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Abstract—Methods based on Rapidly-exploring Random Trees
(RRTs) have been in use in robotics to solve motion planning
problems for nearly two decades. On the other hand, in the
membrane computing framework, models based on Enzymatic
Numerical P systems (ENPS) have been applied to robot con-
trollers. These controllers handle the power of motors according
to motion commands usually generated by planning algorithms,
but today there is a lack of planning algorithms based on
membrane computing for robotics. With this motivation, we
provide a new variant of ENPS called Random Enzymatic Nu-
merical P systems with Proteins and Shared Memory (RENPSM)
addressed to implement RRT algorithms and we illustrate it by
presenting a model for path planning of mobile robots based on
the bidirectional RRT algorithm. A software for RENPSM has
been developed within the Robot Operating System (ROS) and
simulation experiments have been conducted by means of the
Pioneer 3-DX robot simulation platform.

I. INTRODUCTION

Robots are machines oriented to objectives equipped with

actuators, sensors and computation units acting under physical

constraints. Regardless of their morphology, they should ac-

complish tasks by acting in the real world. This is one of the

main reasons by which robot motion planning [8] is an eminent

research area in robotics. In general terms, the problem of

motion planning can be defined in the configuration space of

a robot as follows: Given a start configuration state, a goal
configuration state, a geometric description of the robot, and
a geometric description of the environment, find a path that
moves the robot gradually from start to goal.

A configuration state is a specification of the positions of

all robot points relative to a fixed coordinate system. This is

usually expressed as a vector of positions and orientations, for

example, a rigid-body robot in a 2D world can be expressed as

a vector (x, y, θ) representing the center (x, y) of the robot in

a fixed coordinate system and its yaw angle θ, i.e, the heading

angle of the robot. Since the shape of the robot is described,

all of its points are then known.

Several constraints can be added to this problem, the most

common is to reach the goal while never touching any obstacle

in the environment. Others can also be added, for example,

a social robot could restrict configuration states in order to

guarantee the human comfort.

The configuration space of a robot can also be constrained

by the type of movements the robot can perform. In this sense,

nonholonomic robots are those that cannot instantly modify its

direction without employing rotation in-place. On the other

hand, holonomic robots can do it (assuming zero mass). For

example, a holonomic robot in a 2D world can move along the

x axis and the y axis, as well as modify its yaw angle if needed.

But a nonholonomic robot can only move forward/backward

and/or modify its yaw angle. This is the typical case of dual-

wheeled mobile robots and cars.

Classical path planning algorithms have been widely

adapted and applied to the problem of motion planning with

constraints in robots, for example, in [21], an application of

the Dijkstra algorithm for robot path-planning was presented.

In such solutions, the general problem is usually divided into

two smaller problems: the global path planning problem,

as described above; and the local path planning, where the

robot tries to connect two consecutive states in real-time

considering features not included in the global plan as, for

example, dynamic obstacles. The accumulated error during the

local planning conducts to periodically recompute the global

plan. For this reason, the computational complexity of global

planners is a critical point regarding to real-time constraints.

Many efforts have been made to provide good global planners.

For example: in [20], a search algorithm, called D∗, was

presented for path planning in real-time environments. In [11],

a variant of the classical search algorithm A∗ is applied to

grids with blocked and unblocked cells. In [9], a tool for global

path planning, called Rapidly-Exploring Random Trees (RRT),

was presented.

The class of RRT algorithms for global path planning is

based on the randomized exploration of the configuration

space before moving the robot by building a tree in memory

where nodes represent states that can be reached by the

state of the corresponding parent in a fixed amount of time,

furthermore each edge contains a velocity reference to reach

the state in the child node from the state in the parent node.

It is currently one popular method in robot motion planning

due to its good properties. The computed RRT can be used

together with search algorithms or, as presented in [10], the
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RRT generation algorithm can be used by itself as a path

planning algorithm, where two RRTs are built simultaneously,

one beginning from the initial configuration and another one

beginning from the ending configuration (bidirectional RRT).

In order to follow the path in safe manner, a local planner

module should be executed considering dynamic obstacles.

Finally, each motor of the robot must be able to reach and

maintain velocity references for fixed periods of time. This is

the function of a type of software called controller on-board

of the robot. Thus, robot control [1] is the branch of robotics

dedicated to the study and practice of controlling robots.

Robot controllers are usually based on common silicon

microprocessors, but in the recent years, some classes of

membrane systems [12] have been in use for modelling

them [14] [15] [16] [23]. Membrane systems are models of

computation based on the structure and functions of the living

cells. In a membrane system, there are objects being evolved

inside compartments according to rules applied in a non-

deterministic, maximally parallel way. They have been used

as a new technique to attack the P versus NP problem [17],

and several applications have been also studied: stochastic P

systems for modelling biological phenomena [19], probabilis-

tic P systems for modelling real ecosystems [2], spiking neural

P systems incorporating fuzzy reasoning, for fault diagnosis

and learning [22], and others.

With respect to robot control, numerical P systems (NPS)

were used for modelling and simulating robot controllers [16],

although the initial application of NPS was related to econom-

ical processes [13]. A variant called enzymatic numerical P
systems (ENPS) [14] was introduced and applied to the dis-

tributed control of a swarm of mobile robots. Indeed, reactive

and proportional-integral-derivative (PID) dual-wheeled robot

controllers have been successfully designed and simulated by

means of ENPS, as well as software simulation tools [23]. This

variant has been also used [15] to address robot localization
problem [5], where the robot must know its position in the

environment by using sensors.

In this paper, following [18], a new variant of ENPS called

random enzymatic numerical P systems with proteins and
shared memory (RENPSM, for short) is introduced in order

to get a new implementation of RRT algorithms. Since the

current applications of membrane systems to robotics are

focused on controllers, we propose an approximation from “the

other side”: global path planning with physical constraints.

The idea is to provide a complementary approach walking

towards a mobile dual-wheeled robot system based completely

on membrane systems. The new syntactical ingredients are

related to fit the requirements of the RRT algorithm:

• Random numbers: The algorithm uses a randomized

method to explore the physical space, therefore random

numbers must be generated.

• Shared memory: The algorithm is parallelized using pro-

cesses sharing common variables, and a distinguished

membrane, called shared memory, is included. At any

instant, each membrane can read from or write to it.

• Proteins: In order to synchronize the sequential execution

of the algorithm, proteins are used.

This paper is structured as follows. In the next section,

some notions about robot path planning are introduced. In

Section III the rapidly-exploring random trees (RRTs) are

described with some details. Section IV is devoted to introduce

random enzymatic numerical P systems with proteins and

shared memory. In Section V, a RENPSM model for the

bidirectional RRT algorithm is described. In Section VI, a

software for simulating the model within the ROS framework

is presented with some experimental results in a simulation

environment. Finally, conclusions and future work are drawn.

II. ROBOT PATH PLANNING

In general terms, robot path planning can be solved by

applying a solution based on three modules:

• Global planner: It receives the desired ending configu-

ration of the robot, its safety radius and current local-

ization, as well as the precomputed position of the static

obstacles in the environment and current information of

sensors and odometry. The current dynamic obstacles

detected by the sensors are added to the static ones in

order to generate a more descriptive information of the

environment. The odometry is used to obtain the current

velocity of the robot when kinodynamic constraints are

considered. Then, the global planner computes a plan

from the starting configuration xinit to the desired final

configuration xend of the robot. The plan is represented

as a sequence of local goals {gi|1 ≤ i ≤ n}, where

g1 = xinit and gn = xend. Each goal can be reachable

from the previous goal considering the constraints of the

problem, i.e, avoiding static obstacles, nonholonomic and

kinodynamic constraints, etc. RRT algorithms and other

similar algorithms can be used for this task.

• Local planner: It receives the sequence of local goals

generated by the global planner, as well as the current

information of sensors, localization and odometry, then

it sends velocity references to the controller in order to

command the robot along the path. Several algorithms

such as the dynamic window approach [4], pure pur-
suit [3], and potential fields [7] algorithms, among others

and variants, can be used.

• Controller: It receives velocity references from the local

planner and manages the power of the motors to fit each

reference and maintain it constant until the next one.

In Figure 1, it is represented the general robot path planning

cycle. First the robot computes a global plan from its current

pose to the desired ending pose; if the plan can be generated,

i.e, the robot could reach the destination considering all the

constraints, then the local planner receives a sequence of

intermediate goals and sends velocity references to the PID

controller in order to follow the path in a safe manner until

reaching the destination; if some error occurs, for example, a

dynamic obstacle is too close to the next local goal or the robot

is too far from the next local goal (considering a predefined



threshold), then the global plan is recomputed from the current

robot position. Notice that if there is a dynamic obstacle too

close to the ending configuration, then the global plan cannot

be found.

Fig. 1. Robot path planning cycle

III. RAPIDLY-EXPLORING RANDOM TREES

An RRT [9] is a randomized tree structure for rapidly

exploring in memory a state space X from an initial state

xinit. It can be successfully used for nonholonomic and

kinodynamic global path planning in robotics [10].

Nodes in an RRT represent possible reachable states, for

mobile robots in a 2D world this is given by (x, y, θ) where

(x, y) are the Cartesian coordinates of the robot position and

θ is the heading angle. However, the heading angle can be

omitted in order to reduce the size of the tree.

It is assumed that a fixed obstacle region Xobs ⊆ X must

be avoided, so the nodes of the RRT are states in Xfree, the

complement of Xobs in X .

Edges in an RRT represent transitions between reachable

states, each one is labelled with the velocity reference u that

the robot should execute for a fixed period of time Δt in order

to change the corresponding states. For a mobile robot in a 2D

world, the velocity reference can be represented by the pair of

linear and angular velocities (v, ω) to be sent to the controller.

On the other hand, if θ has been omitted, the edges in the RRT

are labelled with instant linear velocities. Thus, a holonomic

robot can reach a state x1 from another state x0 connected by

an edge labelled with u by applying x1 = x0 + u ·Δt. In the

case of nonholonomic robots, the local planner should select

the best sequence of motions in order to approximate x1, for

example, if the robot can rotate in-place, a naive solution is to

perform a rotation in-place before developing the motion in a

straight line.

Algorithm 1 GENERATE RRT

Require: xinit,K, ρ,Δt,X,Xobs, dmin

Vτ ← {xinit}; Eτ ← ∅;

for k = 1 to K do
xrand ← RANDOM STATE(X);

EXTEND(τ, xrand, ρ,Δt,Xobs, dmin);

end for
return τ = (Vτ , Eτ );

Algorithm 2 EXTEND

Require: τ, x, ρ,Δt,Xobs, dmin

xnear ← NEAREST NEIGHBOR(x, τ );

if DISTANCE(x, xnear) ≥ dmin then
u ← SELECT INPUT(x, xnear);

if ¬ COLLISION(xnear, u,Δt,Xobs) then
xnew ← NEW STATE(xnear, u,Δt);
Vτ ← Vτ ∪ {xnew}
Eτ ← Eτ ∪ {(xnear, xnew)}
if DISTANCE(x, xnew) < dmin then

return Reached;

else
return Advanced;

end if
else

return Trapped;

end if
else

return Trapped;

end if

Algorithm 1 is an iterative method to generate an RRT using

the function EXTEND defined in Algorithm 2, where:

• xinit is the initial state.

• K is the number of iterations to build the RRT.

• ρ is a prefixed distance metric.

• Δt is a fixed amount of time for transitions.

• X is the state space.

• Xobs is the obstacle state space.

• dmin is the minimum distance threshold according to ρ
in order to include a new node in the RRT.

• τ = (Vτ , Eτ ) is the RRT generated.

• RANDOM STATE(X) is a function to get a random state

from X
• NEAREST NEIGHBOR(x, τ ) is a function to get the

closest node to x in τ according to ρ.

• DISTANCE(x, xnear) is a function to get the distance of

x to xnear according to ρ.

• SELECT INPUT(x, xnear) is a function to get the veloc-

ity input that should be commanded to the robot in order

to achieve state x from xnear.



• COLLISION(xnear, u,Δt,Xobs) is a function returning

true if a collision could be produced moving the robot

from state xnear by applying the input u for Δt time

considering the obstacles in Xobs.

• NEW STATE(xnear, u,Δt) is a function to get a new

state xnew by applying the input u to the robot for Δt
time starting at state xnear.

The function EXTEND tries to add a new node to the RRT τ
considering a reference x. If the function fails, then it returns

Trapped; if the new node is closer than dmin to x, then it

returns Reached; and if the new node is far from x considering

dmin, then the function returns Advanced. Figure 2 describes

a RRT generated after 5000 iterations by using Algorithm 1

with the Euclidean distance and omitting the heading angle.

Fig. 2. RRT generated after 5000 iterations

In [10], a bidirectional RRT algorithm is introduced for path

planning. The main idea of this algorithm is to create two

RRTs: τa starting at xinit and τb starting at xend. If τa and

τb are connected in a prefixed number K of iterations, then a

path is returned; otherwise the function returns failure.

Algorithm 3 is the bidirectional RRT algorithm presented in

[10], where:

• xinit is the initial state.

• xend is the ending state.

• τa = (Vτa , Eτa) is an RRT starting at xinit.

• τb = (Vτb , Eτb) is an RRT starting at xend.

• PATH(τa, τb) is a function to compute a path from the

initial node of τa to the initial node of τb. Both RRTs

must be connected.

• SWAP(τa, τb) is a procedure to interchange the values of

τa and τb.

The rest of variables have the same meaning than the

variables used in Algorithms 1 and 2.

In this paper we propose the Algorithm 4 as a parallel

version of the bidirectional RRT algorithm, where τa and τb
are built at the same time.

Algorithm 3 GENERATE PATH

Require: xinit, xend,K, ρ,Δt,X,Xobs, dmin

Vτa ← {xinit}; Eτa ← ∅;

Vτb ← {xend}; Eτb ← ∅;

for k = 1 to K do
xrand ← RANDOM STATE(X);

if EXTEND(τa, xrand, ρ,Δt,Xobs, dmin) �= Trapped
then

if EXTEND(τb, xnew, ρ,Δt,Xobs, dmin) = Reached
then

return PATH(τa, τb);

end if
end if
SWAP(τa, τb);

end for
return Failure

Algorithm 4 GENERATE PATH PARALLEL

Require: (xinit, xend,K, ρ,Δt,X,Xobs, dmin

Vτa ← {xinit}; Eτa ← ∅;

Vτb ← {xend}; Eτb ← ∅;

for k = 1 to K do
xrand,a ← RANDOM STATE(X);

xrand,b ← RANDOM STATE(X);

begin parallel block
resulta = EXTEND(τa, xrand,a, ρ,Δt,Xobs, dmin);

resultb = EXTEND(τb, xrand,b, ρ,Δt,Xobs, dmin);

end parallel block
if resulta �= Trapped then

if EXTEND(τb, xnew, ρ,Δt,Xobs, dmin) = Reached
then

return PATH(τa, τb);

end if
end if
if resultb �= Trapped then

if EXTEND(τa, xnew, ρ,Δt,Xobs, dmin) = Reached
then

return PATH(τa, τb);

end if
end if

end for
return Failure

IV. RANDOM ENZYMATIC NUMERICAL P SYSTEMS WITH

PROTEINS AND SHARED MEMORY

In this section a variant of enzymatic numerical P systems
incorporating new features is presented, in order to simulate

RRT algorithms.

A random enzymatic numerical P systems with pro-

teins and shared memory (RENPSM, for short) of de-

gree (p, q), p, q ≥ 1 is a tuple (H,μ, P,Emem, Emem(0),
{Ph(0), V arh, V arh(0), P rh) | h ∈ H},R, ha, hb), where:

1. H = {1, . . . , p · q} ∪ {v,mem}, mem /∈ {1, . . . , p · q},

v /∈ {mem, 1, . . . , p·q}, is the set of labels of the system;



2. μ is a dynamic membrane structure (rooted tree) initially

consisting of one skin membrane with label v including

two inner membranes labelled respectively with ha ∈
{1, . . . , p · q} and hb ∈ {1, . . . , p · q}, ha �= hb, in such

manner that along the computation only child membranes

of ha and hb will be created with labels in {1, . . . , p·q}. In

Figure 3, it is represented the initial membrane structure;

3. mem is the label of a distinguished component (the

shared memory of the system);

4. P is a finite set of objects, called catalyzer proteins,

and Ph(0) is the protein initially associated with region

labelled by h;

5. Emem is a finite set of variables, called enzymes, disjoint

with V armem, and Emem(0) is the initial values of the

enzymes;

6. V arh, h ∈ H , is a finite set of variables xj,h associated

with region labelled by h (a membrane or the shared

memory), its values are natural numbers and the value of

xj,i at time t ∈ N is denoted by xj,i(t);
7. V arh(0) is a vector that represents the initial values for

variables in V arh;

8. P rh, h ∈ H , is a finite set of programs associated with

region labelled by h, having the following syntactical for-

mat F (x1,h, . . . , xkF ,h)
e(F );α(F )−−−−−−−→ c1|v1, . . . , cnF

|vnF
,

where:

– F (x1,h, . . . , xkF ,h) is a computable function (the

production function), being x1,h, . . . , xkF ,h ∈ V arh;

– c1|v1, . . . , cnF
|vnF

is the repartition protocol asso-

ciated with the program, being c1, . . . , cnF
natural

numbers specifying the proportion of the current

production distributed to variables v1, . . . , vnF
∈

V arh ∪ V arpar(h) ∪ V arch(h), where par(h) the

parent of h and ch(h) the set of child of h in μ;

– e(F ) ∈ Eh is an enzyme and α(F ) ∈ P is a

protein, both of them associated with program F ,

if no enzyme or protein is used in a program then it

will be omitted;

9. R is a finite set of rules of the following form:

– Protein evolution rules: [α → α′ ]h, where h ∈
H,α ∈ P and α′ ∈ P .

– Writing-only communication rules between the
shared memory and the membranes

(h , Xh /Yh,mem , mem)Wα

where Xh ∈ V arh, Yh,mem ∈ V armem, α ∈ P
in such manner that there is, at most, one rule

for each membrane h ∈ {1, . . . , p · q}. Variables

Yh,mem, Yh′,mem should be different for two mem-

branes h, h′.
– Reading-only communication rules between the

shared memory and the membranes:

(h , Xh /Ymem , mem)Rα

where Xh ∈ V arh, Ymem ∈ V armem, α ∈ P . Vari-

able Ymem is the same for each h ∈ {1, . . . , p · q}.

– Membrane creation rules:[ [
X1,h , X2,h, , . . . , Xn,h

]
h

]
h′ ; α

where h, h′ ∈ {1, . . . p · q · r} are different, α ∈ P
and X1,h , . . . , Xn,h ⊆ V arh.

Fig. 3. The initial membrane structure with a representation of the shared
memory.

The term region h (h ∈ H) is used to refer to membrane h
in the case h ∈ {1, . . . , p · q} ∪ {v}, as well as to refer to the

shared memory in the case h = mem.

Next, we describe the semantics of RENPSHs. A configura-
tion of a RENPSH at any instant t is described by the current

membrane structure μ, together with proteins and all values of

the variables and enzymes associated with all regions The ini-
tial configuration is (μ,Emem(0), {Ph(0), V arh(0)|h ∈ H}),
where μ = [[ ]ha [ ]hb

]v . We will call μa (resp. μb) to the

membrane structure rooted in membrane ha (resp. hb).

A program F (x1,h, . . . , xkF ,h)
eF ;pF−→ c1|v1, . . . , cnF

|vnF

associated with a region is applicable to a configuration Ct,
at moment t, if the value of e(F ) at that instant is greater

than min{x1,h(t), . . . , xkF ,h(t)} and protein α(F ) is inside

the region h of Ct. When applying such a program, variables

associated with Ct are processed as follows: first, the value

F (x1,h(t), . . . , xkF ,h(t)) is computed as well as the value

q(t) =
F (x1,h(t), . . . , xkF ,h(t))

c1 + · · ·+ cnF

This value represents the unary portion at instant t to be

distributed among variables v1, . . . , vnF
according to the

repartition expression. Thus, q(t) · cs is the contribution added

to the current value of vs (1 ≤ s ≤ nF ), at step t + 1. So,

vs(t+ 1) = vs(t) + q(t) · cs and vs(t) become zero, i.e, it is

assumed that variable vs is “consumed” when the production

function is used and other variables retain their values. Each

program in each membrane can only be used once in every

computation step, and all the programs are executed in parallel.

A protein evolution rule [α → α′ ]h is applicable to a

configuration Ct at moment t if protein α is in membrane h of

Ct. When applying such a rule the protein α in h evolves to

protein α′ in h. These rules are applied in a maximal manner.

A writing-only communication rule between the shared

memory and the membranes, (h , Xh /Yh,mem , mem)Wα , is

applicable to a configuration Ct at moment t if protein α is

in membrane h of Ct. When applying such a rule the value

Xh(t) is assigned to the variable Yh,mem(t+1) of the shared



memory, that is Yh,mem(t + 1) ← Xh(t) . These rules are

applied in a maximal manner.

A reading-only communication rule between the shared

memory and the membranes, (h , Xh /Ymem , mem)Rα is ap-

plicable to a configuration Ct at moment t if protein α is

in membrane h of Ct. When applying such a rule the value

Ymem(t) is assigned to the variable Xh(t + 1) of membrane

h, that is Xh(t+1) ← Ymem(t). These rules are applied in a

maximal manner.

A membrane creation rule [ [X1,h , . . . , Xn,h ]h ]h′ ; α is

applicable to a configuration Ct at moment t if protein α
is in membrane h′ of Ct. When applying such a rule, a

new membrane labelled by h is created in such manner

that h′ is the parent of h and the set of its variables is

V arh = {X1,h , . . . , Xn,h}.

Given a random enzymatic numerical P system with proteins

and shared memory Π, we say that configuration Ct at time t
yields configuration Ct+1 in one transition step if we can pass

from Ct to Ct+1 by applying in parallel each program in each

membrane only once, and by applying the rules in a maximal

parallel way following the previous remarks. A computation
of Π is a (finite or infinite) sequence of configurations such

that: (a) the first term is the initial configuration of the system;

(b) for each n ≥ 2, the n-th configuration of the sequence is

obtained from the previous configuration in one transition step;

and (c) if the sequence is finite (called halting computation)

then the last term is a halting configuration (a configuration

where no rule of the system is applicable to it). All the

computations start from an initial configuration and proceed as

stated above; only halting computations give a result, which

is encoded by the objects present in the output region iout
associated with the halting configuration. If C = {Ct}t<r+1

of Π (r ∈ N) is a halting computation, then the length of

C, denoted by |C|, is r. For each i (1 ≤ i ≤ q), we denote

by Ct(i) the finite multiset of objects over Γ contained in all

membranes labelled by i at configuration Ct.
V. SIMULATION OF ONE ITERATION OF THE

BIDIRECTIONAL RRT ALGORITHM FOR PATH PLANNING

The input of the bidirectional RRT algorithm generating a

global path for a robot trajectory consists of the following

parameters (xinit, xend,K, ρ,Δt,X,Xobs, dmin), where:

– xinit is the initial state.

– xend is the ending state.

– K is the number of iterations to find the path.

– Δt is a fixed amount of time for transitions.

– X is the state space.

– Xobs ⊆ X is the obstacle state space.

– dmin is the minimum distance threshold according to

some distance metric ρ in order to include a new node

in an RRT.

For mobile robots in a 2D environment, the state space is

given by (x, y, θ), i.e, the Cartesian coordinates (x, y) and

the heading angle θ of all the possible robot poses. However,

the angle θ has been omitted in this solution to reduce the

size of the problem and the state space is given by (x, y)

considering the Euclidean distance as distance metric. In this

case, a holonomic robot can follow the RRT by performing

motions in straight line, otherwise a nonholonomic robot can

include rotations in-place. Moreover, any state or position

(i, j) ∈ {1, . . . p} × {1, . . . q} can be encoded by the natural

number (i − 1) · q + j. In such a manner that, given a

natural number n encoding a state (i, j), the following holds:

i = 1 + qt(n, q) and j = rm(n, q).

One iteration of the parallel bidirectional RRT algorithm

defined in Algorithm 4 will be simulated by a RENPSM of

degree (p, q)

Π = (H,μ, P,Emem, Emem(0),

{(Ph(0), V arh, V arh(0), P rh) | h ∈ H},R, ha, hb)

defined as follows:

– H = {1, . . . , p·q}∪{v,mem}, v /∈ {1, . . . , p·q}, mem /∈
{1, . . . , p · q}.

– μ = [[ ]ha [ ]hb
]v with ha ∈ {1, . . . , p · q}, hb ∈ {1, . . . , p ·

q} and ha �= hb. We call μa to the membrane structure

rooted on ha and μb to the one rooted on hb.

– P = {αi | 1 ≤ i ≤ 18}, and Ph(0) = {α1}, for each

h ∈ H .

– Emem = {FlagAmem, F lagBmem, p · q + 1} and

Emem(0) = {p · q + 1}.

– The set of variables is:

– V arh = {X1,h, X2,h, Y1,h, Y2,h, Z1,h, Z2,h, Dh},

for each h, 1 ≤ h ≤ p · q.

– V armem = {X1,mem, X2,mem, X3,mem, X4,mem}∪
{Y1,mem, Y2,mem, Y3,mem, Y4,mem}∪
{Z1,mem, Z2,mem, Z3,mem, Z4,mem}∪
{U1,mem, U2,mem, U3,mem, U4,mem}∪
{Amem, Bmem, NAmem, NBmem, Haltmem}∪
{Ah,mem, Bh,mem | 1 ≤ h ≤ p · q}.

– Initially, all variables in V arh(h �= ha ∧ h �= hb)
and all variables in V arha and V arhb

different to

Y1,h, Y2,h, are equal to zero. Besides, initially the

tuple (Y1,ha
, Y2,ha

) (resp. (Y1,hb
, Y2,hb

)) provides

the position of the initial state of the robot ha (resp.

the position of the final state of the robot hb).

– If variable Haltmem is equals to 1, then the compu-

tation stops.

• Next, the finite set of programs Prh and the set of rules R
of the system are defined according with the requirements

to simulate the bidirectional RRT algorithm.

• In order to synchronize the sequence of an iteration, for

each h ∈ H the protein evolution rules [αi → αi+1 ]h,

for 1 ≤ i ≤ 17, and [α18 → α1 ]h are considered.

• Four random numbers are generated in the shared mem-

ory; for 1 ≤ k ≤ 4:⎧⎪⎪⎨
⎪⎪⎩

Production function : F (Xk,mem) =
Random(i, 1 ≤ i ≤ p)
Repartition protocol : 1|Xk,mem

Protein : α1



• Each membrane h ∈ μa will read the random numbers

X1,mem, X2,mem. Each membrane h ∈ μb will read the

random numbers X3,mem, X4,mem .⎧⎨
⎩

(h , X1,h /X1,mem , mem)Rα2
: h ∈ μa

(h , X2,h /X2,mem , mem)Rα2
: h ∈ μa⎧⎨

⎩
(h , X1,h /X3,mem , mem)Rα2

: h ∈ μb

(h , X2,h /X4,mem , mem)Rα2
: h ∈ μb

• For each membrane h ∈ {μa, μb}, the distance Dh

between its position (Y1,h, Y2,h) and the position given

by the generated random natural numbers (X1,h, X2,h) is

computed. For the remaining membranes, Dh = p ·q+1.

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Production function : F (X1,h, X2,h, Y1,h, Y2,h) ={ √∑2
j=1(Xj,h − Yj,h)2 if h ∈ {μa, μb}

p · q + 1 if h /∈ {μa, μb}
Repartition protocol : 1|Dh

Protein : α3

• Each membrane h writes its value Dh to the shared

memory.⎧⎨
⎩

(h , Dh /Ah,mem , mem)Wα4
: h ∈ μa

(h , Dh /Bh,mem , mem)Wα4
: h ∈ μb

• The minimum of all distances Ah,mem is computed in

the shared memory.

– Production function: F (A1,mem, . . . , Ap·q,mem) =
min{A1,mem, . . . , Ap·q,mem}

– Repartition protocol: 1|Amem

– Protein: α5

• The minimum of all distances Bh,mem is computed in

the shared memory.

– Production function: F (B1,mem, . . . , Bp·q,mem) =
min{B1,mem, . . . , Bp·q,mem}

– Repartition protocol: 1|Bmem

– Protein: α5

• Variable (enzyme) FlagAmem is set to zero if Amem ≤
Threshold.

– Production function: F (Amem) ={
0 if Amem ≤ Threshold

p · q + 1 otherwise
– Repartition protocol: 1|FlagAmem

– Protein: α6

• Variable (enzyme) FlagBmem is set to zero if Bmem ≤
Threshold.

– Production function: F (B,mem) ={
0 if Bmem ≤ Threshold

p · q + 1 otherwise

– Repartition protocol: 1|FlagBmem

– Protein: α6

• The label neara, corresponding to the closer membrane

to the randomly generated pose for μa, is obtained.

– Production function: F (A1,mem, . . . , Ap·q,mem) =
arg-min{A1,mem, . . . , Ap·q,mem}

– Repartition protocol: 1|NAmem

– Protein: α7

– Enzyme: FlagAmem

• The label nearb, corresponding to the closer membrane

to the randomly generated position for μb, is obtained.

– Production function: F (B1,mem, . . . , Bp·q,mem) =
arg-min{B1,mem, . . . , Bp·q,mem}

– Repartition protocol: 1|NBmem

– Protein: α7

– Enzyme: FlagBmem

• The position of membrane neara is computed.

⎧⎪⎪⎨
⎪⎪⎩

Production function : F (NAmem) = 1 + qt(NAmem, q)
Repartition protocol : 1|Y1,mem

Protein : α8

Enzyme : FlagAmem⎧⎪⎪⎨
⎪⎪⎩

Production function : F (NAmem) = rm(NAmem, q)
Repartition protocol : 1|Y2,mem

Protein : α8

Enzyme : FlagAmem

• The position of membrane nearb is computed.

⎧⎪⎪⎨
⎪⎪⎩

Production function : F (NBmem) = 1 + qt(NBmem, q)
Repartition protocol : 1|Y3,mem

Protein : α8

Enzyme : FlagBmem⎧⎪⎪⎨
⎪⎪⎩

Production function : F (NBmem) = rm(NBmem, q)
Repartition protocol : 1|Y4,mem

Protein : α8

Enzyme : FlagBmem

• The unitary vectors are created in the shared memory.⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Production function :
F (X1,mem, X2,mem, Y1,mem, Y2,mem) =

X1,mem−Y1,mem√∑2
j=1(Xj,mem−Yj,mem)2

Repartition protocol : 1|U1,mem

Protein : α9

Enzyme : Flag1mem⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Production function :
F (X1,mem, X2,mem, Y1,mem, Y2,mem) =

X2,mem−Y2,mem√∑2
j=1(Xj,mem−Yj,mem)2

Repartition protocol : 1|U2,mem

Protein : α9

Enzyme : Flag1mem



⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Production function :
F (X3,mem, X4,mem, Y3,mem, Y4,mem) =

X3,mem−Y3,mem√∑2
j=1(Xj,mem−Yj,mem)2

Repartition protocol : 1|U3,mem

Protein : α9

Enzyme : Flag2mem⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Production function :
F (X3,mem, X4,mem, Y3,mem, Y4,mem) =

X2,mem−Y2,mem√∑2
j=1(Xj,mem−Yj,mem)2

Repartition protocol : 1|U4,mem

Protein : α9

Enzyme : Flag2mem

• Variable (enzyme) FlagAmem is set to zero if there is

collision for μa.

– Production function:

F (Y1,mem, Y2,mem, U1,mem, U2,mem) =⎧⎨
⎩

0 if COLLISION(Y1,mem, Y2,mem,
U1,mem, U2,mem)

p · q + 1 otherwise
– Repartition protocol: 1|FlagAmem

– Protein: α10

– COLLISION is a function returning true if there

are static obstacles in a linear trajectory start-

ing at (Y1,mem, Y2,mem) and applying a motion

(U1,mem, U2,mem) for Δt time.

• Variable (enzyme) FlagBmem is set to zero if there is

collision for μb.

– Production function:

F (Y3,mem, Y4,mem, U3,mem, U4,mem) =⎧⎨
⎩

0 if COLLISION(Y3,mem, Y4,mem,
U3,mem, U4,mem)

p · q + 1 otherwise
– Repartition protocol: 1|FlagBmem

– Protein: α10

– COLLISION is a function returning true if there

are static obstacles in a linear trajectory start-

ing at (Y3,mem, Y4,mem) and applying a motion

(U3,mem, U4,mem) for Δt time.

• Positions of new membranes are computed in the shared

memory.

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Production function :
F (Y1,mem, U1,mem) = Y1,mem + U1,mem ·Δt
Repartition protocol : 1|Z1,mem

Protein : α11

Enzyme : FlagAmem⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Production function :
F (Y2,mem, U2,mem) = Y2,mem + U2,mem ·Δt
Repartition protocol : 1|Z2,mem

Protein : α11

Enzyme : FlagAmem

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Production function :
F (Y3,mem, U3,mem) = Y3,mem + U3,mem ·Δt
Repartition protocol : 1|Z3,mem

Protein : α11

Enzyme : FlagBmem⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Production function :
F (Y4,mem, U4,mem) = Y4,mem + U4,mem ·Δt
Repartition protocol : 1|Z4,mem

Protein : α11

Enzyme : FlagBmem

• The membranes labelled by NAmem and NBmem will

read the positions corresponding to the new membranes

from the shared memory.⎧⎨
⎩

(NAmem , Z1,NAmem /Z1,mem , mem)Rα12

(NAmem , Z2,NAmem
/Z2,mem , mem)Rα12⎧⎨

⎩
(NBmem , Z1,NBmem /Z3,mem , mem)Rα12

(NBmem , Z2,NBmem
/Z4,mem , mem)Rα12

• A child membrane with position (Z1,NAmem , Z2,NAmem)
is created in μa.⎡

⎢⎢⎣
⎡
⎢⎢⎣

X1,h X2,h

Y1,h Y2,h

Z1,h Z2,h

Dh

⎤
⎥⎥⎦
h

⎤
⎥⎥⎦
NAmem

Being h = (Z1,NAmem − 1) · q + Z2,NAmem .

This rule is mediated by protein α13.

• A child membrane with position (Z1,NBmem
, Z2,NBmem

)
is created in μb.⎡

⎢⎢⎣
⎡
⎢⎢⎣

X1,h X2,h

Y1,h Y2,h

Z1,h Z2,h

Dh

⎤
⎥⎥⎦
h

⎤
⎥⎥⎦
NBmem

Being h = (Z1,NBmem
− 1) · q + Z2,NBmem

.

This rule is mediated by protein α13.

• Each membrane in μa reads the position of the new

membrane created in μb⎧⎨
⎩

(h , X1,h /Z3,mem , mem)Rα14
: h ∈ μa

(h , X2,h /Z4,mem , mem)Rα14
: h ∈ μa

• Each membrane in μb reads the pose of the new mem-

brane created in μa⎧⎨
⎩

(h , X1,h /Z1,mem , mem)Rα14
: h ∈ μb

(h , X2,h /Z2,mem , mem)Rα14
: h ∈ μb



• For each membrane h ∈ {μa, μb}, the distance Dh

between its position (Y1,h, Y2,h) and the position given

by the new membrane in the other membrane structure is

computed. For the remaining membranes, Dh = p ·q+1.

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Production function : F (X1,h, X2,h, Y1,h, Y2,h) ={ √∑2
j=1(Xj,h − Yj,h)2 if h ∈ {μa, μb}

p · q + 1 if h /∈ {μa, μb}
Repartition protocol : 1|Dh

Protein : α15

• Each membrane h writes its value Dh to the shared

memory.⎧⎨
⎩

(h , Dh /Ah,mem , mem)Wα16
: h ∈ μa

(h , Dh /Bh,mem , mem)Wα16
: h ∈ μb

• The minimum of all distances Ah,mem is computed in

the shared memory.

– Production function: F (A1,mem, . . . , Ap·q,mem) =
min{A1,mem, . . . , Ap·q,mem}

– Repartition protocol: 1|Amem

– Protein: α17

• The minimum of all distances Bh,mem is computed in

the shared memory.

– Production function: F (B1,mem, . . . , Bp·q,mem) =
min{B1,mem, . . . , Bp·q,mem}

– Repartition protocol: 1|Bmem

– Protein: α17

• If Amem ≤ dmin or Bmem ≤ dmin then the RRTs have

been connected and the computation must halt.

– Production function: F (Amem, Bmem) ={
1 if Amem ≤ Threshold ∨Bmem ≤ Threshold
0 otherwise

– Repartition protocol: 1|Haltmem

– Protein: α18

VI. SIMULATION EXPERIMENTS

A C++ simulator has been developed within the

ROS [24] framework. It can be downloaded from

https://github.com/RGNC/renpsm. The experiments

have been conducted by using a dual-wheeled nonholonomic

robot (the Pioneer 3-DX) in two virtual environments. The

software is composed by three modules:

• MobileSim module [25]: It receives the static information

about the map, as well as motion commands (v, ω) and

generates the wheels odometry and information related

to sensors (laser rangefinder for obstacle detection). It

moves the simulated robot in the virtual environment.

• RENPSM module: It receives the information about the

map, as well as the information about odometry and sen-

sors and the goal of the robot. It computes a bidirectional

RRT by using a RENPSM simulator and finally it sends a

sequence of motion commands to the MobileSim module.

• RVIZ module [26]:This module is used for visualization.

It receives the static information about the map, as well as

all the information generated by the MobileSim module

and several visual markers generated by the RENPSM

module. It shows to the user all the information in real-

time by using a 3D representation of the environment and

the robot.

We have used two virtual environments, in Figures 4 and 6,

it can be seen the corresponding RVIZ visualization for each

one before starting the robot motion, i.e, after generating the

bidirection RRT by using the RENPSM module.
The first environment has been used for experimental valida-

tion of the RENPSM model by generating several simulations

and comparing the resulting RRT visualizations with the ones

generated with a conventional RRT software.
The second environment has been used for benchmarking,

generating 1435 simulations by fixing the starting point and

the goal of the robot and measuring the cost in distance of the

generated path. The results are shown in Table I.
We have measured the cost of an optimal path generated by

hand (about 10m) and, as expected, the cost of the best path

generated by the bidirectional RRT is larger than the optimal

cost, since the algorithm generates the first feasible path that

can be found.

Fig. 4. RVIZ visualization of a simulation in environment 1

Fig. 5. RVIZ visualization of a simulation in environment 2



Fig. 6. A second simulation in environment 2

TABLE I
BENCHMARKING RESULTS

Min. cost 11.77 m
Max. cost 17.96 m
Average cost 13.42 m
Standard deviation 0.795 m
Experiments 1435

VII. CONCLUSIONS

This paper deals with an algorithm belonging to a family

widely used to solve the problem of motion planning in robots,

e.g., the RRT algorithms. Such class of algorithms are based

on the randomized exploration of the configuration space. The

main contribution of this paper is to study the bidirectional

RRT algorithm within the framework of Membrane Comput-

ing.

In this work, a variant of Enzymatic Numerical P systems,

called random enzymatic numerical P systems with proteins
and shared memory (RENPSM, for short) is introduced. Be-

sides, a simplified version of the standard bidirectional RRT

algorithm is described by a RENPSM system capturing the

semantics of the new variant, where maximal parallelism is

used.

A software platform has been provided in order to simulate

RENPSM systems and validate the computations in compar-

ison with the usual implementation of the bidirectional RRT

algorithm. Some benchmarking results are also included.

Three challenges are planned as future work. First, to

provide a formal verification of such RENPSM systems, in the

sense that they in fact simulate the RRT generation algorithm.

The second challenge is to move to the RRT* algorithm [6],

a variant of the initial algorithm that is able to approximate

optimal motion planning with enough iterations. Finally, to

provide real-life robot path planning experiments, by using

a nonholonomic robot with kinodynamic and environment

constraints.
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Sensing System in Vibrio fischeri Using P Systems. Artificial Life, 14
(1), 2008. 95 – 109

[20] A. Stentz. The Focussed D* Algorithm for Real-time Replanning.
Proceedings of the 14th International Joint Conference on Artificial
Intelligence, Vol. 2, 1995, pp. 1652–1659

[21] H. Wang, Y. Yu, and Q. Yuan. Application of Dijkstra algorithm in
robot path-planning, Proceedings of the 2nd International Conference on
Mechanic Automation and Control Engineering. 2011, pp. 1067–1069.

[22] T. Wang, G. Zhang, J. Zhao, Z. He, J. Wang, and M.J. Pérez-Jiménez.
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