ẋ = Bx+ fη(Θtωτ , x), η ∈ (0, ηε(ωτ )]. (3.14)

Then, to ensure that ξ∗η exhibits a hyperbolic behavior, we linearized problem (3.14)
over ζ∗η and guarantee that the associated linear nonautonomous random dynamical
system admits an exponential dichotomy.
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Remark 3.10. Let ωτ ∈ R × Ω be fixed, xη(·, ωτ ) a solution of (3.9) and define
zη(t) = xη(t, ω)− ζ∗η (Θtωτ ), for each t ≥ 0 and η ∈ (0, ηε(ωτ )]. Then

ż = Az +Bη(Θtωτ )z + hη(Θtωτ , z), (3.15)

where Bη(Θtωτ ) = (fη)z(Θtωτ , ζ
∗
η (Θtωτ ))− f ′0(y∗0), and

hη(Θtωτ , z) := fη(Θtωτ , ζ
∗
η (Θtωτ )+z)−fη(Θtωτ , ζ

∗
η (Θtωτ ))−(fη)z(Θtωτ , ζ

∗
η (Θtωτ ))z.

Thus, 0 is a globally defined bounded solution for (3.15) and hη(Θtωτ , 0) = 0,
(hη)z(Θtωτ , 0) = 0 ∈ L(X).

We consider the linearization of problem (3.9) about ξ∗η

ż = Bz + (fη)z(Θtωτ , ζ
∗
η (Θtωτ ))z (3.16)

= Az +Bη(Θtωτ )z. (3.17)

Note that for each ωτ ∈ R× Ω fixed

lim
η→0

sup
t∈R
‖Bη(Θtωτ )‖L(X) = 0.

Then we choose η̃ε ≤ ηε Θ-invariant and consider a linear co-cycle ϕε(t, ωτ ) =
ϕη̃ε(ωτ )(t, ωτ ) satisfying

ϕε(t, τ, ω)x0 = eAtx0 +

∫ t

0

eA(t−s)Bη̃ε(ωτ )(Θsωτ )ϕε(s, τ, ω)x0ds.

Since {eAt : t ≥ 0} admits an exponential dichotomy, we apply Theorem 3.1 to
guarantee that the linear co-cycle (ϕε,Θ) admits an exponential dichotomy for each
suitable small ε > 0. Thus ζ∗ε := ζ∗η̃ε is a global solution that exhibits a hyperbolic
behavior.

The discussion above suggests a proper definition of random hyperbolic solution
for a nonautonomous random differential equation.

Definition 3.11. Let B be a generator of a strongly continuous semigroup, and
f : R×Ω×X → X such that for each (t, ω) fixed X 3 x 7→ f(t, ω, x) is differentiable,
and ζ : R× Ω→ X be a bounded global solution of

ẋ = Bx+ f(Θtωτ , x), t ≥ 0, x(0) = x0 ∈ X. (3.18)

We say that ζ is a random hyperbolic solution of (3.18) if there exists a linear
nonautonomous random dynamical system (ϕ,Θ) satisfying

ϕ(t, ωτ ) = eBt +

∫ t

0

eB(t−s)Dxf(Θsωτ , ζ(Θsωτ ))ϕ(s, ωτ )ds, for all ωτ ∈ R× Ω,

and (ϕ,Θ) admits an exponential dichotomy.

Joining the results of Theorem 3.9 and Remark 3.10 we obtain:

Theorem 3.12 (Existence and continuity of random hyperbolic solutions). Let y∗0
be a hyperbolic equilibrium for (3.8) and assume that (3.10) and (3.11) hold. Given
ε > 0 small enough, there exists a Θ-invariant map ηε : R×Ω→ (0, 1] and a global
solution ζ∗ε : R× Ω→ X of (ψηε ,Θ) defined by

ζ∗ε (ωτ ) := ζ∗ηε(ωτ )(ωτ )

such that ζ∗ε is a random hyperbolic solution of (ψηε ,Θ), with

sup
t∈R
‖ζ∗ε (Θtωτ )− y∗0‖X < ε.
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Remark 3.13. Theorem 3.12 provides existence and continuity of random hyper-
bolic solutions from nonautonomous random perturbations of a hyperbolic problem.
However, this result of persistence can be proved in a general context. In other
words, following similar steps, it is possible to prove that random hyperbolic solu-
tions are stable under (random nonautonomous) perturbations.

Remark 3.14. In the parabolic case, when −A is sectorial, with A ∈ L(Xδ, X),
0 < δ < 1, where Xδ is a fractional power of X, we cannot assume that the
nonlinearity f0 : U ⊂ X → X is differentiable, see [10]. We have to assume that
the hyperbolic equilibrium y∗0 is in Xδ and that U is a open neighborhood of y∗0 in
Xδ such that f0 : U ⊂ Xδ → X is differentiable with derivative f ′(y∗0) ∈ L(Xδ, X).
Also, we have to use a slightly different estimative on the Green function of {eAt :
t ≥ 0}

‖GA(t, s)‖L(X,Xδ) ≤ D(M, δ)(t− s)−δe−β|t−s|, 0 < t− s ≤ 1

‖GA(t, s)‖L(X,Xδ) ≤ D(M, δ)e−β|t−s|, otherwise,

where D = D(M, δ) > 0 is a constant, see [23]. Under these conditions the proof
of existence and continuity of bounded random hyperbolic equilibrium on Xδ is
analogous to the argument used in Theorem 3.12.

3.3. Stochastic perturbations of autonomous problems.
In this subsection we apply the results established in this work to study sta-

bility under a nonautonomous stochastic perturbation of a hyperbolic autonomous
problem. We consider the following family of Stratonovich stochastic differential
equations with a nonautonomous multiplicative white noise

dy = Bydt+ f(y)dt+ ηκty ◦ dWt, t ≥ τ, y(τ) = yτ , (3.19)

where B is a generator of a strongly continuous semigroup {eBt : t ≥ 0} on X, the
family {Wt : t ∈ R} is the standard Wiener process, see [1], and κ : R → R+ is
continuously differentiable, η > 0.

We apply the results of Subsection 3.2, by a formal change of variable we show
how to modify problem (3.19) to a nonautonomous random differential equations.
We prove existence and continuity of random hyperbolic solutions for the associated
nonautonomous differential equation.

The canonical sample space of a Wiener process is Ω := C0(R) the set of contin-
uous functions over R which are 0 at 0 equipped with the compact open topology.
We denote F the associated Borel σ-algebra. Let P be the Wiener probability mea-
sure on F which is given by the distribution of a two-sided Wiener process with
trajectories in C0(R). The flow θ is given by the Wiener shifts

θtω(·) = ω(t+ ·)− ω(t), t ∈ R, ω ∈ Ω.

In order to obtain a nonautonomous random differential equation from (3.19) we
consider an auxiliary scalar stochastic differential equation

dzt + zdt = dWt. (3.20)

This problem has a stationary solution known as the Ornstein-Uhlenbeck process.
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Lemma 3.15. There exists a θ-invariant subset Ω̃ ∈ F of full measure such that

limt→±∞
|ω(t)|
t = 0, ω ∈ Ω̃ and, for such ω, the random variable given by

z∗(ω) = −
∫ 0

−∞
esω(s)ds

is well defined. Moreover, for ω ∈ Ω̃, the mapping (t, ω) 7→ z∗(θtω) is a stationary
solution of (3.20) with continuous trajectories, and

lim
t→±∞

|z∗(θtω)|
t

= 0, ∀ω ∈ Ω̃.

The proof of the following Lemma can be found on [14].
Let y be a solution for (3.19) and consider v(t, ω) := e−ηκtz

∗(θtω)y(t, ω). Hence,
v has to satisfy the following nonautonomous random differential equation

v̇ = Bv + e−ηκtz
∗(θtω)f(eηκtz

∗(θtω)v) + η[κt − κ̇t]z∗(θtω)v,

Define fη(t, ω, v) := e−ηκtz
∗(ω)f(eηκtz

∗(ω)v), and Bη(t, ω)v := η[κt − κ̇t]z∗(ω)v.
In order to obtain hyperbolic solutions for (3.19) we study existence of random

hyperbolic solutions for

v̇ = Bv + fη(Θtωτ , v) +Bη(Θtωτ )v, t ≥ 0, v(0) = v0 ∈ X. (3.21)

To apply our results, we have to check hypotheses of Theorem 3.12 to guarantee
existence of random hyperbolic solutions (3.21).

To that end, we choose any differentiable positive real function κ for which there
are random variables m1,m2 > 0 such that

m1(ω) := sup
t∈R
{|κtz∗(θtω)|} <∞, and m2(ω) := sup

t∈R
{|[κt − κ̇t]z∗(θtω)|} <∞.

Define, for each ωτ ∈ R× Ω̃, c(τ, ω) := (κτ − κ̇τ )z∗(ω),

M(τ, ω) := sup
t∈R
{|c(Θt(ωτ ))|} ≤ m2(θ−τω).

Note that supt∈RM(Θtωτ ) = M(ωτ ). Then supt∈R ‖Bη(Θtωτ )‖L(X) = ηM(ωτ ).
Let y∗0 be a hyperbolic equilibrium of ẏ = By + f(y), and U be a neighborhood

of y∗0 such that fη(ωτ , ·) ∈ C1(U,X), for every η ∈ [0, 1] and ωτ ∈ R× Ω̃. We claim

that for each ωτ ∈ R× Ω̃

sup
(t,x)∈R×U

{
‖fη(Θtωτ , x)−f(x)‖X+‖Dxfη(Θtωτ , x)−f ′(x)+Bη(Θtωτ )‖L(X)

}
→ 0,

(3.22)
as η → 0. The derivative of fη(Θtωτ , ·) on x is

Dxfη(Θtωτ , x) = f ′(eηκt+τz
∗(θtω)x).

Since, for every (τ, ω) ∈ R× Ω̃ the limit η supt∈R |κt+τz∗(θtω)| goes to 0, as η → 0,

by continuity supt∈R |eηκt+τz
∗(θtω) − 1| → 0, as η → 0. Similarly, for f ′ we have

that

sup
t∈R
‖f ′(eηκt+τz

∗(θtω)x)− f ′(x)‖L(X) → 0, as η → 0,

‖fη(Θtωτ , x)− f(x)‖X ≤ e−ηκt+τz
∗(θtω)‖f(eηκt+τz

∗(θtω)x)− f(x)‖X
+ |e−ηκt+τz

∗(θtω) − 1|‖f(x)‖X ,
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and both terms on the right side go to zero when η → 0, uniformly on t. Therefore,
for each ωτ ∈ R × Ω̃ we have that sups∈R λ(η,Θsωτ ) = λ(η, ωτ ) → 0, as η → 0.
Hence, we can apply Theorem 3.12 to (3.21) to prove existence and continuity of
hyperbolic solutions.

Theorem 3.16. Let y∗0 be a hyperbolic equilibrium for ẏ = By+ f(y). Given ε > 0
small enough, there exists a Θ-invariant map ηε : R × Ω → (0, 1] and a global
solution ζ∗ε : R× Ω→ X of (ψηε ,Θ) defined by

ζ∗ε (ωτ ) := ζ∗ηε(ωτ )(ωτ )

such that ζ∗ε is a random hyperbolic solution of (ψηε ,Θ), with

sup
t∈R
‖ζ∗ε (Θtωτ )− y∗0‖X < ε.

Moreover, ζ∗ε defines a stochastic process, i.e., the mapping Ω̃ 3 ω 7→ ζ∗ε (t, ω) ∈ X
is (F̃ ,BX)-measurable, for each t ∈ R.

Proof. Given ε > 0 small enough, thanks to Theorem 3.12, we know that for every
ωτ ∈ R×Ω̃ there exists a Θ-invariant map ηε : R×Ω̃→ (0, 1] such that ζ∗ε : R×Ω̃→
X is a random hyperbolic solution for (3.21).

Let us prove that ζ∗ε (t, ·) is (F̃ ,BX)-measurable. Consider φηε(ωτ ) ∈ Xε the fixed
point of operator Iωτ ,ηε(ωτ ), see the proof of Theorem 3.9.

We claim that the mapping Ω̃ 3 ω 7→ φηε(ωτ )(0, ωτ ) is (F̃ ,BX)-measurable, where

F̃ is the σ-algebra of Ω̃. Indeed, since φηε(ωτ )(0) = Iωτ ,ηε(ωτ )(φηε(ωτ ))(0), we know
that

φηε(ωτ )(0) = lim
n→+∞

Inωτ ,ηε(ωτ )(0̃)(0)

where 0̃ ∈ Xε. Thus, the claim follows from the fact that, for each τ ∈ R, the
mapping ω 7→ Iωτ ,ηε(ωτ )(0̃)(0) is (F̃ ,BX)-measurable.

Therefore, for each τ ∈ R fixed, the mapping Ω̃ 3 ω 7→ ζ∗ε (ωτ ) := φ∗ηεωτ (0, ωτ ) +

y∗0 is (F̃ ,BX)-measurable, and the proof is complete. �

To end this section we present two special examples: the linear case, and an
application in partial differential equations.

Example 3.17. If we assume that A generates a C0-semigroup satisfying condi-
tions of Theorem 3.3, then y = 0 is a random hyperbolic solution for

dy = Aydt+ ηκty ◦ dWt, t ≥ τ,
for suitable small η > 0. In fact, the associated nonautonomous random differential
equation is

v̇ = Av + η[κt − κ̇t]z∗(θtω)v, t ≥ τ.
Thus, by Theorem 3.3, for every ε > 0 suitable small there exists a Θ-invariant
ηε : R×Ω→ (0, 1] such that Aε(ωτ ) = A+ηε(ωτ )[κτ − κ̇τ ]z∗(ω)v generates a linear
nonautonomous random dynamical system that admits an exponential dichotomy.

We now apply Theorem 3.16 to a strongly damped wave equation.

Example 3.18. Let D be a bounded smooth domain in R3, A : D(A) ⊂ L2(D)→
L2(D) is −∆ with Dirichlet boundary condition, and f : R → R is twice differen-
tiable. Consider the damped wave equation

utt + βut −∆u = f(u), in D
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with boundary condition u = 0, in ∂D. The initial data will be taken in the space
X = H1

0 (D)× L2(D). Hence we can consider an abstract evolutionary equation in
X:

ẏ = By + F (y), (3.23)

where

y =

(
y1

y2

)
∈ X, B =

(
0 I
−A −β

)
, F (y) =

(
0

fe(y1)

)
,

with fe : H1
0 (D) → L2(D) is given by fe(y1)(x) = f(y1(x)) for x ∈ D. Moreover,

fe is continuously differentiable, see [5]. The hyperbolic equilibrium points of (3.23)
are of the form y∗0 = (u∗0, 0) where u∗0 is a solution of

−∆u = g0(u),

such that 0 /∈ σ(−∆ + Dxf
e(u∗0)IdX). Now we consider a nonautonomous multi-

plicative white noise on (3.23), i.e.,

ẏ = By + F (y) + η̃κty ◦ dWt, (3.24)

where

η̃ =

(
η 0
0 0

)
,

(
0 0
0 η

)
or

(
η 0
0 η

)
,

and we may choose where to consider the noise, on the position u, or velocity ut or
both.

Let A be a 2×2 - matrix with real coefficients, the exponential of A is represented
by eA. Let y be a solution of (3.24), then apply the change of variables v(t, ω) =
e−η̃κtz

∗(θtω)y to obtain

v̇ = Bv + Fη(Θtωτ , v) + η̃(κt − κ̇t)z∗(θtω)v, (3.25)

where Fη(ωτ , v) := eη̃κτz
∗(ω)F (e−η̃κτz

∗(ω)v). Note that, for each η ∈ [0, 1] and ωτ ∈
R × Ω fixed, problem (3.25) is a well-posed nonautonomous differential equation,
see Arrieta et al. [5]. Hence induces a nonautonomous random dynamical system
that satisfy condition (2.1).

Now, we apply Theorem 3.16 for (3.25) to ensure that for each hyperbolic equilib-
rium y∗0 and ε > 0 there exists a random hyperbolic solution that defines stochastic

processes {ξ∗ε (t, ·) : Ω̃ → X : t ∈ R} for each ε > 0 such that supt∈R ‖ξ∗ε (Θtωτ ) −
y∗0‖ → 0 as ε→ 0.

Remark 3.19. We note that it is not clear yet if the dynamical systems generated
by (3.3) and (3.19) are conjugated. This is not a simple task because our change of
variables is not stationary because of the presence of κt. However, for every solution
of (3.21) it is possible to find a corresponding solution for the nonautonomous
random differential equations (3.3) and we analyze properties of the latter. More
precisely, we know now under which conditions it is possible to guarantee that global
solutions of (3.21) exhibit a hyperbolic behavior.

Remark 3.20. The study of this subsection could be applied to Itô stochastic dif-
ferential equations with multiplicative white noise, by modifying to a Stratonovich
stochastic differential equation, whenever is possible.
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4. Conclusions

The results of this paper on the robustness of exponential dichotomies can be
extended to nonuniform or tempered, as it is done in [6, 29]. Since our goal was to
study the effect of a small bounded noise on autonomous problems, it was expected
to obtain nonuniform behavior on our hyperbolicity. We reinforce that to consider
a bounded noise is sensibles in real life applications [12, 13, 16], and it was a crucial
to prove permanence of the hyperbolicity. This is an important advance in order to
understand the effect of random influences on deterministic evolutionary differential
equations.

The robustness of exponential dichotomy for nonautonomous random dynami-
cal systems is a fundamental property in the study of stability results for random
dynamics. We were able to study hyperbolicity for nonautonomous random differ-
ential equations and obtained global solutions that behave as hyperbolic equilibria.
As in [11, 19, 17] this is an important step in order to obtain continuity and struc-
ture stability of attractors on nonautonomous deterministic contexts.

Hence, to understand structural stability of global attractors under random per-
turbations, next step is to prove the existence and continuity of invariant manifolds
and study lower semi-continuity of attractors for nonautonomous random dynami-
cal systems. This will be pursuit in a forthcoming paper.

The results of these paper can also by applied for general non-compact random
dynamical systems, see [25] for a formal definition. The results presented in this
work have opened the discussion of: exponential dichotomies for co-cycles driv-
ing by noncompact symbol spaces; bounded noises in order to preserve hyperbolic
structure; and possibly also continuity and structure stability of attractors under
random perturbations.
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