Towards a verifiable topology of data

Laureano Lambán (U. La Rioja)
Francisco J. Martín-Mateos (U. Sevilla)
Julio Rubio (U. La Rioja)
José L. Ruiz-Reina (U. Sevilla)

Schedule

- Mathematical background.
- Persistent homology over
- a field.
- an elementary divisor ring.
- Formalisation in ACL2.

Mathematical backgroud
Simplicial Complex

V ordered set

Simplicial Complex (over V)

- $\mathrm{K} \subseteq \mathrm{P}_{\text {fin }}(\mathrm{V}), \mathrm{K}$ closed under the subset relation
- $\mathrm{S}_{\mathrm{n}}(\mathrm{K})$, "simplices whose cardinality is $\mathrm{n}+1$ "
- $\sigma_{n}^{i}: S_{n}(K) \rightarrow S_{n-1}(K)$,

$$
\sigma_{n}^{i}\left(v_{0}, . ., v_{n}\right)=\left(v_{0}, . ., v_{i-1}, v_{i+1}, . . v_{n}\right)
$$

Mathematical backgroud

Chain Complex

R ring

Chain Complex (over R)

$$
C_{*}=\left\{\left(C_{n}, d_{n}\right) / n \in Z\right\}
$$

- $\mathrm{C}_{\mathrm{n}}, \mathrm{R}$-module
- $\mathrm{d}_{\mathrm{n}}: \mathrm{C}_{\mathrm{n}} \rightarrow \mathrm{C}_{\mathrm{n}-1}$, morphism of R-modules, $\forall \mathrm{n}$
- $d_{n} d_{n+1}=0, \quad \forall n$

Mathematical backgroud Chain Complex associated with a simplicial complex K

K simplicial complex.
$C_{*}(K)$ is given by:

- $C_{n}(K)$, free R-module over $S_{n}(K)$
- $\mathrm{d}_{\mathrm{n}}=\sum_{i=0}^{n}(-1)^{i} \sigma_{\mathrm{n}}^{\mathrm{i}}$

Mathematical backgroud Homology

K simplicial complex.

The n -th homology group of K

$$
\begin{gathered}
H_{n}(K)=\frac{Z_{n}}{B_{n}} \\
\left(d^{2}=0 \text { implies } \operatorname{Im} d_{n+1}=B_{n} \leq Z_{n}=\text { Ker } d_{n}\right)
\end{gathered}
$$

Mathematical backgroud

Filtration

- Filtration of a simplical complex K

$$
\mathrm{K}^{1} \subseteq \mathrm{~K}^{2} \subseteq \ldots \subseteq \mathrm{~K}^{\mathrm{d}}=\mathrm{K}
$$

(K is a filtered simplicial complex)

- Filtration of chain complexes

$$
\mathrm{C}_{*}^{0} \stackrel{\mathrm{f}_{0}}{\rightarrow} \mathrm{C}^{1}{ }_{*}^{\mathrm{f}_{1}} \rightarrow{\stackrel{\mathrm{C}_{2}}{ }{ }^{2} \rightarrow \ldots}^{\rightarrow} \ldots
$$

(f_{i} is a morphism of chain complexes)

Mathematical backgroud Induced filtration

A filtration of simplicial complexes

$$
\mathrm{K}^{0} \rightarrow \mathrm{~K}^{1} \rightarrow \mathrm{~K}^{2} \ldots \rightarrow \mathrm{~K}^{\mathrm{d}}=\mathrm{K}
$$

induces

$$
\mathrm{C}_{*}\left(\mathrm{~K}^{0}\right) \rightarrow \mathrm{C}_{*}\left(\mathrm{~K}^{1}\right) \rightarrow \ldots \rightarrow \mathrm{C}_{*}\left(\mathrm{~K}^{\mathrm{d}}\right)
$$

a filtration of chain complexes
(arrows are inclusion maps)

Mathematical backgroud

Persistent homology

A filtration of simplicial complexes

$$
\mathrm{K}^{0} \rightarrow \mathrm{~K}^{1} \rightarrow \mathrm{~K}^{2} \ldots \rightarrow \mathrm{~K}^{\mathrm{d}}=\mathrm{K}
$$

The p-persistent n-dimensional homology group of K^{j} is given by

$$
\begin{gathered}
H_{n}^{j, p}=Z_{n}^{j} / B_{n}^{p} \cap Z_{n}^{j} \quad(j \leq p) \\
\left(Z_{n}^{j} \leq Z_{n}^{p} \leq C_{n}\left(K^{p}\right) \text { and } B_{n}^{p} \leq C_{n}\left(K^{p}\right)\right)
\end{gathered}
$$

An example

$H_{1}{ }^{4,4}=\mathrm{Z}+\mathrm{Z}$
$\mathrm{H}_{1}{ }^{4,5}=\mathrm{Z}$
$H_{1}^{5,5}=Z+Z$

Computing persistent homology (over a field F) Mathematical basis

- Artin-Rees Theorem implies
"F-modules of persistence $\equiv \mathrm{F}[\mathrm{x}]$-modules"

(finite type)

- F is a field, $F[x]$ is a PID
- To computing the persistent homology of a filtration of F -modules is equivalent to computing the homology of its (Artin-Rees) associated F[x]-module.

Computing persistent homology (over a field F) Algorithm

Algorithm

Variant of the gaussian elimination algorithm

- Polynomial time
- Persistence intervals
- Barcodes

Computing persistent homology (over an ED-ring R) Mathematical basis

Two essential bricks:

- Echelon forms for matrices
(effective Bezout domains)
- Smith normal form
(elementary divisor rings)

Computing persistent homology (over an ED-ring R) Echelon form

An echelon form

$(A \in M(n x m, R))$

$(a \neq 0)$ and echelonForm $\left(A_{1}\right)$

Computing persistent homology (over an ED-ring R) EchelonForm
echelonForm(A)

(the width of the steps is 1)

Computing persistent homology (over an ED-ring R) Existence of echelon form
R is an effecctive Bezout domain.

Th1: Existence of echelon form ($A \in M(n x m, R)$)
"There exists P invertible s.t. echelonForm(AP)"
(P is a sequence of Bezout and permutation "elementary operations")

Computing persistent homology (over an ED-ring R) Generalized echelon form

echelonForm(A,s) $\quad A \in M(n x m, R)$

$\mathrm{s} \geq \mathrm{n} \longrightarrow$ true

$(a \neq 0)$ and echelonForm $\left(A_{1}, s\right)$

Computing persistent homology (over an ED-ring R) Generalized echelon form
echelonForm (A,s)

Computing persistent homology (over an ED-ring R) Graded matrices

Graded matrix
$A \in M(n x m, R)$
j_{d}

Computing persistent homology (over an ED-ring R) Graded matrices

A filtration of simplicial complexes

$$
\mathrm{K}^{0} \rightarrow \mathrm{~K}^{1} \rightarrow \mathrm{~K}^{2} \ldots \rightarrow \mathrm{~K}^{\mathrm{d}}=\mathrm{K}
$$

The standard matrix representation of the differential map

$$
d_{n}=\left\{d_{n}{ }^{i}: C_{n}\left(K^{i}\right) \rightarrow C_{n-1}\left(K^{i}\right)\right\}
$$

is a graded matrix.

Computing persistent homology (over an ED-ring R)
Graded matrices

$\mathrm{i}=1,2, \ldots, \mathrm{p}$ represent the filtration index

Computing persistent homology (over an ED-ring R) Graded echelon form
R is an effecctive Bezout domain.
Th2: "Existence of graded echelon form"

Input: ($\mathrm{A}, \mathrm{s}, \mathrm{t}$)

- $A \in M(n x m, R)$, graded matrix
- $0 \leq \mathrm{s} \leq \mathrm{t} \leq \mathrm{d}$

Computing persistent homology (over an ED-ring R)

Graded echelon form

R is an effecctive Bezout domain.
Th2: "Existence of graded echelon form"
Input: (A, s, t)
Output: $\left(P_{s^{\prime}}, P_{s+1}, \ldots, P_{t}\right)$

- P_{i} are invertible matrices
- echelonForm $\left(E_{i}, s\right)$, where $E_{i}=A_{i} P_{i}$, and...

Computing persistent homology (over an ED-ring R) Graded echelon form

$$
E_{i}=\begin{array}{|l|l|}
\hline E_{i}^{1} & E_{i}^{2} \\
\hline
\end{array} \quad \begin{gathered}
E_{i}=A_{i} P_{i} \\
E_{i}^{1} \in M\left(_x b_{i}, R\right)
\end{gathered}
$$

Computing persistent homology (over an ED-ring R)

Smith normal form

R is an elementary divisor ring.

Th3: "Existence of Smith normal form"

Input: $A \quad(A \in M(n x m, R))$
Output: ($\left.\left(d_{1}, \ldots, d_{r}\right), P, R\right)$

- P, Q invertible matrices
- $d_{i} \mid d_{i+1} \quad(i=1 . . r-1)$
- PAQ=DiagonalMatrix $\left(d_{1}, \ldots, d_{1} 0, . ., 0\right)$

Computing persistent homology (over an ED-ring R). Algorithm

Algorithm

Input:

- $\mathrm{K}^{0} \rightarrow \mathrm{~K}^{1} \rightarrow \mathrm{~K}^{2} \ldots \rightarrow \mathrm{~K}^{\mathrm{d}}=\mathrm{K}$
(a filtered complex K)
- $\mathrm{n} \geq 0$
- r, t such that $0 \leq r \leq t \leq d$

Output:

- $H_{n}{ }^{r, j}(K) \quad r \leq j \leq t$

Computing persistent homology (over an ED-ring R). Algorithm (Step 1)

Let A be the standard matrix representation of

$$
d_{n}=\left\{d_{n}^{i}: C_{n}\left(K^{i}\right) \rightarrow C_{n-1}\left(K^{i}\right) \mid i=1 . . d\right\}
$$

Step 1: gradedEchelonForm (A, 0, d)

\downarrow
invertible matrices $\left(P_{1}, \ldots . P_{d}\right)$

Computing persistent homology (over an ED-ring R). Algorithm (Step 1)
invertible matrices $\left(P_{1}, . ., P_{d}\right)$ such that

Columns of P's matrices provide us a family of compatible basis of the kernels

$$
\begin{aligned}
& \mathrm{B}_{1} \leq \mathrm{B}_{2} \leq \ldots \leq \mathrm{B}_{\mathrm{d}} \\
& \mathrm{Z}_{1} \leq \mathrm{Z}_{2} \leq \ldots \leq \mathrm{Z}_{\mathrm{d}}
\end{aligned}
$$

Computing persistent homology (over an ED-ring R). Algorithm (Step 2)

Let B be the standard matrix representation of d_{n+1}

$$
\mathrm{d}_{\mathrm{n}+1}=\left\{\mathrm{d}_{\mathrm{n}+1}{ }^{\mathrm{i}}: \mathrm{C}_{\mathrm{n}+1}\left(\mathrm{~K}^{\mathrm{i}}\right) \rightarrow \mathrm{C}_{\mathrm{n}}\left(\mathrm{~K}^{\mathrm{i}}\right) \mid \mathrm{i}=1 . . \mathrm{d}\right\}
$$

Step 2: $P_{d}^{-1} B=$

Computing persistent homology (over an ED-ring R). Algorithm (Step 3)

Step 3: gradedEchelonForm $\left(P_{d}{ }^{-1} B, r, t\right)$

echelonForm $\left(\left(P_{d}^{-1} B\right)_{j} Q_{j}, r\right) \quad(r \leq j \leq t)$

Computing persistent homology (over an ED-ring R). Algorithm (Step 4)

Let $E_{j}=\left(P_{d}^{-1} B\right)_{j} Q_{j}=\left[E_{j}^{1} \mid E_{j}^{2}\right]$

Step 4: \quad SmithForm $\left(\mathrm{E}_{\mathrm{j}}{ }^{1}\right)$
$H_{n}{ }^{\mathrm{r}, \mathrm{j}}(\mathrm{K})$

An Smith computation for each filtration index j !

Formalisation in ACL2

- Our goal: implement and formally verify this algorithm in the ACL2 Theorem Prover
- This means to implement and verify

Echelon form
Graded echelon form
Smith normal form

Formalisation in ACL2

- One of our main concerns is efficiency Advantage of using ACL2: we verify Common Lisp code.
- But ACL2 is an applicative subset of CL. In principle, we have not CL arrays, only lists.
- Fortunately, we can use stobjs (single-threaded objects), which alllows destructive updates and constant-time accesses, without losing the applicative semantic.

Formalisation in ACL2

What we have now:

- An array-based version of echelon form algorithm ("efficient" but unverified).
- A list-based version of echelon form and Smith form algorithms (still unverified).
- Infrastructure proving operational equivalence between both approaches.

Our goal: reasoning using the second approach and executing using the first one.

