
P–Lingua 2.0: A software framework for cell–like P systems

Manuel García-Quismondo, Rosa Gutiérrez-Escudero, Miguel A Martínez-del-Amor Enrique
Orejuela-Pinedo, I. Pérez-Hurtado

Research Group on Natural Computing
Dpt. of Computer Science and Artificial Intelligence
University of Sevilla
Avda. Reina Mercedes s/n, 41012 Sevilla, Spain
E-mail: mangarfer2@alum.us.es, {rgutierrez, mdelamor, orejuela, perezh}@us.es

Abstract: P-Lingua is a programming language for membrane computing. It was
first presented in Edinburgh, during the Ninth Workshop on Membrane Computing
(WMC9). In this paper, the models, simulators and formats included in P-Lingua in
version 2.0 are explained. We focus on the stochastic model, associated simulators
and updated features. Finally, we present one of the first applications based on P-
Lingua: a tool for describing and simulating ecosystems.
Keywords: Programming languages, software development, P systems, Membrane
Computing, P-Lingua

1 Introduction

Membrane computing (or cellular computing) is a branch of Natural Computing that was introduced
by Gh. Păun [10]. The main idea is to consider biochemical processes taking place inside living cells
from a computational point of view. The initial definition of this computing paradigm is very flexible
and many different models have been defined.

Each model displays characteristic semantic constraints that determine the way in which rules are
applied. Hence, the need for software simulators capable of taking into account different scenarios when
simulating P system computations comes to the fore. An initial approach could be defining inputs for
each simulator specifically. Nevertheless, this approach involves defining new input formats for each
simulator, so designing simulators would take a great effort. A second approach could be standardizing
the simulator input, so all simulators need to process inputs specified in the same format. These two
approaches raise up a trade-off: On the one hand, specific simulator inputs could be defined in a more
straightforward way, as the used format is closer to the P system features to simulate. On the other hand,
although the latter approach involves analyzing different P systems and models to develop a standard
format, there is no need to develop a new simulator every time a new P system should be simulated, as
it is possible to specify it in the standard input format. Moreover, researches would not have to devise a
new input format every time they specify a P system and would not need to change the way to specify P
systems which need to be simulated every time they move on to another model, as they would keep on
using the standard input format.

This second approach is the one considered in P-Lingua project, a programming language whose
first version, presented in [3], is able to define P systems within the active membrane P system model
with division rules. The authors also provide software tools for compilation, simulation and debug tasks.
From now on, we will call P-Lingua 1.0 this version of the language and its associated tools.

As P-Lingua is intended to become a standard for P systems definition, it should also consider other
models. In this paper, we present P-Lingua 2.0 as a framework to define cell-like P system models,
including several algorithms to simulate P system computations for the supported models (from now on,

simulators), as well as different formats to represent P systems with associated parsers to translate from
each other.

This paper is structured as follows. In Section 2 the supported models at this stage are enumerated.
The next section introduces some algorithms used to simulate P systems, focusing on the stochastic and
the probabilistic P system models. In Section 4 different file formats to representate cell-like P systems
are presented, for example, P-Lingua 2.0 programming language. Model definitions, simulators and
parsers have been encoded in a JAVA library, pLinguaCore c©, presented in Section 6, this library is free
software and it can be easily expanded. Command-line tools to compile files and simulate P systems
have been slightly modified - in Section 5 these changes are presented. The next section introduces one
of the first applications of P-Lingua, a software tool to describe and simulate ecosystems. Finally, some
conclusions and future work are enumerated in Section 8.

2 Supported P system models

The supported models developed so far are enumerated below, but a standard mechanism for defining
new cell-like models has been included on the P-Lingua 2.0 framework. Each model displays charac-
teristic semantic constraints entailing the rules applied, such as the number of objects specified on the
left-hand side, membrane creation, polarization, and so on. It is possible to define additional models by
including the corresponding semantic constraints within the plinguaCore JAVA library. This mechanism
has been used on all the existent models.

The supported P system models in P-Lingua 2.0 are Transition P Systems, Symport/Antiport P Sys-
tems, P Systems with active membranes, with membrane division and membrane creation rules, Proba-
bilistic P Systems and Stochastic P Systems. More details on those models can be found in [13], except
for Stochastic P Systems, which are described in [10].

3 Simulators

In P-Lingua 1.0, only one simulator was supported, since there was only one P system model defi-
nition. However, as new models have been included, new simulators have been developed, providing at
least one simulator for each supported model.

All simulators in P-Lingua 2.0 can step backwards (as well as the simulator in P-Lingua 1.0), but this
option should be set before the simulation starts.

P-Lingua 2.0 also takes into account the existence of different simulation algorithms for the same
model and provides a means for selecting a simulator among the ones which are suitable to simulate the
P system, by checking its model. So far, only the stochastic P system model provides several simulation
algorithms to choose, but the plugin-oriented architecture of the pLinguaCore JAVA library allows easily
to encode new simulators.

3.1 Simulators for Stochastic P Systems

In the original definitions P systems evolve in a non-deterministic and maximally parallel manner
(that is, all the objects in every membrane that can evolve by a rule must do it [10]). When trying to
simulate biological phenomena, like living cells, the classical non-deterministic and maximally parallel
approach is not valid anymore. First, biochemical reactions, which are modelled by rules, occur at a
specific rate (determined by the propensity of the rule), therefore they cannot be selected in an arbitrary
and non-deterministic way. Second, in the classical approach all time steps are equal and this does not
represent the time evolution of a real cell system.

The strategies to replace the original approach are based on Gillespie’s Theory of Stochastic Kinetics

[6]. A constant c is associated to each rule, which provides P systems with a stochastic extension. The
constant c depends on the physical properties of the molecules involved in the reaction modeled by the
rule and other physical parameters of the system. Besides, it represents the probability per time unit at
which the reaction takes place. Also, it is used to calculate the propensity of each rule which determines
the probability and time needed to apply the rule.

Two different algorithms based on the principles stated above have been implemented and integrated
in pLinguaCore.

Multicompartimental Gillespie Algorithm

The Gillespie [6] algorithm or SSA (Stochastic Simulation Algorithm) was developed for a single,
well-mixed and fixed volume/compartment. P systems generally contain several compartments or mem-
branes. For that reason, an adaptation of this algorithm was presented in [10] and it can be applied in the
different regions defined by the compartmentalised structure of a P system model. The next rule to be
applied in each compartment and the waiting time for this application is computed using a local Gillespie
algorithm. The Multicompartimental Gillespie Algorithm can be broadly summarized as follows:

Repeat until a prefixed simulation time is reached:

1. Calculate for each membrane i, ≤ i ≤ m, and for each rule r j ∈ Rli the propensity, a j, by multi-
plying the stochastic constant c

li
j associated to r j by the number of distinct possible combinations

of the objects and substrings present of the left-side of the rule with respect to the current contents
of membranes involved in the rule.

2. Compute the sum of all propensities

a =

m∑

i=

∑

r j∈Rli

a j

3. Generate two random numbers r and r from the uniform distribution in the unit interval and
select τi and ji according to

τi =

a
ln(

r
)

ji = the smallest integer satisfying
ji∑

j=

a j > ra

In this way, we choose τi according to an exponential distribution with parameter a.

4. The next rule to be applied is r ji and the waiting time for this rule is τi. As a result of the application
of this rule, the state of one or two compartments may be changed and has to be updated.

The Multicompartimental Next Reaction Method

The Gillespie Algorithm is an exact numerical simulation method appropriate for systems with a
small number of reactions, since it takes a time proportional to the number of reactions (i.e., the number
of rules). An exact algorithm which is also efficient is presented in [5], the Next Reaction Method. It
uses only a single random number per simulation event (instead of two) and takes a time proportional to
the logarithm of the number of reactions. We have adapted this algorithm to make it compartimental.

The idea of this method is to be extremely sensitive in recalculating a j and ti, trying to recalculate
them only if they change. In order to do that, a data structure called dependency graph [5] is introduced.

Let r : u[v]l
c

−→ u ′[v ′]l be a given rule with propensity ar and let the parent membrane of l be labelled
with l ′. We define the following sets:

• DependsOn(ar) = {(b, t) | b is an object or string whose quantity affect the value.

ar, t = l if b ∈ v and t = l ′ if b ∈ u}.

Generally, DependsOn(ar) = {(b, l) | b ∈ v}∪ {(b, l ′) | b ∈ u}

• Affects(r) = {(b, t) | b is an object or string whose quantity is changed when the rule.

r is excuted, t = l if b ∈ v∨b ∈ v ′ and t = l ′ if b ∈ u∨b ∈ u ′}.

Generally, Affects(r) = {(b, l) | b ∈ v∨b ∈ v ′}∪ {(b, l ′) : b ∈ u∨b ∈ u ′}.

Definition 1. Given a set of rules R = Rl ∪ ·· · ∪Rlm , the dependency graph is the directed graph G =

(V,E), with vertex set V = R and edge set E = {(vi,v j) | Affects(vi)∩DependsOn(av j
) 6= /0}

In this way, if there exists an edge (vi,v j) ∈ E and vi is executed, as some objects affected by this
execution are involved in the calculation of av j

, this propensity would have to be recalculated. The
dependency graph depends only on the rules of the system and is static, so it is built only once.

The times τi, that represent the waiting time for each rule to be applied, are stored in an indexed

priority queue. This data structure, discussed in detail in [5], has nice properties: finding the minimum
element takes constant time, the number of nodes is the number of rules |R|, because of the indexing
scheme it is possible to find any arbitrary reaction in constant time and finally, the operation of updating
a node (only when τi is changed, which we can detect using to the dependency graph) takes log |R|

operations.
The Multicompartimental Next Reaction Method can be broadly summarized as follows:

1. Build the dependency graph, calculate the propensity ar for every rule r ∈ R and generate τi for
every rule according to an exponential distribution with parameter ar. All the values τr are stored
in a priority queue. Set t ← (this is the global time of the system).

2. Get the minimum τµ from the priority queue, t ← t + τµ . Execute the rule rµ (this is the next rule
scheduled to be executed, because its waiting time is least).

3. For each edge (µ,α) in the dependency graph recalculate and update the propensity aα and

• if α 6= µ , set

τα ←
aα,old(τα − τµ)

aα ,new

+ τµ

• if α = µ , generate a random number r, according to an exponential distribution with param-
eter aµ and set τµ ← τµ + r

Update the node in the indexed priority queue that holds τα .

4. Go to 2 and repeat until a prefixed simulation time is reached.

Both Multicompartimental Gillespie Algorithm and Multicompartimental Next Reaction Method are
the core of the Direct Stochastic Simulator and Efficient Stochatic Simulator, respectively. One of them,
which can be chosen in runtime, will be executed when compiling and simulating a P-Lingua file that
starts with @model<stochastic>.

3.2 A Simulator for Probabilistic P Systems

Next, we describe how the simulator for probabilistic P systems implements the applicability of the
rules to a given configuration.

(a) Rules are classified into sets so that all the rules belonging to the same set have the same left–hand
side.

(b) Let {r, . . . ,rt} be one of the sets of rules. Let us suppose that the common left-hand side is u [v]αi
and their respective probabilistic constants are cr , . . . ,crt

. In order to determine how these rules
are applied to a given configuration, we proceed as follows:

– One computes the greatest number N so that uN appears in the parent membrane of i and vN

appears in membrane i.

– N random numbers x such that ≤ x < are generated.

– For each k (≤ k ≤ t) let nk be the amount of numbers generated belonging to interval
[
∑k−

j= cr j
,
∑k

j= cr j
) (assuming that cr =).

– For each k (≤ k ≤ t), rule rk is applied nk times.

4 File formats to define P systems

Together with models and simulators, new formats have been included in P-Lingua 2.0. P-Lingua
1.0 provided a programming language to define P systems and an XML file format [3]. Both have
been upgraded to allow representations of P systems which have a cell-like structure. It also supports
backwards compatibility, so any file which defines a P system by using P-Lingua 1.0 is also recognized by
P-Lingua 2.0 tools. A detailed description of the syntax of P-Lingua programming language, including
the new extensions added in order to support the new models, can be found in [4].

A new format has been included as well, the binary format, whose purpose is to use less disk space
than the XML format.

At this point, the concepts input format and output format should be introduced. An input format is a
file format which, if a P system is specified in a file by following that format, the P system specified can
be processed by the pLinguaCore JAVA library. An output format is a file format which, if a P system is
specified in a file by following that format, that file can be generated by the library. These concepts are
similar to the source code and object code concepts [3].

For P-Lingua 2.0 framework, P-Lingua programming language is an input format, the binary format
is an output format and, eventually, XML is both an input and an output format. This means that P-
Lingua programs can be processed by pLinguaCore, binary files can be generated by pLinguaCore and
XML files can be both processed and generated by the library.

5 Command-line tools

P-Lingua 1.0 provided command-line tools for simulating P systems and compiling files which spec-
ify P systems [3]. In P-Lingua 2.0, the command-line tool general syntax has changed but, as it provides
backwards compatibility, all valid actions in P-Lingua 1.0 are still valid in P-Lingua 2.0, as well.

5.1 The compilation command-line tool

The command-line tool general syntax for compiling input files is defined as follows:

plingua [-input_format] input_file [-output_format]

output_file [-v verbosity_level] [-h]

The command header plingua requests the system to compile the P system specified on a file to
a file specified on another, whereas the file input_file contains the programme that we want to be
compiled, and output_file is the name of the file that is generated [3]. Optional arguments are in
square brackets:

• The option -input_format defines the format followed by input_file, which should be an
input format.

• At this stage, valid input formats are P-Lingua and XML.

• If no input format is set, the P-Lingua format is assumed.

• The option -output_format defines the format followed by output_file, which should be an
output format.

• At this stage, valid output formats are XML and bin.

• If no input format is set, the XML format is assumed by default.

• The option -v verbosity level is a number between 0 and 5 indicating the level of detail of the
messages shown during the compilation process [3].

• The option -h displays some help information [3].

5.2 The simulation command-line tool

The simulations are launched from the command line as follows:

plingua_sim input_file -o output_file [-v verbosity level] [-h] [-to timeout]

[-st steps] [-mode simulatorID] [-a] [-b]

The command header plingua_sim requests the system to simulate the P system specified on a file,
whereas input_xml is an XML document where a P system is formatted on, and output file is the name
of the file where the report about the simulated computation will be saved [3]. Optional arguments are in
brackets:

• The option -v verbosity level is a number between 0 and 5 indicating the level of detail of the
messages shown during the compilation process [3]. If no value is specified, it is 3 by default.

• The option -h displays some help information [3].

• The option -to sets a timeout for the simulation defined in timeout (in milliseconds), so when the
time out has elapsed the simulation is halted. If the simulation has reached a halting configuration
before the time out has elapsed this option has no effect.

• The option -st sets a maximum number of steps the simulation can take (defined in steps), so
when the time out has elapsed the simulation comes to a halt. If the simulation has reached a
halting configuration or the time out has elapsed (in case the option -to is set) before the specified
number of steps have been taken this option has no effect.

• The option -mode sets the specific simulator to simulate the P system (defined in simulatorID).
This option reports an error in case the simulator defined by simulatorID is not a valid simulator
for the P system model.

• The option -a defines if the simulation can take alternative steps. This option reports an error if
the simulator does not support alternative steps.

• The option -b defines if the simulation can step backwards. As every simulator supports stepping
backwards, this option does not report errors.

6 The pLinguaCore JAVA library

pLinguaCore c© is a JAVA library which performs all functions supported by P-Lingua 2.0, that is,
models definition, simulators and formats. This library reports the rules and membrane structure read
from a file where a P system is defined, detects errors in the file, reports them. If the P system is defined
in P-Lingua programming language, it locates the error in the file. This library performs simulations by
using the simulators implemented as well as taking into account all options defined. It reports the simu-
lation process, by displaying the current configuration as text and reporting the elapsed time. Eventually,
this library translates files that define a P system between formats, for instance, from P-Lingua language
format to binary format. This library is free software published under LGPL license [12], so everyone
who is interested can upgrade, change and distribute it respecting the license restrictions.

7 A tool for simulating ecosystems based on P-Lingua

The Bearded Vulture (Gypaetus barbatus) is an endangered species in Europe that feeds almost ex-
clusively on bone remains of wild and domestic ungulates. In [1], it is presented a first model of an
ecosystem related to the Bearded Vulture in the Pyrenees (NE Spain), by using probabilistic P systems
where the inherent stochasticity and uncertainty in ecosystems are captured by using probabilistic strate-
gies. In order to validate experimentally the designed P system, the authors have developed a simulator
that allows them to analyze the evolution of the ecosystem under different initial conditions. That soft-
ware application is focused on a particular P system, specifically, the initial model of the ecosystem
presented in [1]. With the aim of improving the model, the authors are adding ingredients to it, as new
species and more complex behaviour for the animals. The improved model, together with results of
virtual experiments made with this software application, is exhaustively described in [2].

A new GPL [11] licensed JAVA application with a friendly user-interface sitting on the pLinguaCore
JAVA library has been developed. This application provides a flexible way to check, validate and im-
prove computational models of ecosystem based on P systems instead of designing new software tools
each time new ingredients are added to the models. Furthermore, it is possible to change the initial
parameters of the modelled ecosystem in order to make the virtual experiments suggested by experts.
These experiments will provide results that can be interpreted in terms of hypotheses. Finally, some of
these hyphoteses will be selected by the experts in order to be checked in real experiments.

8 Conclusions and future work

Creating a programming language to specify P systems is an important task in order to facilitate the
development of software applications for membrane computing.

In [3] P-Lingua was presented as a programming language to define active membrane P systems
with division rules. The present paper extends that language to other models: transition P systems,

symport/antiport P systems, active membranes P systems with division or creation rules, probabilistic P
systems and stochastic P systems.

We have developed a JAVA library which recognizes the models, implements several simulators for
each model and defines different formats to codify P systems, like the P-Lingua one or a new binary
format. This library can be expanded to define new models, simulators and formats.

It is possible to select different algorithms to simulate a P system, for example, there are two different
algorithms for stochastic P systems. The library can be used inside other software applications, in this
sense, we present a tool for virtual experimentation of ecosystems.

An internet website [14], still under construction, will be available to download the applications,
libraries, source-code and technical reports, as well as provide information about the progress of the
P-Lingua project. In addition, this site aims to be a meeting point for users and developers through the
use of web-tools as forums.

The syntax of the P-Lingua programming language is sufficiently standard for specifying different
models of cell-like P systems. However, a new version of the language is necessary in order to specify
tissue-like P systems but this will be the aim of a future work.

Although P-Lingua 2.0 provides a way to simulate and compile P-systems, command-line tools are
usually not user-friendly. It means it is not easy and intuitive for people to use them. For this purpose,
P-Lingua 1.0 provided an Integrated Development Environment (IDE) [3], which eased the way people
could use P-Lingua 1.0. For P-Lingua 2.0, a new IDE, called pLinguaPlugin, is being developed. Such
an application is integrated into the Eclipse platform [13], so it makes the most of Eclipse’s capabilities
to provide a framework for translating, developing and testing P systems. It aims to be user-friendly and
useful for P system researchers.

8.1 Acknowledgement

The authors acknowledge the valuable assistance given by Mario J. Perez-Jimenez whose vast expe-
rience and human quality was essential for us in taking our first steps in scientific research. The authors
also acknowledge the support of the project TIN2006–13425 of the Ministerio de Educación y Ciencia
of Spain, cofinanced by FEDER funds, and the support of the Project of Excellence with Investigador de

Reconocida Valía of the Junta de Andalucía, grant P08-TIC-04200.

Bibliography

[1] M. Cardona, M.A. Colomer, M.J. Pérez–Jiménez, D. Sanuy, A. Margalida. Modeling Ecosystems
Using P Systems: The Bearded Vulture, a Case Study. Lecture Notes in Computer Science, 5391,
137–156, 2009

[2] M. Cardona, M.A. Colomer, A. Margalida, I. Pérez–Hurtado, M.J. Pérez–Jiménez, D. Sanuy. P Sys-
tem Based Model of an Ecosystem of the Scavenger Birds, Proceedings of the 7th Brainstorming

Week on Membrane Computing, Vol. I, 65–80, in press.

[3] D. Díaz–Pernil, I. Pérez–Hurtado, M.J. Pérez–Jiménez, A. Riscos–Núñez. A P-Lingua program-
ming environment for Membrane Computing, Proceedings of the 9th Workshop on Membrane

Computing, 155–172, 2008.

[4] M. García–Quismondo, R. Gutiérrez–Escudero, I. Pérez–Hurtado, M.J. Pérez–Jiménez. P-Lingua
2.0: New Features and First Applications, Proceedings of the 7th Brainstorming Week on Mem-

brane Computing, Vol. I, 141–168, in press.

[5] M.A. Gibson and J. Bruck. Efficient Exact Stochastic Simulation of Chemical Systems with Many
Species and Many Channels, J. Phys. Chem., 104, 1876–1889, 2000.

[6] D.T. Gillespie. Exact stochastic simulation of coupled chemical reactions, J. Phys. Chem., 81,
2340–2361, 1977.

[7] Gh. Păun. Membrane computing. An introduction, Springer–Verlag, Berlin, 2002.

[8] Gh. Păun. Computing with Membranes, Journal of Computer and System Sciences 61(1) 108–143,
2000.

[9] Gh. Păun. P systems with active membranes. Journal of Automata, Languages and Combinatorics,
6, 1, 75–90, 2001.

[10] F.J. Romero–Campero. P Systems, a Computational Modelling Framework for Systems Biology,
Doctoral Thesis, University of Seville, Department of Computer Science and Artificial Intelligence,
2008.

[11] The GNU General Public License: http://www.gnu.org/copyleft/gpl.html

[12] The GNU Lesser General Public License: http://www.gnu.org/copyleft/lgpl.html

[13] The Eclipse Project: http://www.eclipse.org

[14] The P-Lingua website: http://www.p-lingua.org

Manuel García-Quismondo Fernández was born in June 11, 1985. He got his degree in Ingeniería

Técnica en Informática de Sistemas in the University of Sevilla in June 2007. Currently, he is about
to get another degree, this time in Ingeniería en Informática, at the same university. Since September
2008, he has been a granted student at the Department of Computer Science and Artificial Intelligence.
He has developed a software application called pLinguaPlugin and co-developed another one called
pLinguaCore, directed by Agustín Riscos-Nuñez and Ignacio Pérez-Hurtado.

Rosa Gutiérrez-Escudero was born in August 16, 1984. She received her degree in Computer
Science in June 2008 from the University of Sevilla. Since September 2008, she has been a PhD student at
the Department of Computer Science and Artificial Intelligence of the University of Sevilla (Spain). She
is also a member of the Research Group on Natural Computing in the same University. Her main research
interests within the Membrane Computing area are computer simulation and Complexity Theory.

Miguel A. Martínez-del-Amor was born in July 10, 1984. He received his degree in Computer
Science from the University of Murcia (Spain) in June 2008. Currently, he is a PhD student at the
Department of Computer Science and Artificial Intelligence in the University of Sevilla (Spain). He
is also a member of the Research Group on Natural Computing at the same University, and his main
research interest is to joint Membrane Computing and High Performance Computing by using efficient
computer simulations.

Enrique Orejuela-Pinedo was born in June 7, 1979. He received his degree in Biology in 2005, from
the University of Sevilla (Spain). He has cooperated as internal student at the Departament of Ecology
and Vegetal Biology in the University of Sevilla. Currently, he is a PhD student at the Department
of Computer Science and Artificial Intelligence in the University of Sevilla. He is also a member of
the Research Group on Natural Computing at the same University, and his main research interests are
Natural Computing and Membrane Computing, specially computational models of ecosystems.

Ignacio Pérez-Hurtado was born in September 21, 1977. He received his degree in Computer
Science in October 2003. He was systems analyst in a company for three years. Since September
2006, he has been a PhD student at the Department of Computer Science and Artificial Intelligence
in the University of Sevilla (Spain). He is an associate professor at the same department. He is also

a member of the Research Group on Natural Computing at the said University, and his main research
interests within the membrane computing are computer simulation, models for biological processes and
Complexity Theory.

