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Abstract. Tissue P systems are one of the currently active research topics
within the field of Membrane Computing. In particular, their computational
efficiency is being investigated in the case when the number of cells can grow by
means of cell separation rules. In order to complement this study, it is useful to
provide simulation software tools for this variant of tissue P systems.

The paper presents an extension of P-Lingua specification language, in order
to include the class of tissue P systems with cell separation. This extension
involves updating the P-Lingua parser, by reinterpreting some operators, along
with some new ingredients. In addition, a new built-in simulation algorithm
that has been added to the core library of P-Lingua is also presented.

A case study of a family of tissue P systems with cell separation of type TSC(3)

solving SAT is used to show the dynamics of the simulator.

1. Introduction

Membrane Computing provides a framework for designing distributed parallel
models inspired by some basic features of biological membranes. Since Păun in-
troduced it in [6], many different classes of P systems have been investigated. Most of
them are computationally complete/universal, that is, equivalent in power to Turing
machines, as well as computationally efficient, i.e., are able to trade space for time



and solve in this way computationally hard problems in a feasible time. Some variants
of P systems are known as tissue P systems, based on a representation of membranes
placed in the nodes of a graph, inspired from the cell inter-communication in tissues.
Since the initial definition of tissue P systems [4] several research lines have been de-
veloped and new variants have arisen. One of the most interesting variants of tissue P
systems was presented in [7] where the definition of tissue P systems is combined with
P systems with active membranes, yielding the model of tissue P systems with cell
division. In [7] the first uniform and polynomial-time solution for the SAT problem
through a family of tissue P systems is given.

Since tissue P systems are distributed parallel computing devices, it is necessary
to design software applications in order to simulate such devices and to experimen-
tally validate the tissue based models. In order to provide a general framework to
specify, parse and simulate P systems, a programming language, P–Lingua [1, 11],
was designed. The authors of P-Lingua developed a Java library providing several
services, including parsers for input files and built-in simulators for cell-like P sys-
tems. This framework intends to cover as many variants of P systems as possible, so
some additions in the language and a new simulator were included in P-Lingua [3]
to permit the specification and simulation of tissue P systems with symport/antiport
and cell division rules. In the present paper a new extension of P-Lingua is provided,
including some syntactic additions to define tissue P systems with cell separation,
along with a new built-in simulator to simulate computations of such new models.

The paper is structured as follows. In Section 2, we introduce some preliminary
definitions about recognizer tissue P systems with symport/antiport rules and cell
separation rules. Section 3 describes the extensions for the P-Lingua programming
language in order to support tissue P systems. In Section 4, we introduce the simulator
for tissue P systems used in this paper, including the simulation algorithm. Section 5
is devoted to a case study of simulation, based on the solution of SAT provided in
[10]. Finally, conclusions and future work are discussed in Section 6.

2. Recognizer tissue P systems with cell separation

Tissue P systems with cell separation are inspired by the fact that alive tissues are
not static networks of cells, since new cells are generated by cell fission in a natural
way: a “parent” cell splits into two “child” cells, in such a way that the contents of
the parent cell gets distributed between them.

First, we recall some preliminaries. An alphabet Γ is a non–empty set whose
elements are called symbols. A multiset m over an alphabet Γ is a pair m = (Γ, f)
where f : Γ → N is a mapping. If m = (Γ, f) is a multiset then its support is defined
as supp(m) = {x ∈ Γ | f(x) > 0}. A multiset is finite if its support is a finite set. If

supp(m) = {a1, . . . , ak} then the multiset m will be denoted as m = a
f(a1)
1 . . . a

f(ak)
k

(here the order is irrelevant), and we say that f(a1) + . . . + f(ak) is the cardinal of
m, denoted by |m|. The empty multiset is denoted by λ.

Let m1 = (Γ, f1) and m2 = (Γ, f2) multisets over Γ. The union of m1 and
m2, denoted by m1 + m2 is the multiset (Γ, g), where g = f1 + f2, that is, g(x) =



f1(x) + f2(x) for each x ∈ Γ. The relative complement of m2 in m1, denoted by
m1 \ m2 is the multiset (Γ, g), where g(x) = f1(x) − f2(x) if f1(x) ≥ f2(x) and
g(x) = 0 otherwise.

Definition 1. A tissue P system with cell separation of degree q ≥ 1 is a tuple

Π = (Γ,Γ1,Γ2,Σ, E ,M1, . . . ,Mq,R, iin, iout),

where:

1. Γ is a finite alphabet.

2. {Γ1,Γ2} is a partition of Γ, that is, Γ = Γ1 ∪ Γ2, Γ1,Γ2 ̸= ∅, Γ1 ∩ Γ2 = ∅.

3. Σ ⊆ Γ is the input alphabet.

4. E ⊆ Γ is an environment alphabet.

5. M1, . . . ,Mq are multisets over Γ.

6. R is a finite set of rules of the following forms:

(a) Communication rules: (i, u/v, j), where i, j ∈ {0, 1, . . . , q}, i ̸= j,
u, v ∈ Γ∗, |u|+ |v| > 0;

(b) Separation rules: [a]i → [Γ1]i[Γ2]i, where i ∈ {1, . . . , q}, i ̸= iout,
a ∈ Γ.

7. iin ∈ {1, . . . , q} and iout ∈ {0, 1, . . . , q}.

In other words, a tissue P system with cell separation of degree q ≥ 1 can be viewed
as a set of q cells, labeled by 1, . . . , q, with an environment labeled by 0 such that:
(a) M1, . . . ,Mq are multisets over Γ representing the objects (elements in Γ) initially
placed in the q cells of the system; (b) E \ Σ is the set of objects located initially
in the environment of the system, all of them appearing in an arbitrary number of
copies; and (c) iin represents the input cell, and iout ∈ {0, 1, . . . , q} represents the
region where the output of the system will be sent (being either a distinguished cell
when iout ∈ {1, . . . , q}, or the environment when iout = 0).

When applying a rule (i, u/v, j), the objects of the multiset u are sent from region
i to region j and, simultaneously, the objects of multiset v are sent from region j
to region i. A separation rule [a]i → [Γ1]i[Γ2]i is applicable to cell i if object a is
contained in that cell. When applying a separation rule [a]i → [Γ1]i[Γ2]i, in reaction
with an object a, the cell i is separated into two cells with the same label; at the same
time, object a is consumed; the objects from Γ1 are placed in the first cell, those from
Γ2 are placed in the second cell; the output cell iout cannot be separated.

The rules are used in a non-deterministic maximally parallel manner as customary
in membrane computing. At each step, all cells which can evolve must evolve in a
maximally parallel way, that is, we apply a multiset of rules which is maximal, no
further applicable rule can be added, with the following important remark: when a



cell is separated, the separation rule is the only one which is applied for that cell at
that step. The new cells resulting from separation could participate in the interaction
with other regions by means of communication rules at the next step – provided that
they are not separated once again. The label of a cell precisely identifies the rules
which can be applied to it.

A configuration at any instant of Π is described by all multisets of objects over Γ
associated with all the cells present in the system, and the multiset of objects over
Γ \ E associated with the environment at that moment. Given a finite multiset m
over Σ, the initial configuration with input m is (M1, . . . ,Miin +m, . . . ,Mq; ∅). A
configuration is a halting configuration if no rule of the system is applicable to it.
We say that configuration C1 yields configuration C2 in one transition step if we can
pass from C1 to C2 by applying the rules from R following the previous remarks. A
computation of Π is a sequence of configurations such that: (a) the first term of the
sequence is an initial configuration of the system (for a given input); (b) every other
term of the sequence is obtained from the previous one by applying the rules of the
system in a maximally parallel manner with the restrictions previously mentioned;
and (c) either the sequence is infinite, or the last term of the sequence is a halting
configuration (in this case we call it a halting computation).

A tissue P system is a recognizer system if all its computations verify the following
property: either object yes or object no (but not both) must have been released into
the environment, and only at the last step of the computation (hence, we also impose
the condition that all computations halt for any possible input). We say that C is an
accepting (respectively, rejecting) computation if object yes (respectively, object no)
appears in the environment associated with the corresponding halting configuration
of C.

Let us recall that a decision problem is a pair (IX , θX) where IX is a language
over a finite alphabet (whose elements are called instances) and θX is a total boolean
function over IX . Next, we define what means solving a decision problem in the
framework of tissue P systems efficiently and in a uniform way. Bearing in mind that
they provide devices with a finite description, a countable family of tissue P systems
will be necessary in order to solve a decision problem.

Definition 2. We say that a decision problem X = (IX , θX) is solvable in a
uniform way and polynomial time by a family Π = {Π(n) : n ∈ N} of recognizer
tissue P systems with cell separation if the following holds:

1. The family Π is polynomially uniform by Turing machines, that is, there exists
a deterministic Turing machine working in polynomial time which constructs
the system Π(n) from n ∈ N.

2. There exists a pair (cod, s) of polynomial-time computable functions over IX
such that:

(a) for each instance u ∈ IX , s(u) is a natural number and cod(u) is an input
multiset of the system Π(s(u));

(b) for each n ∈ N, s−1(n) is a finite set;



(c) the family Π is polynomially bounded with regard to (X, cod, s), that is,
there exists a polynomial function p, such that for each u ∈ IX every
computation of Π(s(u)) with input cod(u) is halting and it performs at
most p(|u|) steps;

(d) the family Π is sound with regard to (X, cod, s), that is, for each u ∈ IX , if
there exists an accepting computation of Π(s(u)) with input cod(u), then
θX(u) = 1;

(e) the familyΠ is complete with regard to (X, cod, s), that is, for each u ∈ IX ,
if θX(u) = 1, then every computation of Π(s(u)) with input cod(u) is an
accepting one.

From the soundness and completeness conditions above we deduce that every P
system Π(n) is confluent, in the following sense: every computation of a system with
the same input multiset must always give the same answer.

Let R be a class of recognizer tissue P systems. We denote by PMCR the set of
all decision problems which can be solved in a uniform way and polynomial time by
means of families of systems from R. The class PMCR is closed under complement
and polynomial–time reductions [9].

3. P-Lingua syntax for tissue P systems with cell separation

In the version of P-Lingua presented in [3], only one type of tissue P systems was
allowed to be defined in P-Lingua files: tissue P systems with cell division. This is
the starting point for the current syntax, that has been extended as explained below,
in order to support tissue P systems with cell separation rules.

Definition of the P system model

In order to define a tissue P system with cell separation rules, the first line of the
P-Lingua file should be as follows: @model<TSCS>

Definition of the partition of the working alphabet

In order to define the first part of the partition of the working alphabet, Γ1, the fol-
lowing sentence should be written: @ms1 += OBJECTS; where OBJECTS is a comma-
separated list of objects.

Similarly, in order to define the second part of the partition, Γ2, an analogous
sentence should be written, but using @ms2 instead.

Actually, we need at least one sentence for each part, but the definition of the
alphabets can be done by using several instructions, since the symbol += indicates
the parser to update the value of the variable on its left-hand side by adding the
objects on the right-hand side to the previous list associated with it (if any). It is
also allowed to use a single sentence with the symbol = instead. In this case the
definitions are not made dynamically and in a cummulative way, but statically (a
single comma-separated list for each part of the partition).



Definition of cell separation rules

Cell separation rules are defined with the syntax: [a]’h --> []’h[]’h; where a is
the object that triggers the separation rule and h is the label of the cell to be separated.

Finally, the syntax of communication rules and the remaining elements of the language
are the same as the ones used for the definition of tissue P systems with cell division
rules [3].

4. A software simulator for tissue P systems
with cell separation

The pLinguaCore library has been expanded to include a built-in simulator for
tissue P systems with cell separation rules. This simulation algorithm is determinis-
tic, and it reproduces only one possible computation of the defined P system. From a
theoretical point of view, this behaviour should not be a problem, since the simulator
is intended to be used on recognizer P systems. Recall that in the case of recognizer
P systems from a family that solves a problem according to Definition 2, all computa-
tions for a given input must generate the same output, due to the confluence property.

The current release of pLinguaCore library is 4.0, and it can be downloaded from [11].

4.1. Simulation algorithm

The simulation algorithm described below generates one possible computation for
a tissue P system with cell separation rules.

I. Initialization

1. Let C0 be the initial configuration with q cells denoted by c1, . . . , cq.

2. Let c0 be a virtual cell with label 0 representing the environment, where all
initial objects have infinite multiplicity.

3. Let Rsel = {} be a set of tuples containing the selected rules to be executed
at each step of computation, the identifiers of involved cells and the number of
times that each rule will be executed.

4. Let Ct = C0 be the current configuration.

II. Selection of communication rules

1. For each communication rule (i, u/v, j) do

(a) For each cell ck1 ∈ Ct with label i do



i. Let N be the greatest number such that the multiset of ck1 contains
N copies of the multiset u.

ii. For each cell ck2 ∈ Ct with label j, while N > 0 do

• Let M be the greatest number M ≤ N such that the multiset of
ck2 contains M copies of the multiset v

• Remove M copies of u from the multiset of ck1

• Remove M copies of v from the multiset of ck2

• Add ⟨ck1 , ck2 , (i, u/v, j),M⟩ to Rsel

• Let N = N −M

III. Selection of separation rules

1. For each separation rule [a]i → [Γ1]i[Γ2]i do

(a) For each cell ck ∈ Ct with label i such ck does not appear in Rsel do

i. If a is contained in the multiset of ck, then

• Remove one instance of a from the multiset of ck

• Add ⟨ck, [a]i → [Γ1]i[Γ2]i⟩ to Rsel

IV. Execution of rules

1. For each tuple ⟨ck1 , ck2 , (i, u/v, j),M⟩ from Rsel do

(a) Add M copies of v to the multiset of ck1

(b) Add M copies of u to the multiset of ck2

2. For each tuple ⟨ck, [a]i → [Γ1]i[Γ2]i⟩ from Rsel do

(a) Create a new cell c′k with label i and empty multiset.

(b) Copy in the multiset of c′k the objects of Γ2 contained in the multiset of ck

(c) Remove from the multiset of ck the objects of Γ2

V. Ending

1. If Rsel ̸= ∅, then

• Let Ct+1 = Ct

• Let Rsel = {}
• Go to II

2. End.



We assume that the set of rules is ordered. Moreover, for each step of the compu-
tation, the algorithm calculates a maximal multiset of communication rules applicable
to the current configuration, and after that it goes through separation rules and se-
lects them to be executed in that step, when possible, over cells not involved in any of
the already selected communication rules. This strategy is motivated by the intuition
that separation rules add more descriptive complexity than communication rules, so
we decided to give them in a sense a “lower priority”.

5. A case study: a family of tissue P systems
with cell separation solving SAT

5.1. Description of the family

In this section, a solution of SAT problem running in polynomial time is presented,
according to Definition 2, in the framework of tissue P systems with cell separation.
To do so, a brute force algorithm has been designed. Starting from a certain formula
given as an input, the algorithm is structured as follows:

• Generation stage: All possible truth assignments associated with the input for-
mula are produced by using cell separation in an adequate way. Thus, an
exponential amount of space (in terms of number of cells of the system) will be
generated. Each cell codifies one truth assignment.

• Checking stage: Inside each cell, it is checked wether or not the formula is
satisfiable by the truth assignment encoded by that cell.

• Output stage: The system sends the right answer to the environment, depending
on the existence or not of some cell codifying a truth assignment making the
given formula true.

In order to design a family of tissue P systems with cell separation solving SAT, a
function is considered, codifying the pair of parameters characterizing the instances of
the problem. These instances are the propositional formulas in simplified conjunctive
normal form, and the needed parameters are the numbers of variables and clauses.
So let us consider this polynomial-time computable function pair function: ⟨m,n⟩ =
((m+n)(m+n+1)/2)+m, which is a primitive recursive and bijective function fron
N×N to N. This way, for each natural number t there exist only two natural numbers
m and n such that t = ⟨m,n⟩; that is, each natural number t identifies a number of
variables and a number of clauses.

Next, the family Π = {Π(t) : t ∈ N} of recognizer tissue P systems with cell sepa-
ration from TSC(3) is defined, such that its rules have a maximum length of 3. Each
system Π(t) of the family will process all instances φ of SAT (that is, propositional
formulas in simplified CNF form) with n variables and m clauses, where t = ⟨m,n⟩,
provided that the appropriate input multiset cod(φ) is supplied to the system. This
multiset is placed in the corresponding input cell, and identifies the specific proposi-
tional formula with n variables and m clauses.



For each (m,n) ∈ N× N, the following recognizer tissue P system with cell sepa-
ration from TSC(3) is considered:

Π(⟨m,n⟩) = (Γ,Γ1,Γ2,Σ, E ,M1,M2,M3,R, iin, iout)

• The input alphabet is Σ = {xi,j , xi,j : 1 ≤ i ≤ n , 1 ≤ j ≤ m}.
• The working alphabet is Γ = Γ1 ∪ Γ2, where

Γ1 = {Ai, Bi : 1 ≤ i ≤ n+ 1} ∪ {ai, bi, Ti, Fi, yi, vi, wi : 1 ≤ i ≤ n} ∪
{ci, ti, fi, si, zi : 1 ≤ i ≤ n− 1} ∪ {Ej : 1 ≤ j ≤ m+ 1} ∪
{αi : 0 ≤ i ≤ 3n+ 2m+ 1} ∪ {βi : 0 ≤ i ≤ 3n+ 2m+ 2} ∪
{xi,j , xi,j , ei,j , ei,j : 1 ≤ i ≤ n , 1 ≤ j ≤ m} ∪
{di,j,k, di,j,k : 1 ≤ i ≤ n , 1 ≤ j ≤ m, 1 ≤ k ≤ n} ∪
{qi,j , ri,j , ui,j : 1 ≤ i, j ≤ n− 1} ∪ {q0, S, yes, no}

Γ2 = {A′
i, B

′
i : 1 ≤ i ≤ n+ 1} ∪ {a′i, b′i, T ′

i , F
′
i : 1 ≤ i ≤ n}

• The alphabet of the environment is:

E = {S} ∪ {Ai, Bi, A
′
i, B

′
i : 2 ≤ i ≤ n+ 1} ∪

{Ti, Fi, F
′
i , yi, wi : 1 ≤ i ≤ n} ∪ {ai, a′i, bi, b′i, vi : 2 ≤ i ≤ n} ∪

{T ′
i , ci, ti, fi, si, zi : 1 ≤ i ≤ n− 1} ∪ {Ej : 1 ≤ j ≤ m+ 1} ∪

{αi : 1 ≤ i ≤ 3n+ 2m+ 1} ∪ {βi : 1 ≤ i ≤ 3n+ 2m+ 2} ∪
{qi,j , ri,j , ui,j : 1 ≤ i ≤ n− 1 , 1 ≤ j ≤ n− 1} ∪
{ei,j , ei,j : 1 ≤ i ≤ n , 1 ≤ j ≤ m} ∪
{di,j,k, di,j,k : 1 ≤ i, k ≤ n , 1 ≤ j ≤ m}

• The initial multisets are: M1 = A1 B1; M2 = a1 a
′
1 b1 b

′
1 v1 q1,1 α0 yes no; and

M3 = β0.
• The set R consists of the following rules:

(1) (1 , Ai / ai a
′
i , 2), for 1 ≤ i ≤ n, and (1 , An+1 /E1 , 2).

(2) (1 , A′
i / ai a

′
i , 2), for 1 ≤ i ≤ n, and (1 , A′

n+1 /E1 , 2).

(3) (1 , Bi / bi b
′
i , 2), for 1 ≤ i ≤ n.

(4) (1 , B′
i / bi b

′
i , 2), for 1 ≤ i ≤ n.

(5) (1 , Ti / ti , 2), for 1 ≤ i ≤ n− 1.
(6) (1 , T ′

i / ti , 2), for 1 ≤ i ≤ n− 1.

(7) (1 , Fi / fi , 2), for 1 ≤ i ≤ n− 1.
(8) (1 , F ′

i / fi , 2), for 1 ≤ i ≤ n− 1.

(9) (1 , ti / Ti T
′
i , 0), for 1 ≤ i ≤ n− 1.

(10) (1 , fi /Fi F
′
i , 0), for 1 ≤ i ≤ n− 1.

(11) (1 , bi /Bi+1 S , 0), for 1 ≤ i ≤ n, and (1 , Bn+1 / λ , 0).
(12) (1 , b′i /B

′
i+1 , 0), for 1 ≤ i ≤ n, and (1 , B′

n+1 / λ , 0).



(13) (1 , ai / Ti Ai+1 , 0), for 1 ≤ i ≤ n.
(14) (1 , a′i /F

′
i A

′
i+1 , 0), for 1 ≤ i ≤ n.

(15) (2 , Ai / ci , 0), for 1 ≤ i ≤ n− 1, and (2 , Ai / λ , 0), for n ≤ i ≤ n+ 1.
(16) (2 , A′

i / ci , 0), for 1 ≤ i ≤ n− 1, and (2 , A′
i / λ , 0), for n ≤ i ≤ n+ 1.

(17) (2 , Bi / ci , 0), for 1 ≤ i ≤ n− 1.
(18) (2 , B′

i / ci , 0), for 1 ≤ i ≤ n− 1.

(19) (2 , ci / bi+1 b
′
i+1 , 0), for 1 ≤ i ≤ n− 1.

(20) (2 , vi / y
2
i , 0), for 1 ≤ i ≤ n.

(21) (2 , yi / zi wi , 0), for 1 ≤ i ≤ n− 1, and (2 , yn /wn , 0).

(22) (2 , zi / vi+1 , 0), for 1 ≤ i ≤ n− 1.

(23) (2 , wi / ai+1 a
′
i+1 , 0), for 1 ≤ i ≤ n− 1, and (2 , wn /E1 , 0).

(24) (2 , q1,1 / r1,1 , 0).

(25) (2 , qi,j / r
2
i,j , 0), for 1 ≤ i ≤ n− 1, 2 ≤ j ≤ n− 1.

(26) (2 , ri,j / si ui,j , 0), for 1 ≤ i, j ≤ n− 1.

(27) (2 , si / ti fi , 0), for 1 ≤ i ≤ n− 1.

(28) (2 , u1,j / q1,j+1 q2,j+1 , 0), for 1 ≤ j ≤ n− 2.

(29) (2 , ui,j / qi+1,j+1 , 0), for 2 ≤ i, j ≤ n− 2.

(30) (2 , ui,n−1 / λ , 0), for 1 ≤ i ≤ n− 1.

(31) (2 , Ti / λ , 0), for 1 ≤ i ≤ n− 1.
(32) (2 , T ′

i / λ , 0), for 1 ≤ i ≤ n− 1.

(33) (2 , Fi / λ , 0), for 1 ≤ i ≤ n− 1.
(34) (2 , F ′

i / λ , 0), for 1 ≤ i ≤ n− 1.

(35) [S ]1 −→ [ Γ1 ]1 [ Γ2 ]1

(36) (2 , αi /αi+1 , 0), for 0 ≤ i ≤ 3n+ 2m.

(37) (3 , βi / βi+1 , 0), for 0 ≤ i ≤ 3n+ 2m+ 1.

(38) (3 , xi,j / d
2
i,j,1 , 0), (3 , x̄i,j / d̄

2
i,j,1 , 0), for 1 ≤ i ≤ n, 1 ≤ j ≤ m.

(39) (3 , di,j,k / d
2
i,j,k+1 , 0),

(3 , d̄i,j,k / d̄
2
i,j,k+1 , 0), for 1 ≤ i ≤ n, 1 ≤ j ≤ m, 1 ≤ k ≤ n− 1.

(40) (3 , di,j,n / ei,j , 0), (3 , d̄i,j,n / ēi,j , 0), for 1 ≤ i ≤ n, 1 ≤ j ≤ m.



(41) (1 , TiEj / ei,j , 3), (1 , FiEj / ēi,j , 3),
(1 , T ′

iEj / ei,j , 3), (1 , F
′
iEj / ēi,j , 3), for 1 ≤ i ≤ n, 1 ≤ j ≤ m.

(42) (1 , ei,j / TiEj+1 , 0),
(1 , ēi,j /FiEj+1 , 0), for 1 ≤ i ≤ n, 1 ≤ j ≤ m− 1.

(43) (1 , ei,m /Em+1 , 0), (1 , ēi,m /Em+1 , 0), for 1 ≤ i ≤ n.

(44) (3, Ti / λ , 0), (3 , Fi / λ , 0),
(3 , T ′

i / λ , 0), (3 , F
′
i / λ , 0), for 1 ≤ i ≤ n.

(45) (3 , Ej / λ , 0), for 1 ≤ j ≤ m.

(46) (1 , Em+1 / yes α3n+1+2m , 2).

(47) (1 , yes / β3n+1+2m+1 , 3).

(48) (2 , α3n+1+2m / β3n+1+2m+1 , 3).

(49) (2 , no β3n+1+2m+1 / λ , 0).

(50) (3 , yes / λ , 0).

• The input cell is iin = 3.

• The output region is the environment, iout = 0.

5.2. A P-Lingua source code

The P–Lingua source code that defines a tissue P system belonging to the family
specified above is available for download in the Examples section at [11].

5.3. Results

We have simulated several P systems of the defined family solving different in-
stances of the SAT problem. In what follows, a table of selected results is provided,
including the execution time for each simulation.

We have validated our simulator with 48 instances of the problem of different size
and input. Grouping the formulas by the number of variables and clauses, we can
calculate the average simulation times depending on the size of the instance of the
problem. The result is shown in Table 2.



Table 1. Formulas – Satisfiability and simulation time

n m SAT Time (s) Formula

2 3 F 0.23 (x̄1 + x̄2) · x1 · x2

2 3 T 0.05 (x̄1 + x̄2) · x2 · (x̄1 + x2)
3 4 F 0.14 (x1 + x2) · (x1 + x2 + x̄3) · x̄1 · x̄2

3 4 T 0.15 (x̄1 + x2) · x̄1 · x3 · (x̄1 + x3)
4 5 F 0.53 (x1 + x4) · (x1 + x̄4) · x3 · (x2 + x̄3 + x4) · x̄1

4 5 T 0.56 (x3 + x̄4) · (x̄1 + x2 + x̄3 + x4) · (x1 + x2)·
(x̄1 + x2 + x3 + x4) · (x̄1 + x3)

5 6 F 2.16 (x1 + x̄2 +x3 +x5) · (x̄1 +x4) · (x̄2 + x̄4) ·x4 ·x2 · (x̄1 +
x2 + x̄3 + x4)

5 6 T 1.99 (x3+x4) · (x4+ x̄5) · (x̄1+x2+ x̄3+ x̄4) · (x1+ x̄2+x4)·
(x1 + x̄3 + x4) · (x3 + x5)

6 7 F 8.58 (x3 + x5 + x6) · (x3 + x̄4 + x5 + x̄6) · x̄3 · x̄6 · (x1 + x̄2 +
x̄3 + x5 + x6) · (x1 + x4 + x5) · (x̄5 + x6)

6 7 T 8.07 (x̄1 + x̄2 + x5) · (x2 + x3) · (x3 + x̄5 + x̄6) · (x̄1 + x2 +
x̄3 + x4 + x5 + x6) · (x̄2 + x̄3) · (x2 + x3 + x6) · (x1 +
x̄2 + x3 + x4 + x5 + x6)

7 8 F 28.92 (x̄5 + x̄6 + x̄7) · (x3 + x̄4 + x7) · (x̄1 + x3 + x5 + x6 +
x̄7) · (x1 + x3 + x̄5 + x6 + x7) · (x2 + x6) · (x2 + x̄6) ·
x̄2 · (x2 + x3 + x4 + x̄5 + x7)

7 8 T 29 (x̄2+x5+x6+x7) · (x2+ x̄4+ x̄5+ x̄7) · (x1+x2+ x̄3+
x̄6+x7)·(x1+x2+x3+x̄5+x6+x̄7)·(x̄3+x̄5+x6+x̄7)·
(x1+x2+x̄3+x̄7)·(x̄1+x2+x̄4+x̄6)·(x3+x5+x6+x̄7)

8 9 F 119.3 (x3 + x4 + x̄6 + x̄8) · (x6 + x̄7) · (x̄2 + x3 + x̄4 + x5 +
x8) ·x7 · (x1 + x̄2 +x5 + x̄7 + x̄8) · (x2 +x7 +x8) · (x̄6 +
x̄7) · (x1 + x5 + x̄8) · (x1 + x̄4 + x5 + x̄6 + x7)

8 9 T 121.2 (x1+ x̄5+ x̄6+ x̄7+ x̄8) · (x2+x3+x4+ x̄6+ x̄7+x8) ·
(x3+x4+ x̄5+ x̄6+ x̄7+ x̄8) · (x̄1+ x̄3+ x̄4+ x̄5+x6+
x̄7+x8) · (x̄3+ x̄7) · (x4+x5+ x̄7) · (x1+x3+ x̄4) · (x1+
x̄2 + x̄3 + x̄4 + x̄5 + x̄6 + x̄7) · (x4 + x̄5 + x̄6 + x7 + x̄8)

9 10 F 406.95 (x̄2+x̄3+x5+x7)·(x2+x5+x6+x7+x9)·(x̄3+x5+x7+
x8)·(x1+x̄4+x̄5+x6+x8)·(x̄2+x3+x5+x7+x8+x̄9)·
(x̄2+ x̄4+x7+x9) ·(x̄2+x4+x6+x9) ·x1 ·x5 ·(x̄1+ x̄5)

9 10 T 417.38 (x3 + x8) · (x1 + x̄2 + x5 + x̄6 + x9) · (x3 + x6 + x9) ·
(x3 + x5 + x̄6 + x̄8) · (x1 + x2 + x̄5 + x7 + x̄8 + x̄9) ·
(x̄1 + x2 + x̄4 + x5 + x̄6 + x̄7 + x9) · (x1 + x2 + x4 +
x̄6+x8+ x̄9) · (x̄1+x2+ x̄3+ x̄4+x7+ x̄8) · (x̄1+x2+
x3 + x5 + x̄6 + x8 + x̄9) · (x2 + x̄3 + x4 + x̄6 + x̄7 + x̄9)

Table 2. Simulation time depending on the size of the formula

n/m 2 3 4 5 6 7 8 9
3 0.5
4 0.14
5 0.52
6 2.06
7 8.57
8 29.42
9 117.64
10 417.25



6. Conclusions and Future Work

In this paper a new extension of P-Lingua has been presented, adding a new
variant, tissue P systems with cell separation. Besides, a new simulation algorithm
has been designed and implemented, taking into account the special features of tissue
P systems with symport/antiport rules and cell separation. This new simulator has
been included into the library pLinguaCore, and checked by simulating a family of
tissue P systems with cell separation taken from the literature: a uniform solution
to SAT.

Since the new simulator is available, it could be interesting to develop or adapt
visual environments oriented to users working with models based on tissue P systems
with cell separation. These tools could provide an easy way to experimentally validate
models which have been formally validated, such as the aforementioned solution to
SAT problem. A possible approach could be the generation of a custom interface
based on MeCoSim [8, 12].

Another promising pending work is related to the comparison of different models
inside the framework of tissue P systems, such as tissue P systems with cell division
and tissue P systems with cell separation. This comparison could lead to relevant con-
clusions regarding the practical tractability of TSC(3) and TDC(3) models, both
from a theoretical point of view and regarding the running times of the simulators for
the two variants. It is also interesting to investigate the effect of adding some alter-
native heuristic method of selecting the multiset of rules to be executed at each step.

On the other hand, it is important to note that the developed simulator is based
on sequential technologies, so the inherent parallelism assumed by the theoretical
model cannot be exploited. This limitation cannot be overcomed because a real
implementation of P systems does not exist, but some performance improvement can
be achieved by means of some parallel architectures and programming models, such as
GPGPU. This technology has been successfully applied to some previous simulators,
including one based on tissue P systems with cell division [2], so it could be interesting
to develop a new one for cell separation.
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[6] PĂUN G., Computing with membranes, Journal of Computer and System Sciences,
61(1), pp. 108–143, 2000 (doi: 10.1006/jcss.1999.1693). Was first circulated as Turku
Center for Computer Science-TUCS Report No. 208 (1998).
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