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Abstract. Spiking neural P systems (in short, SN P systems) are models
of computation inspired by biological neurons. CuSNP is a project involving
sequential (CPU) and parallel (GPU) simulators for SN P systems. In this
work, we report the following results: a P-Lingua file parser is included, for
ease of use when performing simulations; extension of the matrix representation
of SN P systems to include delay; comparison and analysis of our simulators
by simulating two types (bitonic and generalized) of parallel sorting networks;
extension of supported types of regular expressions in SN P systems. Our GPU
simulator is better suited for generalized sorting as compared to bitonic sorting
networks, and the GPU simulators run up to 50x faster than our CPU simulator.
Finally, we discuss our experiments and provide directions for further work.
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1. Introduction

Spiking neural P systems (in short, SN P systems) are parallel models of compu-
tation inspired by the functioning and structure of neurons that was introduced in
2006 in [1]. In this work we report our ongoing efforts to improve CuSNP, which is
a collection of simulators (sequential and parallel). Many simulators and published
works investigate the simulation of membrane models or P systems in software and
hardware, whether sequential or in parallel, e.g. [2] and [3]. A survey of simulations
of P systems in graphics processing units (in short, GPUs) is [4]. More recently, 5]
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includes simulations on a variant of SN P systems known as fuzzy reasoning SN P
systems. In order to standardize the simulations of P systems (e.g. in terms of input
format) the P-Lingua project was introduced. P-Lingua has also been used to simu-
late SN P systems in a sequential manner in [6]. Due to the ease of use of P-Lingua,
users do not need to know the in-depth details of the simulated P system: as long
as the P system for a problem is given, the users can run their simulations using
P-Lingua syntax.

Much have been investigated in SNP systems theory, e.g. computability in terms
of generating or accepting numbers or languages, as in [1,|7H12], and computation-
al efficiency as in [13H15]. These investigations have also been applied to several
variants of SNP systems, where the variants take various inspirations from biology,
mathematics, or computer science, e.g. |[16-20]. SNP systems were also used to solve
combinatorial optimization problems |21] and to diagnose faults in power systems [22].

The following are our contributions in this work: (1) we included in CuSNP the
feature of allowing .pli files or input files for P-Lingua simulator as input to our
simulators; (2) we modify the matrix representation of SN P systems in [23] in order
to simulate SN P systems with delays, and we prove that our algorithms indeed sim-
ulate SN P systems computations; (3) we test our sequential and parallel simulators
using two types of sorting networks: generalized and bitonic, provided in more detail
in [24] and [25], respectively. At present, the former type performs better in our
simulators due to rule density (more details later). We also analyze and profile our
simulators in order to gain insights on how to better improve them; (4) We provide
an algorithm based on finite automata, different from [26], to allow more forms of
regular expressions.

This work is organized as follows: Section 2 provides syntax and semantics for
SN P systems; Section 3 discusses the main elements of CuSNP; Section 4 provides
the matrix definitions that allow us to simulate SN P systems with delays. The
definitions are then used to create the algorithms used by CuSNP. Section 5 provides
experimental results and analyses of our experiments. We end with conclusions and
future research directions in Section 6.

2. Spiking Neural P Systems

The reader is assumed to be familiar with basics of membrane computing and
formal language theory. A Spiking neural P system II is of the form:

II=(0,01,....,0m, syn, in, out)
1. O = {a} is the alphabet containing a single symbol (the spike);
2. 01, ...,04, are neurons, of the form o; = (a;, R;),1 < i < m, where:
(a) oy > 0 is the initial number of spikes contained in ;.

(b) R; is a finite set of rules of the following two forms:

(i) (Spiking Rule) E/a® — aP;d where E is a regular expression over O
andc>p>1,d>0.
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(7) (Forgetting Rule) a® — A, for s > 1, with the restriction that for each
rule E/a® — aP;d of type (i) from R;, we have a® ¢ L(FE) ;

3. syn C {1,2,....,m} x {1,2,...,m} with ¢ # j for all (i,5) € syn,1 < i,57 < m
(synapses between neurons);

4. in,out € {1,2,...,m} indicate the input and the output neurons, respectively.

An SN P system whose spiking rules have p = 1 is said to be of the standard
type (non-extended). A spiking rule is applied as follows: if a neuron o; contains k
spikes, and a* € L(E),k > c, then the rule E/a® — a?;d € R; can be applied. This
means we remove ¢ spikes so that & — ¢ spikes remain in o;, the neuron is then fired
and produces p spikes after d time steps. Spikes are fired after ¢ 4 d steps where ¢ is
the current time step of the computation. If d = 0, the spikes are fired immediately.
Between step t and ¢ + d, we say ¢ has not fired the spike yet and is closed, i.e. o;
cannot receive spikes from other neurons connected to it. If neurons with a synapse
to o fire, the spikes are lost. At step t + d, the spikes are fired, and o; is now open to
receive spikes. At t +d + 1, o; can apply a rule.

A forgetting rule is applied as follows: If o; contains exactly s spikes, then the
rule a®* — X from R; can be applied, meaning all of the s spikes are removed from
o;. Rules of type (1) where E = a° can be written in the short form of a® — a?;d.
In the case two or more rules of o; are applicable at the same step, only one rule is
applied and is non-deterministically chosen. A configuration of the system at step
t is denoted as Cy = (ri/ki,...,mm/km) for 1 < i < m, where o; contains r; > 0
spikes and remains closed for k; more steps. The initial configuration of the system
is therefore Cy = (r1/0,...,r,/0). Rule application provides us a transition from
one configuration to another. A computation is any (finite or infinite) sequence of
configurations such that: (a) the first term is the initial configuration Cp; (b) for
each n > 2, the nth configuration of the sequence is obtained from the previous
configuration in one transition step; and (c) if the sequence is finite (called halting
computation) then the last term is a halting configuration, i.e. a configuration where
all neurons are open and no rule can be applied. Two common ways to obtain the
output of an SN P system are as follows: (1) as the time interval between the first
two steps when the output neuron o,,; spikes, e.g. number n = t,, — t; is computed,
where 0,4, produced its first two spikes at steps ¢; and t¢,; (2) counting the number
of spikes produced by o,,; until the system halts. In this work, we consider systems
that produce their output as given in (2). SN P systems are represented graphically
as directed graphs: the neurons are represented by oval vertices, and synapses are the
arcs between the vertices.

3. Technologies for CuSNP

The following discussion provides details of the .pli file parser included in CuSNP.
We follow the P-Lingua syntax provided in [6] and identify the important reserved
keywords that will be relevant for CuSNP, e.g. @mu = m1, m2, ..., mN; @marcs
= (m1, m2); @ms(m1) = a*k; where @mu, @marcs, and @ms define the neurons, the
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.pli parser in CPU CuSNP input CuSNP GPU Simulation

Figure 1: Workflow diagram for .pli parser in CuSNP.

synapses between neurons, and the initial spikes contained in each neuron, respective-
ly. Rules are strictly limited to spiking and forgetting rules, since other types of rules
are also not relevant to CuSNP. Rules can be defined as [x]’n --> [y]’n "r"::d;
where x is the number of spikes consumed, y is the number of spikes produced (that
is given a rule E/a® — aP;d, © = ¢ and y = p), n is the label of the neuron containing
the rule, r is the regular expression F, and d is the delay count for the rule. An ex-
ample of a P-Lingua code that defines a rule is [a --> al’in{i} "ax": 1<=i<=n;.
In this example, an optional range of values for expression i can be appended at the
end of each line of code. Using the .pli parser, we have the workflow illustrated in
Figure[l} The workflow for CuSNP allows users with minimal technical knowledge of
SN P systems to be able to perform experimental simulations in GPUs using familiar
language as found in P-Lingua.

Next, we briefly discuss the Compute Unified Device Architecture (in short, CU-
DA) for GPU programming. CUDA is a parallel programming computing platform
and application programming interface model developed by NVIDIA [27] |28]. CUDA
allows software developers to use a CUDA enabled GPUs for general purpose GPU
(in short, GPGPU) computing. Functions that execute in the GPU, known as kernel
functions, are executed by one or more threads arranged in thread blocks. The thread
blocks are then arranged in a grid of thread blocks. The arrangement of this thread
hierarchy is left to the developer with a given constraint. In the CUDA programming
model, the GPU is often referred to as the device, while the CPU is referred to as the
host. The host performs the kernel function calls to be executed on the device.

CUDA uses a single program, multiple data (in short, SPMD) paradigm. In
this paradigm, threads execute similar code, while allowing such threads to access
multiple (possibly different values of) data. Aside from the thread hierarchy, CUDA
also implements a memory hierarchy similar to how there exist memory hierarchies
in the CPU. We do not go into details of the thread and memory hierarchy of CUDA
and instead refer the reader to |27] [28]. In CuSNP and as began in [26], we follow a
good memory access pattern as follows: the host generates the input (i.e. the numbers
to be sorted) and then copies the input to the GPU; the device performs the entire
simulation until the simulated SN P system halts; finally, the output of the device is
then copied back to the host for printing and analysis. This access pattern is followed
in order to prevent slow transfers (i.e. high latency) between the device and the host.
A good practice for designing the hierarchy of threads used in the device is that the
threads in a block must be a multiple of 32 to maximize GPU warps.
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a (g)a/a —a

(l)a/a —a (3)0,2 — A

Figure 2: A 3-neuron SN P system

4. Algorithms for CuSNP

In this section we first introduce the modifications of the matrix representation
given in [23] in order to simulate SN P systems with delay. After the modifications are
presented, the algorithms for the simulation in CuSNP are provided. Let IT be an SN
P system with delay having m neurons and n rules. We use the following definitions
to represent II.

Definition 1: (Configuration Vector). The configuration vector C*) =
(¢1, ..., Cm), where ¢; is the amount of spikes in o; at time k.

Definition 2: (Spiking Vector). A spiking vector S*) = (s, ... s,) where
RO {1, if F; is satisfied and r; is applied

! 0, otherwise.

Definition 3: (Status Vector). The kth status vector is denoted by St(¥)
(st1, ..., sty ) where for each ¢ € {1,2,...,m},

st 1,if neuron m is open,
! 0, if neuron m is closed.

Definition 4: (Rule Representation). R = (r{,...,r,) where for each i =
1,...,n, r; = (E,j,d,c) where E is the regular expression for rule ¢, j is the neuron
that contains the rule r;,

—1,if the rule is not fired,

d' = < 0,if the rule is fired,

> 1,if the rule is currently on delay (i.e. neuron is closed).

and c is the number of spikes in neuron ¢; consumed if r; is applied.

Definition 5: (Delay Vector). The delay vector D = (ds,...,d,) contains the
delay count for each rule r;,7 =1,...,n in II.

Definition 6: (Loss Vector). The loss vector LV ¥ = (lvy, lvs, ..., lv,,) where
for i € {1,2,...,m}, lv; is the number of consumed spikes in o; at the step k.

Definition 7: (Gain Vector). The kth gain vector is denoted by GV*) =
(gv1, gva, ..., gUm ) where for each i € {1,2,...,m}, gv; is the number of spikes sent by
neighboring neurons to neuron o; at the step k.

Definition 8: (Transition Matrix). The transition matrixﬂ of I1, is an ordered

I The spiking transition matrix in [23|] contains both spikes consumed and produced by each neuron
at step k. Transition matrix, however, only contains spikes gained by each neuron.
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set of vectors TV defined as TV = {tvy, ..., tv,} where for each i € {1,2,..n}, tv; =
(p1, ey Pm) such that if r; € o:
number of spikes produced by r;, if (s,7) € syn

Pi= 0, otherwise.

Definition 9: (Indicator Vector) The indicator vector IV* = (ivy,...,iv,,)
indicates which rule will produce spikes at time k.

Definition 10: (Removing Matrix) The removing matrix of II is RM =
{rmqy,rma,...,rmy,} where for each i € {1,2,..n}, rm; = (t1,...,t;m) such that if
T € 0!

number of spikes consumed by r;, if s =7

J= .
0, otherwise.

Definition 11: (Net Gain Vector). The Net Gain vector of II at step k is
defined as NG*) = c(k+1) — ¢(k)

From Figure [2, we have the following for & = 1: C(®) = (1,0,1); spiking vector
is S = (1,0,0,1); A status vector is St(V) = (1,1,1); R = (1,79, 73,74) where:
r = {a,1,0,1}, o = {a,2,-1,1}, r3 = {a?,2,-1,2}, r4 = {a,3,0,1}; The delay
vector is D = (0,0,0,2); The loss vector is LV(®) = (1,0,1); The gain vector is

GV =(0,1,0); The indicator vector is IV = (1,0,0); We have
01 0 1 0 0
1 01 0 1 0
TV = 00 ol and RM = 0 2 ol
010 0 01

as the transition and removing matrix, respectively.

Lemma 1 Let IT be an SN P systems with delay d > 0. The net gain vector can be
obtained by NG*) = St @GV ®) —LV*®)  where @ is the element-wise multiplication
operator, GV®) = TV#) . TV, and LV*) = S*) . RM.

Proof For the loss vector LV(*)| when a neuron applies a rule, the neuron imme-
diately consumes the required spikes. RM indicates the number of spikes o; will
consume if rule j is applied. The spiking vector S*) selects which rule will fire so
we can compute the number of spikes each neuron will lose. S*) is an 1 x m vector
and RM is a n X m matrix so their product is a 1 X m vector (the loss vector). For
the gain vector GV ¥ if ¢; applies a rule at step k, o; will release its spike at step
k + d given a delay d for the rule. TV indicates which rule will release its spike
at step k. TV is an n X m matrix indicating how many spikes o; will gain at the
current step. IV ) is an 1 x m vector and TV is an n X m matrix, and their product
provides a 1 X m matrix that represents the number of spikes each neuron will gain.
The gain vector is then multiplied to the status vector St(¥) which sets the gain of
closed neuron to 0 since closed neurons cannot receive spikes. O

Using Lemma [1} we can compute the next configuration as follows:

Theorem 2 C*+D = C®) 4 5t @ (TVHF) . TV) — S®) . RM.
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Following the definitions of the vectors provided above, we have for the system II
in Figurethe vectors C1) = (1,0,1), GV = (0,1,0), St = (1,1,0), LVD =
(1,0,1). We can compute NG = GV @ St — LV = (—1,1,-1). We also
compute the next configuration vector as C?) = ¢V 4 NG = (0, 1,0).

Next, we provide the algorithms that make use of the definitions provided above.
Given an SN P System with delay, we identify three cases for rule application in our
algorithms. For each r; = (E, j,d’,c) € R*®), we have the following cases: (Case 1)
If L(E) = a%, then d' = d;, Stg.k) =0, Lvﬁk) = c¢. In this case, the rule is fired, we
start a countdown, and consume the required spikes. The neuron is now closed and
cannot receive any spikes; (Case 2) If the countdown from case 1 is finished i.e. r;
was fired at step k—d; so that d’ is now 0, we add the spikes that the r; produces and

open the neuron that owns r;. We perform these by setting I Vj(k) =1 and St§-k) =1;
(Case 3) When 7; has a delay of 0, i.e. d; =0, we apply cases 1 and 2.

The main simulation algorithm for CuSNP given in Algorithm [I] is devised to
compute the kth configuration.

The function Reset(X7y, ..., X,,) given a list of vectors X;, resets the list of vectors
to a 0 vector. We now prove that Algorithm [1|indeed provides the kth configuration.

Theorem 3 Algom'thm provides C**+1) given inputs C*), R, Tv, and St(*).

Proof Algorithm |1 accepts as inputs the initial configuration vector C*), the rules
representation R, the status vector St(*), and the transition matrix TV. After deter-
mining the spiking vector at line 3, we check the three cases as defined before from
line 5 to line 13. If case 1 applies, we set the value ¢ to the corresponding element
of the loss vector depending on the neuron that owns the rule (i.e. LV; < ¢ where
Jj,c €1, = (F,j,d,c). The counter is started by setting the value for d’. We make
sure that only one rule will modify a single element of the loss vector based on the
semantics of rule selection in SN P systems. We also set the corresponding status
vector element of the neuron to 0, signifying that the neuron is closed.

For case 3, we set the corresponding iv; to 1 and open the neuron by setting the
corresponding st; element to 1. When case 2 applies, we set iv; to 1 and open the
neuron by setting st; to 1. We obtain the gain vector at line 18 by multiplying the
IV to TV. IV is used to select which rule will send out its spike, i.e. rules where
case 2 and case 3 apply. The net gain vector is given by line 19.

The status vector is used to select where the neuron will receive spikes depending
on the status of the neuron, while removing the spikes consumed. Finally, we compute
for C**+1) by adding C*) to NG®*). We reduce each d’ for 0 < i < n which signifies
the count down. The vectors LV, GV and TV are reset to prevent their current values
from interfering with the next step of computation. (|

The next algorithm is for the Compute S*) function in Algorithm

Another algorithm was devised in order to be able to implement the checking
of regular expressions in the GPU. The algorithm for solving regular expression is
specifically designed for the singleton alphabet of SNP Systems through the use of
deterministic finite automata (in short, DFA). The supported regular expressions
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Algorithm 1 Main simulation algorithm for CuSNP.

1:
2
3
4
5:
6
7
8
9

10:
11:
12:
13:
14:

15:
16:
17:
18:
19:
20:
21:
22:
23:
24
25:
26:

procedure SIMULATE SNP (C) R Twv, St(*)

Reset(LV®) GV NGF) | TV k)
Compute S*)
for r;, ={FE,j,d,c} € R do
if S =1 then
LvV « ¢
d dz
1v% 0
if d =0 then
™ 1
Stg-k) —1
end if
else if d' =0 then
V% 1
St 1
end if
end for
GV®) « TV % TV (F)
NG®) « GV g Stk — Ly *)
ck+D) ok L NGgk)
for r; ={FE,j,d,c} € Rdo
if d' # —1 then
d+—d-1
end if
end for
return C++1)

27: end procedure

> Check for the cases
> Case 1

> Case 3

> Case 2
> Set indicator bit to 1

> Countdown
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Algorithm 2 Compute Spiking Vector

procedure Compute S (C*k) R(K)
for r; € R do
if S5t =0 then

1:

2

3

4 Si(k) 0 > Neuron that owns the rule is closed
5: else

6 if L(F;) matches CJ(-k) then

7 S* 1 > Rule E is satisfied in C(*)
8 else

9: Si(k) «~0 > Rule F did not match with C'*)
10: end if

11: end if

12: end for

13: end procedure

have the following five forms: a*, a*, a* where & > 1, a*(a?)* and a*(a?)* where
k,j > 1. We can represent all five forms of regular expressions as a DFA with at
most 3 states if we allow transitions with a* labels, denoting a series of states and
transition requiring k copies of a’s. If we do not have enough copies of a to go through
the a”* edge, we do not accept such input. For example, we represent a?(a®)* as having
(2,3,3), (2,3,3), and (0,1,1) as the first, second, and third rows, respectively, of the
matrix. To simulate the regular expression checking, we begin at the first column
(i.e. the representation of the first state). When we have enough spikes to move to
the next state, we subtract the number of spikes needed from the current number
of spikes and move to the next one. The regular expression matches the number of
spikes if no spikes remain after the algorithm halts and the DFA is in an accepting
state.

The parallel implementation of Algorithm [1]is as follows: Assign a thread to each
rule or neuron depending on the kernel function executed in the device. Given m
neurons and n rules, we first allocate n threads for each r; € R® to compute the
spiking vector using Algorithm We can then assign n threads again to set the
proper values for R, St() LV () TV () based on the definition given. We then
compute GV = TvF) .7V NG®) = GV @ Stk — LV *) and C*+D) = C(k) +
NG by using m threads. All data is stored in the global memory of the device.
Initialization and pre-processing of input data is performed in the host before running
the alogorithm. Pre-processing includes converting the input to the correct data
structure for use in the device and copying of the data from the host memory to the
device memory. After the simulation ends, data is again copied back to the host for
post-processing (e.g. printing).

5. Experimental Results with CuSNP
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Algorithm [I]is implemented in C++ and CUDA C++. CuSNP is able to simulate
only deterministic SN P systems with delays. For both generalized and bitonic sorting
networks, we compare the outputs of the sequential (CPU) and parallel (GPU) simu-
lators. The latest version of the CuSNP code is available at [29]. The machine for the
simulation runs on Intel Core i7-4790 at 3.60GHz, 16 GB Ram, with NVDIA GeForce
750 graphics card running on an Ubuntu Linux 15.04 system and CUDA v7.5.17. The
graphs below show the output of the built-in ¢time function in Linux when the simu-
lators are run. Generalized sorting networks with input size of 27,i = 1,...,9, were
generated for testing. The simulators were run for 100 steps and the input number
used for sorting was randomly generated from 0 — 99 inclusive allowing repetitions.
The 2-input generalized sorting network (smallest size) has 6 neurons and 6 rules
while the largest (512-input) has 1,536 neurons and 262,656 rules. All simulations
ran 100 steps to ensure the systems were tested in similar conditions.

The system was run using the sequential version which we label as C++SNP. The
version of C++SNP in [30] and [26] only supports rule of the form a*, a*, and a™
while in this work we now include the forms a*(a?)* and a*(a?)*. The support for
additional forms of regular expression comes at a linear cost, i.e. previous versions
check regular expressions in constant time while the version in this work (using the
DFA algorithm in the previous section) performs checking in linear time.

Sequential vs Parallel Implementation

700
600

500

IS
S
3

—4=CusNP
~#—CuSNP with Regex

C+SNP

Time (seconds)
w
&
g

~
S
3

100

2input 4input 8input 16 input 32input 64 input 128input 256input 512input

-1
0o Input Size

Figure 3: Runtime Comparison of C++SNP (CPU) vs CuSNP (GPU) simulators.

As shown in Figure 3] we notice the exponential growth of runtime with C++SNP
due to the exponential size of the simulated networks, while the GPU simulator follows
a more linear growth on the runtime. A time difference can be noticed between the
version in [30] and the current version: a slight increase in the running time of the
latter due to the DFA algorithm. The GPU simulator shows a slower performance
with smaller input sizes but we see a speed up of greater than 1 at the 128-input
generalized sorting network, in particular around a 9x speed up. The GPU simulator
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Generalized vs Bitonic Sorter

3 —&— Generalized Sorter
—e— Bitonic Sorter

Time (seconds)

2-input Zinput g-nput 16-input 32-input 6a-input 128-input 256-input

Input Size

Figure 4: Generalized Sorting vs Bitonic Sorting Networks using CuSNP with regular
expression.

obtains up to 50x speed up with a 512-input generalized sorting network.

The generalized sorting network simulation was also profiled using the nvprof
utility that comes with CUDA. The runtime of each kernel function was profiled
and compared with each other. The kernel functions are as follows: SNPSolveRegex
solves regular expression of each r; € R®) and sets the corresponding element of S*).
SNPFizSpiking Vector ensures that only 1 rule per neuron will activate to follow SNP
semantics. SNPSetStates sets the value of TV ®*) St() and d’ € r; according to the
four cases described in Section 4. Matriz_Multiply computes for GV *) = [V *) . TV
SNPCompuateNG computes for NG = GV @ Stk) — LV *)  Vector_Addition
computes for C*tD) = NGF) 4+ ¢ SNPPostComputes Subtracts 1 from the
timer d’ of all 7, € R® if possible and sets IV*) to a zero vector. And finally,
SNPReset Converts the vectors LV GV (k) and NG(k) to a zero vector. Based on
our analysis, the kernel functions Matriz_Multiply and SNPFizSpiking Vector consume
the most resources at increasing input size, taking up 52.47% and 47.33% of the time,
respectively. This shows that optimizing this functions would lead to a significant
increase in simulation time at larger input sizes.

The CPU and GPU simulators were also run using the bitonic sorting networks or
bitonic sorters, as given in [25]. Compared to the generalized sorter, the bitonic sorter
uses several smaller modules composed of generalized sorters of size 2. We define the
rule density of an SN P System as the ratio of total number of rules n over the total
number of neurons n in the system. This way, the density of the generalized sorter
doubles for every input size (powers of 2) considered in this work, while the density
for bitonic sorters remains almost constant for any input size. The bitonic sorters are
“simpler” in the sense that on average, each neuron has around 2 rules compared to
the generalized sorter having more.

Figure [4] compares the runtime of generalized and bitonic sorters. At present, our
simulations cannot handle the bitonic sorters of input size grater than 512 due to
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thread limitations. Figure [d] shows that while bitonic sorters runs slightly faster at
smaller input (i.e.) size 2 to 64, the generalized sorting network did better at larger
input. This is due to the bitonic sorter, using more rules and neurons to perform a
similar task of sorting numbers.

6. Final Remarks

In this work we presented several improvements on CuSNP, in particular: we
proved the algorithms used by CuSNP; we allowed a workflow beginning with a .pli
file as input up to the CuSNP output, allowing for easier access to GPU accelerated
experiments; we provided an algorithm based on DFA to support more regular ex-
pression forms; we simulated and compared generalized and bitonic sorters; finally,
we profiled our simulators to give us insights on how to further improve CuSNP. The
systems we reported use generalized sorters of input size 512 having 1,536 neurons
and 262,656 rules. Using generalized sorters of input size beyond 512 is not possible
at the present version of CuSNP, due to imposed thread limitations for each kernel
function. Some of the limitations of the .pli parser in this work include lack of error
checking for the input syntax, and some Java regular expressions (e.g. “?”) are not
yet supported.We expect to address more of these limitations in our continuing work.
We intend to further improve CuSNP by using sparse representations and operations
on vectors and matrices. Lastly, we also intend to make use of multiple devices or
GPUs, to further accelerate the runtime of our simulations.
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